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By rescaling the exact low-density results practical expressions are obtained for the equation of
state and the direct correlation function of a fluid of hard D-spheres allowing a unified treatment
of both the odd and even space dimensionalities D. The accuracy of these results is tested against
those of the current literature and found to be excellent, in particular for hard disks (D =2),
whereas the hard-rod results (D =1) are reproduced exactly.

I. INTRODUCTION

In the high-density region the behavior of a fluid
(liquid or vapor) is dominated by the excluded-volume
effects associated with the hard cores of its constituents.
It is therefore quite natural to study model fluids with
only hard cores and no interatomic attractions. Com-
putc: simulations have shown' that such fluids exhibit
indeed many liquidlike properties. Nowadays the
theoretical studies of liquids! use almost invariably some
hard-core reference fluid as basis for a perturbation ex-
pansion of the properties of more realistic liquids. The
most widely used hard-core reference fluid in D dimen-
sions is certainly the fluid of hard D-spheres. It is
surprising, however, that whereas the properties of a
fluid of hard rods (D =1) are known e:xactly,2 not a sin-
gle exact result is known when Ds£1. One therefore
usually resorts to some approximate integral equation
for the structural functions (from which the thermo-
dynamics can then be obtained as a byproduct) and com-
pares their numerical solution to the results of computer
simulations. For the hard D-sphere systems under con-
sideration the Percus-Yevick (PY) equations' have
played a particular role since for D =1 and 3 they can
be solved analytically! while the results compare also
favorably (except for the thermodynamic inconsistency
between the D =3 virial and compressibility equations of
state) with the computer simulation results. Unfor-
tunately the PY equations cannot be solved analytically
for the even values of D, including the widely studied
hard-disk system (D =2). Many pieces of knowledge
combining the results of computer simulations, numeri-
cal solutions, and analytic approximations are scattered
in the literature but none of them allows a parallel treat-
ment of different D values, especially of odd and even D
values.

It is the purpose of the present investigation to derive
unified expressions for hard D-spheres, with a generic D
dependence and an accuracy comparable to that of the
current literature. The emphasis here will not be so
much on the solution of the underlying theoretical prob-
lems but instead on the construction of practical algo-
rithms. A preliminary account® and a first application®
have already been presented elsewhere.

In Sec. II we present our results for the equation of
state which are then used in Sec. III to construct the
corresponding structural data. Some conclusions are
gathered in the final Sec. IV while the Appendixes A-C
contain some more mathematical material.

II. THE THERMODYNAMICS OF A FLUID
OF HARD D-SPHERES

We consider a D-dimensional system of D-dimensional
spheres of diameter ¢ with an infinitely steep repulsive
pair potential ¥ (|r|), V(|r|)=ow for |r| <o and
V(|r|)=0 for |r| >0, where |r| denotes the D-
dimensional distance (for notational convenience the D
dependence will not always be explicitly indicated). The
average number density of D-spheres is p and 7 is the
corresponding packing fraction, i.e., the fraction of the
total volume occupied by the D-spheres. The general re-
lation between p and 7 reads
o b 707250

2.1
) (2.1

n=Vp

P=prap/)’
where I'(1+z)==z! is the " function. In Eq. (2.1) we
took into account that in D-space the volume of a sphere
of unit radius is VD=77D/2/F(1+D /2), whereas
Sp=DVp is its surface area. The central thermodynam-
ic quantity is the compressibility factor, Z =fp /p, i.e.,
the dimensionless combination of the density (p), the
pressure (p), and the temperature (S=1/kgT), which
for hard D-spheres depends only on the density
Z =Z(n). From Z(n) we can compute the isothermal
compressibility X, the free energy per particle f/p (f
being the free energy per unit volume), and the constant
pressure specific heat per particle ¢, as

Bp dp B a
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where in Eq. (2.2b) the first term [involving the thermal
de Broglie wavelength A=h (2rmkgT)~'/?] is the purely
kinetic contribution which is independent of the density.

For low densities the central quantity, Z (%), can be
expanded into a virial series,

Zm=1+ S byu", 2.3)

n=1

with expansion coefficients b, related to the standard’
virial coefficients B, by

B
bnn":Bn-i»lp"’ b, =2(D—l)n_"_+1 ’ 2.4)
(B,)"
where B, equals one-half the volume of a sphere of ra-
dius o,

B,=1VpoP=nP"2¢?/2I(1+D /2) . (2.5)

The computation of B; for general D is already nonele-
mentary. Luban and Baram® have given a series repre-
sentation of B; while in Appendix A we derive the
equivalent but more compact result

B;
(B,)?

=2wp(1)=21,,(D +1)/2,1), (2.6)

where wp(x)=1, (D +1)/2,%) is an auxiliary func-
tion (which will be used repeatedly in Sec. III) related to
the normalized incomplete beta function I (a,b) [see
(A6)—(A13)]. The third virial coefficient B3 can then be
obtained most easily from (2.5) and (2.6) and the follow-
ing recurrence relation [see (A10)],

I3/4((D +1)/2,%)=I3/4((D -—1)/2,%)

3P-V2(p /2)

. : .7
2°T(L)D((D +1)/2)

TABLE 1. Some exact results for the expansion coefficients
used in Egs. (2.3) and (2.11) as obtained from Egs. (2.5)-(2.8)
and Egs. (2.12)-(2.17).

D 2 3 4 5
Bs 4 V3 s 4_ 33 53
(B,)? 30 0w 8 37 2m 128
i _
5, 16 43 10 256 96V3 106
3 T 3 T
c 0 1 4 11
A _
¢ 1 _4v3 ) 178 96V3 16
3 T 3 T

starting from [see (A12) and (A13)]
13/2(%,%)2%, 13/4(1,%)=% (28)

for, respectively, D =0 and D =1. Some explicit results
for B; can be found in Table I. Except for the following
two particular cases,®’

9v3 10
2224 D=2
B, T2 2.9)
(B, |219v2 4131 189 3
22407 ' 2240 " 2953 T 280
2.10)

the higher virial coefficients B, (n > 3) can no longer be
obtained analytically but some of them have been evalu-
ated by numerical integration®~!3 (up to n =7 for D =2
and 3 and up to D =9 for n =4). All results known to
us are given in Table II [not included, however, is the
trivial D =1 case for which B, ,;=(B;,)"=0" for all n}.
For the high densities relevant to the liquid phase the
slowly convergent virial series (2.3) cannot be used, but
the knowledge of the virial coefficients of Table II can be
exploited in various series convergence accelerating

TABLE II. All the known virial coefficients for hard D-spheres. The dots indicate that the corre-

sponding number is known exactly.

B;/(B,) B,/(B,)’ Bs/(By)* Bs/(B,) B;/(B,)°

D=2 0.7820.. .2 0.5322...° 0.333 556 04° 0.198 83¢ 0.1148¢
D=3 0.6252 0.28694 0.110252°¢ 0.0389¢ 0.0137¢
D=4 0.5063. . .2 0.1513f

D=5 0.4140. .. 0.07468 0.01488

D=6 0.3409. . .2 0.0328"

D=7 0.2822...°2 0.0098"

D=8 0.2346...° —0.0026"

D=9 0.1957...°2 —0.0084"

2Source, from Eq. (2.6).
®Source, from Eq. (2.9).
‘Source, from Ref. 9.
dSource, from Eq. (2.10).

“Source, from Ref. 10.
fSource, from Ref. 13.
8Source, from Ref. 12.
hSource, from Ref. 11.
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methods. The exact radius of convergence of the virial
series (2.3) is still unknown although often quoted candi-
dates are the densities of random and of crystal close
packing.!* Approximate theories, however, cannot ac-
count for close-packing effects and usually lead to virial
series with a singularity at p=1. Since D-spheres are
not space filling (except for D =1), this corresponds to a
physically unattainable density and hence 7=1 can
represent only an upper bound for the radius of conver-
gence of the virial series. Nevertheless, in order to
maintain contact with the well-known approximate
theories, it is of practical interest to keep the singularity
at 7=1. We therefore propose to rescale the virial series
(2.3) by writing the density expansion of Z (1) as

I+ 3 c,n"
Z(g)=—""— 2.11)
PET AP
where the strength of the singularity at %=1

[ «(1—%)"P] is inspired by the results of scaled particle
theory (SPT).! Equation (2.11) has an interesting generic
structure with respect to D and contains no adjustable
parameters. As we now show it also leads to simple and
accurate equations of state for all D values.

It is an easy matter to relate the new expansion
coefficients ¢, of (2.11) to the virial coefficients b, of
(2.3). The general result is

D (—1y¥D!

= —p
! ,Eo (D —p)p! " *

(2.12)

where it is understood that b, =0 when n <0 and by=1.
It is seen from (2.12) that each c, involves only those b,
(or B, ) with p <n. For instance we have

c;=2P-"1_p, (2.13)

1 p—1, 4p—1_B3
¢c;=5D(D —1)—-D2 +4 > (2.14)

(By)

etc, for general D or

b,—b,_, D=1 (2.15)
c,=1b,—2b, _1+b,_,, D=2 (2.16)
bn—3bn_1+3bn‘2'—b"_3, D=3 (217)

etc, for general n. Some explicit ¢, values are given in
Tables I and III.
In practice, the infinite series (2.3) and (2.11) have to
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be truncated at some finite order N, bound by the num-

ber of known virial coefficients (see Table II). As a re-
sult Z (n) will be approximated by Zy(7),
N
1+ 3 c,n"
=1
Zy(p)=—"—F—, (2.18)
M= )P

whose virial expansion is identical to that of (2.3) up to
the term by included. It is also possible to compute
Zy(m) iteratively from

Zy(m=Zy _(m+eyn™(1=m 7P, Zom=(1-m~"

(2.19)
when a new coefficient by (and hence cy) is added to
those already retained. As seen from (2.18) our proposal
for Zy(7) has the form of a particular Padé approxima-
tion [Py(n)/Qp(n) with Qp(m)=(1—n)"] and it is
hence obvious that for a particular value of D and N it is
always possible to construct Padé approximations more
accurate than Zy (7). Equation (2.18) has, however, the
following interesting properties: (i) to be generic with
respect to D (ii) to lead to accurate equations of state for
each D, and (iii) to yield equations which become more
accurate when N is increased, certainly at low density
but also (although not uniformly) at high density. We
now consider some explicit results.

A. Hard rods (D =1)

For hard rods (n=0p,B,=0) the equation of state is
known exactly,?

1
(1—m)

i.e.,, b,=1 for all n >1. Substituting b, =1 into (2.12)
we find [see (2.15)] ¢,=0 (n>1) and Zy(7n) of (2.18)
reduces [see (2.19)] to the exact result (2.20) whatever
the value of N. Our proposal is thus exact for D =1 as
are also the results' of the PY and SPT equations for
this particular dimensionality.

Z(np)=

(2.20)

B. Hard disks (D =2)

In this important case (n=m0%p/4, B,=70%/2), no
exact results are available but many empirical proposals
have been formulated. Most of them are of the type

2 3+c
Z(n)= l+an” by

(1—m?  (1—x)>*d”’

(2.21)

TABLE III. The expansion coefficients used in (2.18) as obtained from (2.12)~(2.17) and the virial
coefficients of Table II. For convenience only five digits have been displayed.

Cy () C3 Cy Cs Ce
D=1 0 0 0 0 0 0
D=2 0 0.1280 0.0018 —0.0507 —0.0533 —0.0410
D=3 1 1 —0.6352 —0.8697 0.2543 2.9231
D=4 4 6.4057 —8.1170
D=5 11 36 —74.438 347.12
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with specific values for the constants a, b, ¢, and d.
Starting from the results of SPT (Ref. 15) (a =0=b),
Henderson'® (b =0, a =0.125) and Kratky®® (4 =0,
a =0.112) have proposed a first modification thereof
which yields somewhat too small pressures at low densi-
ties (because the third virial coefficient B; is not repro-
duced exactly) and somewhat too large pressures at high
density. A second modification (bs£0) by Henderson!’
(a =0.128, b =0.043, c=1=d), Kratky®®
(@ =0.12802, b =0.03003, ¢ =0, d =1), and Verlet and
Levesque'® (@ =0.125, b =273, ¢ =1, d =2) corrects for
the low-density behavior but has the somewhat un-
pleasant feature to lead to negative pressures at very
high densities (in the metastable fluid region). In Table
IV we compare our results, Z,(7) of (2.18), with the re-
cent very accurate Monte Carlo—-molecular-dynamics
(MC-MD) computer simulation results of Erpenbeck
and Luban.’ It is seen there that Zy(%) (which is identi-
cal to the result of SPT) and Z,(7n) are bracketing the
simulation results whereas Z¢(7) is coming very close to
it. Our proposal is also more accurate than the results
obtained from the integral equations of PY,!? of Lado,!®
and of Verlet and Levesque.!® Only some of the more
sophisticated Padé approximations®® and those approxi-
mations containing adjustable parameters!’ can compete
with Z¢(7n). An overall view of the various results in the
high-density region is given in Fig. 1. It is seen there
that our simple proposal (without adjustable parameters)
is in excellent agreement with the simulation results® (the
maximum deviation reaching half a percent only at the
highest density considered in the simulations).

C. Hard spheres (D =3)

For this well-known case (n=70%p/6, B,=2703/3)
some of the approximate theories (such as PY and SPT)
can be solved exactly while some very accurate empirical
equations of state have also been elaborated. All of
these results are of the general form

1+9+7’—an’—by*

Z(n)=
K (1—n)3

) (2.22)
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which is again compatible with (2.18). Equation (2.22)
contains the results of SPT (Ref. 15) (@ =0=b), of the
PY compressibility (@ =0=4) and virial (@ =3,b =0)
equations,! the Carnahan-Starling equation! (a =1,
b =0), and the recent proposal of Kolafa quoted by
Boublik?® (@ =2=b). Considering Zy(7) of (2.18) we
observe that Z,(n) is identical to the result of SPT
whereas Z,(n) is very close to the proposal of Kolafa
which itself is slightly better than the Carnahan-Starling
result when compared to the recent (MC-MD) simula-
tion results of Erpenbeck and Wood.?! In the present
case Zg(m) is less good than Z (%) but still much better
than Z,(7) which is identical to the widely used PY
compressibility equation of state. Details are displayed
in Table V and Fig. 2.

D. Hard hyperspheres (D =4)

No theoretical results whatsoever are known to us for
this case (n=m20%/32, B,=m*c*/4). Our results for
Zy(n) of (2.18) are compared to the MD simulation re-
sults of Michels and Trappeniers?? in Table VI and Fig.
3. It is seen that Z; (which exhaust the known virial
coefficients) compares well with the simulation results.

E. Hard hyperspheres (D =5)

For this case (y=7%0"p/60, B, =47%0°/15) the PY
equations have been solved analytically by Freasier and
Isbister'? and also by Leutheusser.?’ The result for the
virial (v) and compressibility (¢) equation of state can be
written as

Zpy_v(n)=1—3277Q0(77) ’
1
Zpyom = [ an18. 1,

where [using the notation of Eq. (3.37) below] Q, and Q,
are defined

Qoln)=

(2.23)

(2.24)

1
————[1-337—87np*—6n3
120n<1~77)3[ K

—(1+189+612)"?], 12.25)

TABLE IV. The compressibility factor Zy(n) as obtained from (2.18) for hard disks (D =2) for
N =0,2, and 6, compared to the very precise MC-MD data of Erpenbeck and Luban,z Zgr, as a
function of 7., /7 with 7., =0.9068. . ., the packing fraction at close packing (7, =m/2V'3). The ex-
pression for Z, is identical to the result of SPT,'® expression Z, was used in the freezing theory con-
sidered elsewhere* whereas Z, which involves seven virial coefficients comes very close to Zg; . No-
tice also the convergence with respect to N: Z, >Z¢>Zg; > Z,.

Nep /77 ZEL ZG ZZ ZO
30 1.063 37 1.063 44 1.063 44 1.063 31
20 1.09743 1.097 54 1.097 54 1.097 25
10 1.21068 1.21068 1.21069 1.209 41

5 1.4983 1.498 42 1.498 51 1.49222
3 2.0771 2.07721 2.078 32 2.05429
2 3.4243 3.424 52 3.43576 3.347 64
1.8 4.1715 4.17193 4.19404 4.062 04
1.6 5.4963 5.498 13 5.548 20 5.32902
1.5 6.6074 6.614 33 6.695 57 6.396 26
1.4 8.306 8.35233 8.493 96 8.06093
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0.50

0.40
1

FIG. 1. The relative deviation, Z —Z, of the compressibili-
ty factor Z (%) for hard disks (D =2) computed from various
proposals compared to Z(7n) obtained from (2.18) as a func-
tion of 7, for large densities (up to 20% below close packing;
N =0.91). The curves are labeled as follows: EL corresponds
to the simulation results of Erpenbeck and Luban (Ref. 9) (with
error bars comparable to the line thickness); RH to the P(3/3)
Padé approximation of Ree and Hoover [Ref. 8(a)]; HE to
(2.18) with ¢ =1=d, a =0.128, and b =0.043 (fit) as proposed
by Henderson (Ref. 17); KR to (2.18) with b =0 and a =0.112
(fit) as proposed by Kratky [Ref. 8(a)]; VL to (2.18) with
a=0.125, b=2"% ¢ =1, and d =2 as proposed by Verlet and
Levesque (Ref. 19); LA to the pressure consistent integral equa-
tion of Lado (Ref. 18); PY-c(v) to the compressibility (virial)
equation of state resulting from the numerical solution of the
PY equation (Ref. 18); SPT to the result of the scaled particle
theory (Ref. 15); Z,, Z, to the result of (2.18).
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-0.25

-0.50

FIG. 2. The relative deviation, Z — Z,, of the compressibili-
ty factor Z for hard spheres (D =3) computed from various
proposals compared to Z, obtained from (2.18) as a function of
1 for large densities (up to 20% below close packing;
M =0.74). The curves are labeled as follows: EW corre-
sponds to the simulation results of Erpenbeck and Wood (Ref.
21) (with error bars comparable to the line thickness); CS to
(2.22) with @ =1 and b =0 as proposed by Carnahan and Star-
ling; (Ref. 1) RH to the P(3/3) Padé approximation of Ree
and Hoover [Ref. 8(a)]; PY-c(v) to the compressibility (virial)
equation of state of the PY theory (Ref. 1); Z, to the results of
(2.18).

TABLE V. The compressibility factor Zy(n) as obtained from (2.18) for hard spheres (D =3) for
N =2, 4, and 6, compared to the recent MC-~MD simulations of Erpenbeck and Wood,?! Zgy, as a

function of 7, /7 with 7, =7/3v2=0.7404. . . .

The expression for Z, is identical to the SPT or

PY-c results! while Z, is close to the simulation results (Z,>Zgw>Z,) and Z is crossing Zgw.

Nep /M Zew z, zZ,
25 1.12775 1.127 750 1.127 750 1.127 769
18 1.182 84 1.182 839 1.182 839 1.182892
10 1.359 44 1.359 427 1.359426 1.359 784

5 1.888 57 1.888516 1.888 437 1.892451
4 2.24452 2.244 506 2.244 186 2.253 521
3 3.03223 3.033017 3.030924 3.060 838
2 5.85351 5.877755 5.840 523 6.035041
1.8 7.436 69 7.495 420 7.411257 7.750 244
1.7 8.61001 8.706 121 8.572913 9.038 990
1.6 10.209 66 10.373 926 10.153 819 10.817 372
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(14187 +671°)!/
24(1—7)°

Q:(n)=— [2+37

+(1+189+69>)"?] .
(2.26)

The thermodynamic inconsistency between (2.23) and
(2.24) is worse!? here than for the lower D values. No-
tice that as 7—1 we have from (2.24) Zpy . <(1—7)"3
in agreement with our assumption (2.18). Comparing
our results for Zy(n) of (2.18) to the (MD) simulation
results of Michels and Trappeniers*> we find (see Table
VII and Fig. 4) that Z,(7n) (which exhausts the known
virial coefficients) is almost identical to (but slightly
better than) Zpy . and in fair agreement with the simula-
tion results whereas Zpy_, largely underestimates Z (7).

F. Summary

No simulation results are known to us for D > 5 and it
becomes hence difficult to test our general proposal
(2.18) for larger D values. The information gathered
thus far (1 <D <5) seems to indicate, however, that the
assumed behavior [Z(n)x<(1—%)"P] for the rescaled
virial expansion of (2.11), although presumably not exact

3
1 L i
Z,
MT
0O .. O Q._. % _° . _._._ i

0.30
n

0.35

FIG. 3. The relative deviation, Z — Z;, of the compressibili-
ty factor Z for hard hyperspheres (D =4) computed from vari-
ous proposals compared to Z; obtained from (2.18) as a func-
tion of n for large densities (up to 40% below close packing;
N =0.55). The curves are labeled as follows: MT corre-
sponds to the simulation results of Michels and Trappeniers
(Ref. 22); Z, and Z, correspond to (2.18).
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TABLE VI. The compressibility factor Zy(7) as obtained
from (2.18) for hard hyperspheres (D =4) for N =1,2,3, com-
pared to the MD simulation results of Michels and Trap-
peniers,”? Zyr as a function of po* It is seen that
Z,<Z3<Zwyr <Z, with Z; (which exhausts the known virial
coefficients) close to Zyr.

p04 ZMT 23 Zz Zl

0.20 1.637 1.6373 1.6397 1.6083
0.40 2.670 2.6682 2.6940 2.5289
0.60 4.335 4.3261 4.4427 3.9454
0.80 7.038 7.0043 7.3831 6.1717
0.90 8.955 8.9229 9.5603 7.7481
0.95 10.147 10.0774 10.8946 8.6935
1.00 11.458 11.3876 12.4287 9.7649

(except for D =1), provides a reasonable generic ansatz
for constructing fairly accurate approximate equations of
state (without adjustable parameters) for fluids of hard
D-spheres whatever the value of D. The general trend
with respect to D is illustrated in Fig. 5.

III. THE STRUCTURE OF A FLUID
OF HARD D-SPHERES

The structural functions which will be considered here
consist of the DCF (direct correlation function), ¢ (x;7),
and the related static structure factor S(q;7)
=[1—c(g;n)]~ !, with c(g;n) the spatial Fourier trans-
form of pc(x;m). For hard D-spheres these quantities
do not depend on the temperature but only on the densi-
ty p through the dimensionless packing fraction 7 while
it is also convenient to introduce a dimensionless dis-
tance x =|r| /o and a dimensionless wave number
g = | k| o. These structural functions are related to the
thermodynamics of Sec. II through the compressibility
equation of state

ﬁgﬁ—zl—c(q =0;7)=1—-D 2%y fow dx x?1c(x;m)

(3.1

TABLE VII. The compressibility factor Zy(7n) as obtained
from (2.18) for hard hyperspheres (D =5) for N =2,3,4, com-
pared to the MD simulation results of Michels and Trap-
peniers,”> Zyr as a function of po’. It is seen that
Z,>2Z4>2Zyt >2Z;5 with Z; close to Zyr.

po’ Zyr Z Z, z,

0.20 1.653 1.6532 1.6527 1.6558
0.40 2.624 2.6209 2.6117 2.6415
0.60 4.008 4.0312 3.9758 4.0961
0.80 5.997 6.0854 5.8746 6.2181
1.00 8.748 9.1032 8.4790 9.2927
1.10 10.523 11.1231 10.1136 11.3100
1.15 11.589 12.2967 11.0284 12.4661
1.18 12.217 13.0606 11.6111 13.2125
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0.2 0 0.2 5
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FIG. 4. The relative deviation, Z —Z, of the compressibili-
ty factor Z for hard hyperspheres (D =5) computed from vari-
ous proposals and compared to Z; obtained from (2.18) as a
function of 7 for large densities (up to 25% below close pack-
ing; 1., =0.38). The curves are labeled as follows: MT corre-
sponds to the simulation results of Michels and Trappeniers
(Ref. 22); Y-c to the PY compressibility equation (2.23); PY-v
to the PY virial equation (2.24); Z, and Z, to the results of
(2.18).

and the virial equation of state, which for hard D-
spheres can be written as

—BPE=1+2D”117[c(x =1 —c(x=1_;9)]. 3.2

The problem of finding an explicit expression for ¢ (x;7)
consistent with both (3.1) and (3.2) is still an unsolved
one for D=£1. Usually one has to accept some thermo-
dynamic inconsistency between the results derived from
(3.1) and those obtained from (3.2) unless consistency is
imposed by some ad hoc procedure. Even when accept-
ing some amount of thermodynamic inconsistency, the
explicit determination of ¢ (x ;1) remains a difficult prob-
lem because many different analytic forms of ¢ (x ;1) will
in general be compatible with the same thermodynamics.
The merits of the PY approximation! cannot be under-
scored in this respect since it gives a good representation
of both c(x;7) and of the thermodynamics Z (%) [at
least via the compressibility route (3.1)]. Unfortunately,
the PY equations can be solved analytically [for ¢ (x;7)]
only for the odd values of D (excluding the interesting
hard-disk case) provided moreover that D is not too
large?® (for D >7 one runs into intractable algebraic
equations). Therefore we will again look> for a practical
ansatz for c(x;n) which, although inspired by the PY
approximation, is simpler to handle for any D, odd or
even. We first observe that the Ornstein-Zernike equa-
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FIG. 5. The value of the compressibility factor Z for hard
D-spheres (1 <D <5) as obtained from Zy(7n) of (2.18) with N
corresponding for each D to the number of known virial
coefficients and also for N =2 as a function of 1 for densities
ranging from zero up to 10% below the close-packing density
of the corresponding D value.

tion! relating c(x;7) to the pair correlation function
g (x;m) can be written at x =0 as

clx =0;m)=g(x :0;77)—1—pfdrc(x,77)[g(x;77)—1]
=—[l—clqg :O;n)]—pfdrc(x;n)g(x;n)
(3.3)

since g (x =0;7)=0. If, moreover, the overlap integral

between g (x;n) and c(x;n) is small (or strictly zero as

assumed in the PY approximation for hard D-spheres),

the last term on the right-hand side of (3.3) can be
neglected and we obtain using (3.1) and (2.2a)
ap d

—cx=0)=1—clg=;n)=B-"=--[nZ .
clx =0;m clg=;n Bap an[" ()]
(3.4)

From (3.4) we deduce that the overall scale of c¢(x;7),
which is set by ¢ (x =0;7), is determined by the inverse
of the isothermal compressibility X of (2.2a) which can
be obtained from the approximation (2.18) to Z(n) pro-
posed in Sec. II. To find the spatial structure of c(x;7)
it will hence suffice to consider the rescaled DCF
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c(x;m)/c(x =0;m). For the latter quantity we find at
low density
c(x:m) 1-2P94+2P90,5(x/2), x<1

c(x =0;7m) 10, x>1 (3.5

where wp(x) is the overlap volume of two D-spheres of
diameter o whose centers are a distance x = |r| /o
apart divided by the volume of one of the spheres,

Jdrew2—|r|)ew/2—|r—r'|)
wp(x)=
b fdrew2—|r|)

, (3.6)

with ©O(x) the Heaviside unit step function [O(x)=1 if
x >0 and zero otherwise]. To complete our construction
of ¢ (x ;77) we now assume that, at any density, the struc-
ture of the low-density result (3.5) remains correct if re-
formulated in terms of a rescaled density-dependent di-
ameter o',

clx:m) 1—9'+n'wp(x’), x<1

c(x =0;7])= 0, x>1 (3.7)

where 7’ and x’ are the rescaled variables: ' =7na® and
x'=x/a with a =a(7) being the ratio, a =0’ /0, of the
effective to the real diameter.

As such, our proposal (3.7) contains two unknown
scaling functions, @ =a(7n) and ¢ (x =0;7), and one rela-
tion (3.4). It is possible to find a second relation>?* but
this usually leads to complicated algebraic equations.
We found it much more practical to rewrite (3.4) as

oy O
c(x=0;m)= an[’r}Z(n)], (3.8)

l1—clq :0;17):%[172(77)], (3.9)
and to impose the equation of state, Z =Z(7), to be
used in (3.8) and (3.9), for instance by approximating
Z(n) by Zy(n) of Sec. II. Given Z(7), Eq. (3.8) fixes
c(x =0;7m) whereas Eq. (3.9) fixes the remaining scaling
function a =a(7n). As a result of (3.8) and (3.9) the
compressibility equation of state (3.1) underlying our an-
satz (3.7) will be identical to the imposed equation of
state Z (7).

Explicitly, we thus propose the following approximate
expression for the DCF of a fluid of hard D-spheres:

c(x ;n):—%[nZ(n)]e(l—x)

X l—aDn+aanD

X H ) (3.10)
a

J

20+1

Hp(g;a)=
p(q;a) B((D +1)/2,1/2) Y 1/a

with B (a,b) the beta function [see (A7)]. For general D,
Eq. (3.21) has to be evaluated numerically in order to ob-
tain the static structure factor via (3.19). Returning to
(3.9) we obtain using (3.19) and separating the variables

[ ax(1=x)P=D72[ £ () —(ax)Pfp 5lagx)]
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where (i) the overlap integral wp(x) of (3.6) can be com-
puted (see Appendix B) in terms of the normalized in-
complete beta function [see (A6)]as

wp(x)=1,_ (D +1)/2,1/2) (3.11)

1

or, more practically, from the recurrence relation [see
(A10)-(A13)]

wolx)= 2 arccosx , (3.12)
T

w(x)=1—x, (3.13)
I'(D/2)

T(LT((D +1)/2)

wp(X)=wp_,(x)—x(1—x2)P-172

(D>2), (3.14)
for instance,
wz(x):i[arccosx —x(1—xH)1"], (3.15)
o

w3(x)=1—3x %—%x3 , (3.16)

au(x):% arccosx — %x—%)& (l—xz)l/zl ,
(3.17)
os(x)=1—L2x +%x3—%x5 R (3.18)

etc. (ii) the underlying equation of state, Z =Z(7), will
be approximated by Zy(n) of (2.18) (iii) the diameter re-
scaling, a =a (), will be determined, for a given Z (%),
from Eq. (3.9). To this end we first compute c(g;7n) (see
Appendix C) as

e (gim)=—ngLnz (N1 —a®n2°Fp ola)
+GD77{[‘1 D/ZfD/z(‘“.I/Z)]2
+Hplg;a)}) (3.19)

with

v

r'i+v)J,(q) (3.20)

folg= |3
q

an auxiliary function related to the Bessel function J,(q)
and such that f,(g =0)=1. In Eq. 3.19), Hp(q;a) is a
one-dimensional integral given by

(3.21)

[

a®@P—-2P+ Hp(q =0;a))

-2

d
an [nZ(79)] ] ,  (3.22)
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which is the equation determining a as a function of 7,
a =a(n). The quantity Hp(q =0;a), appearing in (3.22),
can be obtained from (3.21) or be written as

Hp(g=0)=2"I_, ~((D+1)/2,1/2)

—"zLaDIl,(l_z/ahZ((D +1)/2,1/2) (3.23)
and evaluated in practice from the recurrence relation

(A10). For instance,

Hﬁq:O;a):Z—a—% , (3.24)
2 2 1
H,(qg =0;a)=—(4—a")arccos—
T a
172
2
- = a+£ 1—% R (3.25)
a a
Hylg =0;a)=8— > + % —a*, (3.26)
a a
2 4 1
H,(qg =0;a)=—(16—a")arccos—
T a
2 (2a 56 16 1 |7
a 3
I - S TAC A L 1— — ,
7|3  3a 3a? ta [ a’
(3.27)
Hs(q:O;a):32—&+g%—i5—a5 . (3.28)
a a a

It then results from (3.22) that provided B, and Bj are
exact for the given Z (7)), a (y=0)=2, as implied by the
low-density result (3.5), and provided {3/37[nZ ()]} '
vanishes as n—1 for the given Z(n), a(n=1)=1,
whereas in between (0 <7 < 1) a (7)) decreases monotoni-
cally from 2 to 1 as 7 increases from 0 to 1.

Our ansatz provides thus an explicit expression for
c(x;n) and up to the one-dimensional integral (3.21)
also for S(g;n). To test the results we now consider
some explicit examples.

A. Hard rods (D =1)

In this particular case (3.22) degenerates into a trivial
identity satisfied by any a (n) when Z (5)=(1—7)"" [see
(2.20)]. This is due to the fact that for D =1 the DCF of

J

R . 2, 2
clx;n)= an[nZ(n)]e(l x)[l an+7_ra77

where a =a (7)) is obtained from (3.22-3.25) by solving
the equation

= a*(a*—4)arcsin | — | —(a?+2)a?—1)17?
—1
L = | Bz (3.32)
7’ o T

X X
arccos— — —
a a
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FIG. 6. The solution a =a(7n), of Eq. (3.32) (D =2) for
Z =Z4(n) of Eq. (2.18).

(3.10) is scale invariant [viz, l1—an+an(l—x/a)
=1—nx]. We thus obtain for (3.10) and (3.19) using
(2.20)
clx;m=—o6(1—x) =21 (3.29)
(1—mn)
c(q;n)=—ﬁ—i];—);{(1—17>2f1/2<q)+77[f1/z(q/2)]2} ,
(3.30)

with f|,,(q)=q ~!sing [see (3.20)]. We thus recover the
exact results for D =1.

B. Hard disks (D =2)

This case is of particular interest since no analytic re-
sults (exact or approximate) are known for the structure
of hard-disk fluids. From (3.10)-(3.12) we obtain

i

with Z (7) taken from Sec. II. The structure factor is
then obtained from (3.19) but here (3.21) has to be evalu-
ated numerically.

The result, a =a (1) of (3.32) for Z =Z4(n) of (2.18) is
shown in Fig. 6. A simple numerical fit to the solution
curve of (3.32) for Z =Z,(7n) was given elsewhere.” In
general a (77) shows little sensitivity to Z(n) because for
small n values a(m) is exact while for large 7 the

2
1-= (3.31)

a

r
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1 " 1 1

0] 0.25 0.50

X

FIG. 7. The DCF c(x;7) for hard disks (D =2) as obtained
from (3.31) and (3.32) for Z =2Z, ( ), Zy, (—-—-.—.), and
Zg (— — —) of (2.18) compared to the numerical solution of
the PY equations as obtained by Lado (Ref. 18) for (from top
to bottom) po?=0.3,0.5,0.6,0.7 (large dots) and 7=0.6 (small
dots) [Lado (private communication)].

0.75 1.00

compressibility entering Eq. (3.22) is small. As a result,
c(x;m)/c(x =0;7), also shows little sensitivity to Z(7)
so that the major source of errors stems from the iso-
thermal compressibility generated by Z (n) which deter-
mines the overall scale ¢ (x =0;7) via Eq. (3.8). In Fig.
7 we compare to the DCF ¢ (x ;%) as obtained from (3.31)
and (3.32) for Z =2, Z,, and Z¢ of (2.18) to the results
obtained by Lado'® from the numerical solution of the
PY equation. The differences in the corresponding iso-
thermal compressibilities are visible in Fig. 7 at x =0.
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Slq;q) S(q;rp
T T T T3
41 ] s
n=0.6904
3L ] s

FIG. 8. The static structure factor S(g;n) for hard disks
(D =2) as obtained from (3.19) and (3.32) for Z =2, ( )
and Z¢ (— — —) of (2.18) compared to the result of the nu-
merical solution of (a) the PY equation at p=0.60 (. - . .)
[Lado (private communication)] and (b) the integral equation of
Verlet and Levesque (Ref. 19) at =0.6904 (. - . .) [J. J. Weis
(private communication)].

C. Hard spheres (D =3)

Fairly accurate data for the hard spheres have been
obtained in the literature from the PY approximation
and the modifications thereof. This case serves thus as a
testing ground for our general proposal. Equation (3.10)
now reduces to

c(x;n)z—sa;[nZ(n)]e(l—x)(1—%77a2x+%77x3) ,

In Fig. 8 we compare the structure factor obtained from (3.33)
(3.19) for Z =Z, and Z¢ of (2.18) to the results of the h 3.22) vield
numerical solution of the PY equations'® and of the in- whereas (3.22) yields »
tegral equation proposed by Verlet and Levesque.!® The , 1 ) 3
changes in the height of the main peak of S(gq;%) are at=_—3 |2 +8n—1+ E,;["Z(T’)] (3.34)
again monitored by the isothermal compressibility of the
underlying equation of state. or combining (3.34) and (3.33)
]
3 1 3 -
c(x;m=—==[nZ(M]O1—x) {1+ —mx = = |22+ 8n—1+ |- :
n an [mZ ()] { Hy X, [P A1 an[”Z(”)] (3.35)

For the structure factor we obtain for (3.19), integrating (3.21) explicitly
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d 12
clg;m)= —na[nl(n)] ;g(2477+617a2q2)+ %cos(g)[-24n+q2(127;—61]a2)—q4(2+17—31]az)]

12 .
+ Fsm(q)[ —24n+q*(2+4n—6ma?)] | ,

where (3.34) defines a =a (7).

Using for Z(m) the value Zpy..(77) [see (2.22) with
a =0=>] reduces Egs. (3.35) and (3.36) to the well-
known PY results.! In Fig. 9 we compare the structure
factor obtained from (3.36) with Z =Z,(n) of (2.18) to
the result of the PY theory [identical to our result for
Z =Z,(n)] and to the proposal of Verlet and Weis.?

D. Hard hyperspheres (D > 3)

The only result for the structure known to us when
D >3 is the analytic solution of the PY equations for
D =5 obtained by Freasier and Isbister!? and also by
Leutheusser,??

c(x;m)=0(1—x)co+cix +c3x3+csx)
co=—(80Q,),

e =120m(Q,)?,

c3=20m(8Q0Q, —301) ,

cs=—13inco=241(Q,)*,

’

(3.37)

Stg;n)

3.0L

251

20 |

151

0.5 L

q

FIG. 9. The static structure factor S(gq;7n) for hard spheres
(D =3) at 7=0.49 as obtained from (3.36) for Z, ( ) and
Z=Z, (—-—.—.) of (2.18) compared to the results of Verlet
and Weis (Ref. 25) (— — —).

(3.36)

where Q, and Q, have been introduced above [see (2.25)
and (2.26)] and Q, is given by

—1
=———[(34+29)(1+185+67?)!"?
Q, 12(1_7’)3[( +27)(1+18n+67°)

+34+1994+39%] . (3.38)
For the sake of comparison we also quote the corre-
sponding D =5 result from (3.10) and (3.22),

c(x;m)=—2[nZ (m)]0(1—x)
an

X (1—La*nx +%a277x3—%17x5) , (3.39)

1 1
2 2 2
a —4+ 1207 l 56n—23n-—8

—-171/2

+8 (3.40)

d
an [nZ(n)]

In Figs. 10 and 11 we compare the DCF and the struc-
ture factor of the PY theory to those corresponding to
(3.39) and (3.40).

ClX;T])O

-20

-30

-40 L 4

1 1 L

o 0.25 0.50 0.75 1.0

FIG. 10. The DCF c(x ;%) for hard hyperspheres (D =5) as
obtained from (3.39) for Z=2Z, ( ) of (2.18) compared to
the result of the PY theory (— — —) of (3.37) for (from top to
bottom) 17=0. 10, 0.15, and 0.20.
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S(Q;f]) S(q;q)
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FIG. 11. The static structure factor S(q;n) for hard hyper-

spheres (D =5) as obtained from (3.39) and (3.40) for Z =2,
( ) and Z, (—.—.—.) of (2.18) compared to the result of
the PY theory (- - . .) as obtained from (3.37) for 7=0.20 and
0.25.

IV. CONCLUSIONS

We have considered the practical problem of con-
structing simple and accurate expressions for the ther-
modynamic and structural properties of a fluid of hard
D-spheres whatever the value of D, odd or even. Our
proposal is based on a simple rescaling of the low-
density expressions of the equation of state [see (2.11)]
and of the direct correlation function [see (3.7)]. These
rescaled expressions, while remaining exact at low densi-
ty, yield fairly accurate data also at the higher densities
for all space dimensionalities D where comparison with
computer simulation results is possible (1 <D <5). For
D =1 the results are exact whereas for D =3 well-known
results, such as the Percus-Yevick theory, are easily
recovered. Excellent results have also been obtained for
the important case of hard disks (D =2). There is no
difficulty in extending our results to higher D values or
to noninteger values of D. A first application has al-
ready been presented elsewhere.* We observe that the
overall form of the structure factor is very well repro-
duced by our simple expressions whereas the well-known
difficulties with the height of the main peak of the struc-
ture factor have been tracked back to inaccuracies in the
underlying isothermal compressibility. The main draw-
back of our method is that the determination of the
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structure requires the thermodynamics as input. Alter-
native procedures are possible?* but quickly become im-
practical.
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APPENDIX A: THE THIRD VIRIAL COEFFICIENT

In D-space we have for any function f(x) depending

only on the distance x = | x|,
— °°d D1
[dxfx)=5p fo x xP21f (%)
or on x and one integration angle 6,
b D-1 [T inD—2
Jdxfx,00=8p [ “dxxP" [ "d0sin®"6f (x,0),
(A2)

where Sp =DV, is the surface area of the unit sphere of
volume Vp=wP/2/T(14+D/2). The Fourier transform
of the Heaviside unit step function 6(1—x) becomes
then in reduced variables (x=r/0;q=ko)

D/2

Jplg

(A1)

27

fdxe’q"e 1—x)= )=Vpfp g

(A3)

where Jp(q) is the Bessel function related to fp(g) by
(3.20). The third virial coefficient B,
By=1[dr[drew—|r|)e

o—|r'|)0loc—|r—r'])

(A4)

can then be written using the Fourier inverse of (A3),
D2°/27Pg 2P

B _ *® 71—D/2
3T 3r(1+D/2) fo o2

@1, (A5)

which is a nonstandard integral not included in the re-
cent survey by Gervois and Navelet.?® To compute (A5)
we use Eq. (6.683.7) of Gradshteyn and Ryzhik?’ to
eliminate a Bessel function squared in favor of an in-
tegral over a single Bessel function. The resulting prod-
uct of two different Bessel functions remaining in (AS5)
can then be integrated by using Eq. (6.576.2) of Grad
shteyn and Ryzhik.?’ There results a hypergeometric
function which can be simplified further on using Eq.
(15.1.13) of Abramowitz and Stegun.?® The final result is
given then by (2.6) in terms of the normalized incom-
plete beta function,?®
B (a,b)

@ =g e

defined in terms of the beta function?® B (a,b)

(A6)
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B(a,b)=T(a)I'(b)/T'(a +b) (A7)

and the incomplete beta function®® B, (a,b)

Bi(a,b)= [“die'1—0"", (A8)

with B (a,b)=B(a,b) and I,(a,b)=1. Some useful

properties?® are

I.(a,b)=1—1I,_,(b,a), (A9)
['(a +b) b
= —_—x%1— , (A10
I.(a,b)=I.(a +1,b)+ F(a+1)r‘(b)x< x) ( )
and the particular cases
LD +1)/2,3) =2
x 27 B((D+1)/2,%
rcco \/j
x [T T dg(sing)?,  (A1D)
0
Ix(g,%)ziarccos\/l—x , (A12)
T
L(L,H=1-v1=x , (A13)

which will be frequently encountered in the main text.

APPENDIX B: THE OVERLAP VOLUME

The normalized overlap volume of (3.6), wp(x), can be
written using (A3) and the general result
. 2 )D/Z o
Jdae v rig=—350 [ daq® o pilaxf (9)
(B1)
|

[2°T(14D /2)] .

2P =227 (D +1)/2)

Fplg;a)=

a
q
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as
D/2

2 -,
wD(x)sz(l+D/2)fo dgq=2"Ip,, 1(gx)
X[Jpplg/2)P, (B2

which is also a nonstandard integral.?® To compute (B2)
we again eliminate the square of the Bessel function with
the aid of Eq. (6.683.7) of Gradshteyn and Ryzhik.?’
The result is now a standard integral over a product of
two Bessel functions?’ which finally leads to the result
quoted in (3.11).

APPENDIX C: THE STRUCTURE FACTOR
Frome (3.10) we obtain using (A3), (B1), and (3.20)

e(gim=—ng [nZ (DIL1—a®n2°fp o(g)
+aPnFplg;a)], (CD

where

) [2°r(14+D/2)]?
Fplg;a)= g -7

1 0
Xfo dx x fo dyy ~P72Jp 5 1(gx)

XJIp 2 1yx)[Jp lay /2)]?

(C2)

is again simplified by eliminating the squared Bessel
function as above. The resulting y integral is a standard
integral’’ over a product of two Bessel functions.
Evaluating also the remaining x integral over a single
Bessel function?’ we obtain for (C2)

6,
f ) * d0( cos®)?( sin®)P’2J), ,(aq sind)

+ 8’;/ 2 46( cos0)P( sinby)P "2, 5(aq sinby) | (C3)

with 8p=arcsin(1/a). Equation (C3) is then further transformed into

Fp(g;a)=[a®"*fp rlaq/2)P+Hp(g;a) ,

(C4)

where the definitions (3.20) and (3.21) have been used. Substituting (C4) into (C1) leads then to the result quoted in
(3.19). The integral remaining in (3.21) can be evaluated analytically only for the odd D values.
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