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Doppler splitting of electron cyclotron absorption resonance in plasmas
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The Gaussian broadening of absorption lines due to the Doppler eAect is well known. However,
it is shown here for the first time that Doppler splitting occurs for the ordinary-mode electron-
cyclotron-resonance absorption in plasmas. Although this absorption is due to the finite size of
the electron Larmor orbits it is mainly determined by T~~ and is only weakly dependent on T& via
cyclotron-overstability-type terms. This is in contrast to intuitive expectations which would sug-
gest that finite-Larmor-radius eAects should depend strongly on T&.

current interest in fusion research.
After Fourier analysis in space and time, the Maxwell

electromagnetic field equations yield, for plane waves of
the form

E=EO exp[i(k r cut ). ]—,
the result

k X (k X E)+(~'/c' )D E=O .

Here D(co, k) is the hot-plasma dielectric tensor. ~ 3 The
condition for a nontrivial solution of Eq. (1) is obtained
by setting the determinant of the coefticient of E Ey,
and E, equal to zero. Thus knowing all the nine dielec-
tric tensor elements D;&, I.,j=x,y, and z, one can get a
closed-form expression for the allowed wave number k
as a function of m. Then from the imaginary part of k
(i.e., Im k), one obtains the optical depth r for the mode
of propagation under study.

We now consider the case of 0-mode radiation (E~~B)
of frequency co=co, =(e8/mc) propagating through a
low-density (n) plasma [cvz ——(4rrne /m )' &cv, ] nearly
perpendicular to B (i.e., k~ & k~~). Then Eq. (1) becomes

[ —(c ki/tv )+D„]F., =0,
which gives the dispersion relation

( c k i /cv ) =D„. (3)

Using the Maxwell-Boltzmann zeroth-order distribution,
and taking the large-argument expansion for the real
part of the dispersion function, ' the dielectric tensor
element D„may be written as

D„=D„'+6„=(1+co~So)+b„, , (4)

where

When an electromagnetic (EM) wave of frequency co

and wave vector k is absorbed by a particle moving with
a velocity v, both the energy and the momentum must of
course be conserved. The simultaneous conservation of
both the energy and the momentum yields the familiar
Doppler-shift condition cu =k.v. Consequently, the
probability of absorption of the EM wave by the particle
is proportional to 6(cv —k.v). If the absorbing particles
obey the Maxwell-Boltzman velocity distribution func-
tion F(v), then the intensity of absorption is proportion-
al to the velocity integral of F (v )o(co kv )—
=f (v =re/k) o: exp[ —(tv/kvr) ], where f (v) is the
one-dimensional distribution function in the direction of
k, and Uz- is the particle thermal velocity. This is the
wel1-known Gaussian broadening due to the Doppler
effect. ' However, Doppler splitting of absorption lines
does not exist in the plasma physics literature.

In this paper we will show that Doppler splitting does
indeed occur for the ordinary- (0-) mode electron-
cyclotron-resonance (ECR) absorption in plasmas.
Furthermore, in contrast to intuitive expectations, al-

though this absorption is due to the finite size of the
electron Larmor orbits it is mainly determined by T~~

and is only weakly dependent on Tz via cyclotron-
overstability-type terms. Here

~~
and I refer to directions

parallel and perpendicular, respectively, to the confining
magnetic field B=BI, These results are applicable to
any plasma such as astrophysical, solid state, stellerator,
mirror machine, tokamak, etc. , plasmas. Finally, we will
examine some of the consequences of these unique
0-mode absorption features on electron-cyclotron-
resonance heating (ECRH), magnetohydrodynamic
(MHD) behavior, and steady-state rf current drive in
tokamaks, since these problems are of considerable
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The prime denotes differentiation with respect to the ar-
gument co, A. = ( k i v Ti /co, m ), and P denotes the princi-
pal value. In Eq. (4), D,", is the cold-plasma dielectric
tensor element appropriate to the retarded boundary
conditions, and 5„ is the resonant hot-plasma contribu-
tion. From Eq. (6), it is relatively easy to see that in the
limit

I k~~ I
0, Immit(rd) 775(c—0+leo, ), and

1m[(co+ 1co, )g((co ) ] rr(co—+ Ico, )5'(co+ l co, )

= ir5(co+ l co, )

since the Dirac 6 function satisfies the relation
x5'(x)= —5(x). Thus, the real and imaginary parts of
D„are, of course, related to each other through the
well-known Kramers-Kronig relations as a consequence
of the laws of causality (i.e., the effect should not pre-
cede the cause).

From Eqs. (3)—(6), writing ki ——Reki+Imki and as-
suming that Rekz & Imkz, we obtain

2
c Rekq 2

=ReD„= 1 — 1+P
CO

k q~TII /m
2 2—COc

2
COp=1—

2
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2 Imkq ——
ImD„

c Rek~
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COc T
(co —co, ) ImX', + 1+ 1—

co Tz
(co+co, ) ImX',

From Eq. (6), we get

2vr' (co+ l co, )
ImXI(~) =

I
k

ii I
k

ii
( 2~Ti, /m )

m CO+ lQ)c

2&TII k
II
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It is interesting and physically instructive to note that in
the limit

I k~~ I
0, Eq. (8) becomes

1/2

2 Imkq = 1—
CO

7TKTII co cop

2fplc doc

X [5(co—co, )+5(co+co, )] . (10)
The absorption coefficient per unit path length
a=21mk =21mki for k~ &&k~~. Thus from Eqs. (8) and
(9), it is seen that for finite k~~ there are absorption reso-
nances having maximum values at

I

co
I

=
I
co,

I

+k~~(2&T~~/m )' and that the absorption approaches
zero as co~+co, and also for

I
co+co,

I
~ ao. That is,

for finite kII the Doppler effect splits the twofold degen-
erate k~~

——0 resonance of Eq. (10) into two closely spaced
resonances of Eq. (8) instead of the usually expected
Gaussian broadening. This splitting is illustrated in Fig.
1 for three different angles of propagation. The frequen-
cy integral of these curves is independent of 0 and yields
a value of ~ of 3.8 and is the same value obtained from
Eq. (10) with R =130 cm. It is also seen from Eqs. (8)
and (10) that although this absorption is due to the finite
size of the electron Larmor orbits [i.e. , note the appear-
ance of A, in Eq. (5)], it is mainly determined by T~~ [see
Eq. (10)] and is only weakly dependent on Ti via
cyclotron-overstability-type terms [see Eq. (8)].

The optical depth ~ is given by

r= f 21mki
I

dR
I

r=(1 —co&/co )' (nRcozxT~~/2comc ) . (12)

This result of Eq. (12) agrees with those of Chu and An-
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FIG. 1. Plots of 2 Imk& of Eq. (8) as a function of cu/co, for
three diA'erent angles of propagation: ( ) is for
0=0.5, ( ———) for 0=2', and (—-—} for 0=10.0, where
(~/2 —0) is the angle between k and B. Conditions are
n =3X 10' cm, Tj ——3 ke+

II
=2 keV, and

( co, /2~) =9.0X 10' Hz. The frequency integral of these
curves is independent of 0 and yields a value of ~ of 3.8 and is
the same as the value obtained from Eq. {10)with A = 130 cm.

and the power P, absorbed on a single transit of the ab-
sorption region is P, =Pa[1 —exp( —r)], where Po is the
incident microwave power. If the wall-refiection
coefticient r is large, then the fractional absorbed power
F= [1—exp( —r ) ]/[ 1 rexp( —r) ], —and multiple tran-
sits will enhance the ECR absorption considerably. For
tokamak plasmas the confining magnetic field 8 ~R
where R is the major radius of the torus, and
dR = —(R/co, )dao, . Then from Eqs. (10) and (11), for
near perpendicular propagation of the ordinary wave
through the toroidal plasma, we get
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tonson and Manheimer, for 0-mode with co=co, when
the plasma has no pressure anisotropy (i.e., when
Tt ——

T~~
——T), and is also valid for anisotropic plasma

when k~~ =0. Equation (12) was verified in a wave propa-
gation experiment in the Princeton Large Torus (PLT).
It is seen from Eq. (8) that the cyclotron overstability
terms (1+(co, /to) [1—( T~~ /Tt )]) tends to one as
Tt = T~~. Hence the result of Eq. (12) is valid also for an
isotropic plasma when k~~ is small but finite.

For k~~ =0, the wave absorption is localized near the
resonance zone at R =R, where m =~, . However,
when k~~~O, there exist two closely spaced resonant
layers centered at R

&
and R z, respectively, such

that to = to, ( R i ) +k
II

2' T
—

k~~ (2t~T~~ /m )', and there is no absorption at
R, =(R, +Rz)/2. Thus,

~
R, —Rz

~

=R, [2k(((2 ttT(( /
m)' ] and is linearly proportional to kl. This double-
resonant layer might prove beneficia1 in suppressing
plasma MHD instabilities with certain wavelengths; e.g. ,
for

~
R, —R2

~

=pA. or (p+ —,')A, , where p is an integer.
This is similar to a feedback stabilization via a Fabry-
Perot system. Furthermore, in the resonant layer R

&
the

wave energy and momentum are transferred to co-
moving electrons (i.e. , to electrons with z velocities v,
which are parallel to B=Bi,); while in the resonant lay-
er R z the wave energy and momentum are transferred to
countermoving electrons (i.e., to electrons with v, which
are antiparallel to B). This means that in ECR current
drive experiments, the induced steady-state current will
fiow in opposite directions on either side of R, (i.e., the
current at R, will be antiparallel to the current at Rz),
and there is no rf-induced current at R, . Thus it ap-
pears with finite-k~I 0-mode ECRH one can control not
only the electron-pressure profile but also the current
profile which may improve tokamak MHD behavior and
confinement.

When Tt~Tl it is extremely difficult to obtain an an-
alytic expression for r from Eqs. (8) and (11). However,
since the dominant absorption occurs only near the reso-
nant layers R

&
and R2, one can show that for the R

&

layer

~(R ) ) =(~/2) [ I+(k /co, )(2t~T~~ /m )'~'[( T, /Tl ) —1]I,
and for the R2 layer

r( R 2 ) = ( T/2 ) [ 1 —( k
~l

/to~ )(

Thus, if the first absorption layer is optically thick [i.e.,
~(R, or R2) ~&2], the wave energy never reaches the
second layer. In interpreting future ECRH experiments
one must bear this point in mind.

The theory upon which 0-mode ECRH experiments
in toroidal plasmas are currently based is the linear
theory for hot plasmas. For T& ——T~I, it is shown else-
where that the result of Eq. (12) is unaltered even if one
takes account of the broadening due to the relativistic
mass variation when k~~ =0. Since the relativistic effect
broadens the resonance only towards lower values of co„
the Doppler splitting wi11 always occur even for small

But, when

(k„/k ) & [tt( T, + „)]/[3(mc')'"(2ttT„)'"]

r(R, ) will differ significantly from r(R 2 ) keeping
r(R i )+r(R2)=r. We have not taken this effect into ac-
count since the gross features presented here are always
there even for very small k~~. For very small k~~ one
must take account of the relativistic broadening in
evaluating r(R

&
) and r(R2). In this paper we have ex-

amined the results of a finite k~I linear theory as a first
step toward prescribing the conditions needed for
efficient application of ECRH in tokamak plasmas.
However, it should be noted that the quasilinear and
nonlinear theories must be developed in conjunction
with experiments to determine fully the effectiveness of
ECR for the heating regimes of interest and for steady-
state rf current drive in tokamaks.

In conclusion, it is therefore clear that the Doppler
effect cannot only lead in most cases to a Gaussian
broadening of the absorption lines as found in the litera-
ture, but also in some cases to a splitting into two dis-
tinct absorption lines. This is a new addition to the
plasma-physics literature.
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