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Quantum theory of a two-photon laser
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A quantum theory of a two-photon laser in a three-level atomic system of the cascade type is

presented starting from an original microscopic Hamiltonian. The master equation of the laser
operation is derived by using the method of Scully and Lamb [Phys. Rev. A 159, 208 (1967)] for a
single-mode laser containing a two-level medium. The photon-number distribution of the laser is
studied in detail. The curve of the distribution may have a two-peak structure. One of the peaks
located at the origin comes from the single-photon process and reflects the thermal property of the
laser, while another comes from the two-photon process and reflects the coherent property of the
laser. We cannot find an exact criterion for the threshold of the two-photon laser. The two-

photon laser can approximately be considered as a coherent state for certain values of 2 /C, which
can even be much smaller than the threshold for the nonresonant single-mode laser in a two-level

system, but it is much larger than the threshold for the resonant one.

I. INTRODUCTION

The two-photon laser has been studied for two
decades, ' and has received increasing attention in re-
cent years. ' The first two-photon laser experiment
was reported, ' which was followed by Ciao's in 1984.'

Theoretical work has been done both semiclassically
and quantum mechanically. ' ' ' Most of the quan-
tum studies use an interaction Hamiltonian of the type
a&a2o. +H.c. where a; is the field annihilation operator
and o. is the two-level creation operator. Wang and
Haken' recently reached the same interaction Hamil-
tonian, the effective Harniltonian, from the exact micro-
scopic Hamiltonian. The effective one is equivalent to
the exact one in the sense that the second-perturbation
transition probabilities derived from the latter are equal
to the first-perturbation transition probabilities derived
from the former. But they failed to point out whether
they are equivalent to each other for the photon statis-
tics. Singh and Zubairy have developed a quantum
theory for the two-mode laser in a A-type atomic system
starting from the exact microscopic Hamiltonian, but
they treated only the situation of single-photon reso-
nance, so that the interesting effects of detunings were
not given in their paper.

In this paper we study the two-photon laser starting
from the exact microscopic Hamiltonian using the
method developed by Scully and Lamb' ' for a single-
mode laser and we obtain the analytical results though
they are very complicated. In Sec. II we give the exact
Hamiltonian governing the two-photon laser in a cas-
cade three-level atomic system. In Sec. III we derive the
master equation for the light field. In Sec. IV we show
the photon-number statistical distribution, and Sec. V is

devoted to the case of two-photon resonance. In Sec. VI
we state our conclusions.

II. HAMILTONIAN

The gain medium, placed in a cavity, is a three-level
atomic system of the cascade type as shown in Fig. 1.
The atoms have three levels, the upper level

~

a ), the in-
termediate level

~
b), and the lower level

~

c). The
transition between

~

a ) and
~

b ), and between
~

b ) and

~

c ) are mediated by a light field (cavity mode) with fre-
quency Q. The transition between

~

a ) and
~

c ) is for-
bidden. The Hamiltonian for the atom-field system is

H =Ho+ V,
~o —— g Rro~AtA +A'n(ata+ —,'),

a=a, bc,

~=&g]&~ ~b+&g2&~b ~, +H. c-

where a (a) is the creation (annihilation) operator for
the light field; A ( A ) is the creation (annihilation)

FIG. 1. Three-level atomic system.
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operator for the ath level and %co is the corresponding
energy; g& and g2 are atom-field coupling constants, and
the rotating-wave approximation has been used.

In the interaction picture the interaction Hamiltonian
becomes

is the two-photon detuning. The Wigner-Weisskopf
theorem is assumed valid and y is the decay constant.
For simplicity, the same decay constant y for all three
levels and only a pumping to the upper level

f
a & with

pumping rate R, are assumed.

I —iA)t id&t
V =fig, aA Abe +Ag2aAb A, e

where

6( = fl —crab = II —(cp —cob )

A2 cob, ———0=(cob —co, ) —0,

(4)

(5)

(6)

III. MASTER EQUATION

f
Kt(to ) & =Q F.(to )

I

n &
I
a & . (7)

The state vector of the atom-field system at time to
can be expressed as

6& and A2 are single-photon detunings, and A=A& —6& At time t, it develops into

QADI(t)& =
f @gy(tp +r) & =+ [a (tp+ r)f a, n &+b„+((to+a)

f
b, n + 1 &+c„+2(to+a)

f

c n +2&]

dt
qgf(t)& V

f
qgf(t)&

Substituting Eq. (8) into Eq. (9), we obtain

(9)

The development of the state vector obeys the following
Schrodinger equation:

Let the three roots of this equation be ~&, co&, and co3.
Thus the solution of Eqs. (10)—(12) can be written as

—l(col+Al)t (~)
—i(Co2+5&)t

(17)a„(t)=a„e +a„e
—i(3+ 61)t+a„e

. J —ihjt
i a„(t)=V(e ' b„+((t),

dt

iA)t i A~t
i b„+,(t) = V(*e ' a„(t)+ V2e c„+2(t),

dt

d ~
—ih2t

i c„+2(t)=V2e b„+((t),
dt "+

(10)

(12)

(3 )
—l ccl3t+b„+)e

( ] )
—I (~) +52)t (2)

—l (&2++2)t
c„+2(t)=c„+2e +c„+2e

—l (Ct73+ A2 )t
+c„+2e

(18)

(19)

where

V, =g, +n +1, V2=g2+n +2 .

where a„', b„'+, , and c„'+2 are determined by Eq. (14)
with co=co; and have the relations

Let the solution of Eqs. (10)—(12) be expressed as

a„(t)=g a„(cp)e

(cp;+b, , )a„' = V, b„'+, (i =1,2, 3),

(~, +b.2)c ('+(2 V2 b (+(( ——(i =1,2, 3) .

(20)

(21)

b„+,(t) =g b„+,(cp)e (13) According to the initial condition, Eq. (7), we have

c„+2(t) =g c„+2(ci))e (22)

Substituting Eq. (13) in Eqs. (10)—(12), we obtain

cpa„(cp) = V(b„+((cp—b, (),
cob„+((cp)= V(a„(co+5()+ Vc„2+( 2cpb+2),

cpc„+2(cp)= V2b„+((cp —b, 2) .

From Eq. (14) we find

(co+ b ( )(co+ b 2 )cp = (co+ b 2 )
f

V(
f

+ (co+ b, ( )
f

V2
f

(14)

(15)

(1) (&) (3)b„+ ) +b„+ ( +b„+)
——0,

(1) (2) (3)
Cn + 2 +Cll + 2 +Cll + 2 =0

(23)

(24)

f
V(

)
(cp2+52)F„(tp)a„"'=— = A„"'F„(tp),

(co(+ h()(cp( —co2)(cp3 —cp()

Using Eqs. (20)—(24), the coefficients a„", b„'+I „and c„'+'2
can be expressed as

that is to say, the possible ~'s are determined by the fol-
lowing cubic equation:

(2) f
V(

f

'(cp2+~2)F (to)a„"'=— = A„( 'F„(tp),
( co2 + & ( ) ( cp (

—cp 2 ) ( co2
—co3 )

(25)

cp +(6(+62)cp +(b(52 —
f

V(
f

—
f

V2
f

)cp

—~(
I

V21 ~21 V(
I

'=0 . (16)
an = A„' 'F„(t ), p

( cp 3 +6 ( )( cp 2 cp 3 ) ( cp 3 cp ( )
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(2)b„+)

(3)b„+2

—Vl (co)+ b, z)
F„(t() ) =B„'+iF„(t () ),

(co) —coz)(co3 —col )

—V*, (coz+ 62)
F„(t()) =B„'+iF„(t()),

( co '1 co2 ) ( co2 co 3 )

—V 1 (co3+ ~2)
F„(t()) =B„+iF„(t()),

(coz —co3)(co3—

col�) (26)

We must mention that ~; is a function of n, so that A„',
B„'+&, and C„'+2 are all functions of n.

Let pf and p represent the density matrices of the
light field and the atom-field system; p„and p
are their elements, respectively.

As the upper level is being pumped and there exists
cavity loss, we can write

(1)
Cn +2

—V) V2F„(t() ) =C„"+),F„(t,), ~ (a} ~ (1)
Pf Pf +Pf (28)

Vl V2Fn(tp)
Cn +2 =C +2F (t() )

( co) —coz)( coz —co3)

(3) ' ' 'o (3)
Cn +2 =C„+2F„(t()) .

(coz —co3)(co3—co i )

(27)
where o" stands for the change caused by the pumping
and pf caused by the cavity loss. Following the pro-
cedure of Sargent et al. , ' ' ' they can be determined as

p'„" (t())=R, f d'ye ~'

happ'„'.

p (tp+r) p„(t(—))
. P

p,"„'., „(tp+r)= (a, n
l
tt)gf(tp+7) & ()t)gf(tp+r)

l
a, n & =a„*(t)a„(t)

=F„'(t())F„(t())(2A„"A„' '[ cos[(co, —coz)r] —1 j+2An"'A„'[ cos[(col —co3)r]—1 j

+2A„("A ( 'I cos[(coz —co3)r] —1 j+ 1),
Pb, n b n (tp+ &)—Pn —l, n —1(tp )(2Bn Bn l COS[(co) —coz)r] —1 j

+2B„'"B„'[cos[(co') co3)r—]—1 j +2B„"B„ l cos[(coz —co3)]—1 j ),

(29)

(30)

(31)

p"„'., „(tp+r)=p„z „z(tp)(2C„"'C„' '[ cos[(col' —coz')&] —1 j +2C„C„ leos [(co) —co3 )r]—1 j

+2C„'2'C„'3'I cos[(coz' —co3')]~—1 j ), (32)

where co', (co,") is also the root of Eq. (16) with V, and Vz replaced by V', =g, &n ( V"
, =g, V'n —1) and Vz

=gz&n +1(Vz' gz&n ), and p„——„(tp)=F„„(tp)F„'„(tp).
Substituting Eqs. (30)—(32) into Eq. (29) and finishing the integral, we obtain for the diagonal matrix element

p„'„(t())=—2R, (n +1)F)(n)p„„(tp)—2R, (n +1)Fz(n)p„„(tp).(.)

r' r'
lg) I'

+2R, nF)(n —1)p„ 1 „1(tp)+2R, (n —1)F2(n —2)p„z „2(tp),r' r'
where

(P 1 +~2 )(P2+ ~2 ) (P)+&2)(P3+~2) (P2+ ~2)(P3+~2)
Fi(n)= +

(P2 P3)(P) P'3)[(P) P2) + ] (P'1 P2)(P'3 P2)[(P'1 P3) + ] (P2 Pl )(P'3 Pl )[(P2 P3) + ]

(33)

(34)

Fz(n) = + +
(P 2 P3)(P) P 3)[(P 1 Pz) + 1 ] (P'1 P'2)(P3 P2)[(P 1 P3) + ] (P2 P'1 )(P'3 Pl )[(P2P'3) +'1 ]

(35)

p;=co;/r, 6;=6;/r . (36)

Thus the master equation of the two-photon laser is obtained as

P(n)= —A(n +1)F)(n)p(n) —A(n +l)Fz(n)p(n)+ AnF, (n —1)p(n —1)

+ A(n —1)Fz(n —2)p(n —2) —Cnp(n)+C(n +1)p(n +1), (37)
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where

A =2R, , p(n) =p„„(to),I gi I

'
y'

p(n + 1)=—[F&(n)+F2(n)]p(n)
C

n+— F2(n —l)p(n —1) .
C n+1 (38a)

and the cavity loss has been included through' '
p„„=—Cnp(n)+C(n + l)p(n +1) .

On the right-hand side of the master equation there
are six terms, and they can be interpreted as probability
flows which can be expressed by arrows in a probability
low diagram, as shown in Fig. 2. This diagram can be
extended to infinity. The number attached to each ar-
row indicates which term in Eq. (37) it represents. The
physical meaning of each term in Eq. (37) (or arrow in
Fig. 2) is very clear. The first and third terms stand for
the single-photon gain and the second and fourth terms
for the two-photon gain, while the fifth and sixth for the
loss.

IV. STEADY-STATE EQUATION OF MOTION

C(n +1)p(n + 1)=A ( +n1)F, (n)p(n)

+ A (n + 1)Fz(n )p(n )

+ AnF~(n —1)p(n —1), (38)

or

, 5

zl-2 j,

In steady-state operation, p(n) is independent of time,
P(n)=0. From Eq. (37) the following equation can be
derived as

If gz ——0, then Fz(n) =0, Eqs. (37) and (38) are deduced
to the corresponding equations for the usual single-
photon laser.

From Eq. (38) and the normalization condition

g p(n)=1,
n=0

(39)

all p(n) can be obtained, that is to say, the photon sta-
tistical distribution is known.

Because of the complicated form of F, (n, ) and Fz(n),
it is difficult to discern the character of the photon
statistics by inspection of Eqs. (38a), (34), and (35). With
the aid of a computer we obtain the curves of the
photon-number statistical distribution, as shown in Fig.
3. It can be seen that some of the curves have two
peaks, one of which is at the origin, peak 1, and
represents the single-photon process below threshold,
while the other, peak 2, reflects the two-photon process.
In fact, there always exist two peaks when 26 & 3 /C
& 11 for 5&

——5z ——5, but when 3 /C ~ 12, peak 2, caused
by the two-photon process, is much higher than peak 1,
caused by the single-photon process below threshold
[p (n )/p(0) && 1 j, so that only peak 2 shows its ex-
istence. As 3/C increases, peak 2 becomes higher and
its position shifts towards the direction of increasing n,
while peak 1 at the origin lowers its height.

Figure 4 shows the effect of the detuning between the
lower and the intermediate levels, 52. The change of 52
brings about the variations of single-photon detuning
and two-photon detuning. When the detuning 52 in-
creases from two-photon resonance (5, =5&), both
single-photon gain and two-photon gain decrease, so that
peak 2 declines and shifts to the origin while peak 1

arises, as shown by the curve with 52 ——5. 1 and 5.2 in
Fig. 4. When 52 decreases from the two-photon reso-
nance, the single-photon gain increases while the two-
photon gain decreases because of the departure from the
two-photon resonance, so that the net effect is the result
of the competition between the two opposite influences.
For small departure from the two-photon resonance the
influence of the increase of the single-photon gain is
larger, while for large departure from the two-photon
resonance the influence of the decrease of the two-
photon gain becomes larger. Therefore when 52 de-
creases from 5, i.e., from the two-photon resonance,
peak 2 first arises and shifts towards the direction of in-
creasing n, and then declines and shifts to the origin as
shown by the curves of 52 ——4. 5 to 4.9 in Fig. 4.

V. THE CASE OF TWO-PHOTON

RESONANCE 6 =6 I =52

FIG. 2. Diagram of probability flow for the two-photon
laser.

In the two-photon resonance, Eq. (37) can be
simplified and reads



36 g OF A TWO- pHOTON LASERQ UANTUM THEOR 3893

gaol.

(( 5-
C

0

—2ry
I

'=10g /C with 1 g, = g and
I az r&

I
d,str1butions forFIG.. 3 photon-number 1s

Opt

= f /-7
C.

/=5
2

y II
l 7

o.« '

o.ol

I

I

O. Or '

o.oi

g =5.W1t
.

h g/( ]]7hand 1=mber distr1 u 1o'b t'ons for diftere 2FIG 4. photon-«



3894 SHI-YAO ZHU AND XIAO-SHEN LI 36

P(n)=
—A(n +1)p(n)

1+5 + (n+1)+ (n+2)

Bi Bz1+5 + (n+1)+ (n+2)
A,

3 Bz 1 Bi 1 Bz——A(n +1) (n +2) 1+—5 + — (n +1)+— (n +2) p(n)
Az 3 4 A) 4 Az

2
1 Bz1+— (n +1)+— (n +2) +5

4 4 Bz

Anp (n —1)+
1+5'+ n+ (n +1)

1 2

B, B,1+5 + (n —1)+ n
A)

1Bi 1B1+— (n —1)+— n +5~
4A) 4

3 Bz 1 2 1 Bi 1 Bz—A (n —1) n 1+—5 + — (n —1)+— n p (n —2)
4 Az 3 4 A] 4

—Cnp(n)+C(n +1)p(n +1), (40)

where B, /3, =4
~ g, /y ~, B2/A2 ——4

~ g2/y
~

and Eq. (38) becomes

Cp(n +1)= Ap (n)

z
B Bz

1+5 + (n +1)+ (n +2)
A) Az

3 Bz Bz
(n +2) 1+—5 + — (n +1)+— (n +2) p(n)

4 A, 3 4 A, 4
2

B1 Bz Bi
1+5 + (n +1)+ (n +2) 1+— (n +1)+— (n +2) +5

4 4 Az

3 Bz Bi 1B
n 1+—5 + — n+ — (n+1) p(n —1)

4 Az 3 4 A) 4 Az
+ 2

Bz 1 B& 1 Bz1+5'+ n + (n +1) 1+— n+ — (n +1) +5
A, Az 4 A) 4

If Bq ——0, Eqs. (40) and (41) become the maser equations for a single-mode laser in a two-level system.

The peak (or the valley) positions of the curve of the photon-number distribution can be found by setting

p(n —l)=p(n)=p(n+1) .

Then we obtain the following equation under the approximation of
~

n
~

&&1,

(41)

B, Bz
1+5 +

A
+

A1 2

T

Bz
2

n +5 A

C
Bz

4 Ai Az

2

n +5

3 g B, 1 , 1 B, B,
n 1+—5+— + n

2 C Az 3 4 A) Az
(42)

This is a cubic algebraic equation. Its constant term is
(1+5 )(1+5 —3 /C). If 1+5 —3 /C&0, the solution
(three roots) of Eq. (42) may have the following situa-
tions: (i) one negative root, (ii) three negative roots, and
(iii) one negative and two positive roots. In the first two
cases there is no peak in the curve except the one at the
origin, and in the third case there is one peak (and one
valley) besides that at the origin, as shown in Fig. 3.

It is diScult to define a criterion for the threshold of
the two-photon laser operation even for the simple case
of two-photon resonance, because there may exist two
peaks. We cannot define the appearance of the second
peak as the threshold, because the second peak may be
very small such as the curve with A /C=11. 5 in Fig. 3
(in fact, it is so small that it cannot be seen in the curves
of the photon-number distribution when 3/C &11.5).
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O. Ot
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—"=2+ZC —= as. i
4
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FIG. 5. The photon statistics of the two-photon laser at the two-photon resonance where peak 2 dominates
( ~g, /y

~

= ~g2/y
~

=10 ): (a) 5=5, 3/C=ll. 9, (b) 5=10, 3/C =24.7, (c) 5=15, 2/C=38. 1, (d) 5=20, 2/C=51. 5.

We also cannot define the disappearance of the first peak
at the origin as the threshold, because it may be so small
that the second peak dominates, such as the curves with
A /C = 11.8 and 11.9 in Fig. 3.

It can be defined as an approximate threshold when
the light field of the two-photon laser may be approxi-
mately be considered a coherent state. Figure 5 shows
the photon-number distributions in different single-
photon detunings at the two-photon resonance, where
the coherence dominates. Though we cannot give a
value of A /C for this threshold, it can be seen in Fig. 5
that the following inequalities are valid at this threshold,

(43)

That is to say, this threshold is much higher than that
for the resonant single-photon laser and much lower
than that for the nonresonant one.

It is very clear from Eq. (41), by putting B2=0, that
1+6 —A /C ~0 means we are below the single-photon
threshold. So the second peak is caused by two-photon
gain [the second and fourth terms on the right-hand side
in Eq. (40)]. Therefore it can be viewed that the first
peak at the origin is the result of single-photon process-
es, while the second is the result of two-photon process-
es. The property of the light field can be approximately
considered as a mixture of a thermal light (laser below
threshold) and a laser light above threshold. Figure 6 is
a comparison of the photon-number distributions for
three cases: (i) the Poisson distribution, (ii) single-mode

0.0)"

l~ 2

:I
:I
:I

i

100 5o0

FIG. 6. A comparison of the photon-number distributions with the same peak position for the (i) Poisson distribution (dotted
curve), (ii) single-photon laser (dashed curve), and (iii) two-photon laser (solid curve).
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laser at resonance with a two-level system, and (iii) two-
photon laser, with the same peak position at n =390. It
is very obvious that the coherence of a two-photon laser
is less than that of a single-mode laser at resonance.

VI. CONCLUSION

We have studied the two-photon laser problems start-
ing from the original Hamiltonian, not from the effective
Hamiltonian. fhe master equation is derived, where the
two-photon and single-photon processes can be clearly
seen. The photon-number distribution is presented,
which may have two peaks, one of which comes mainly
from the single-photon process and stands for the
thermal property of the two-photon laser, and the other
mainly from the two-photon process and for the

coherent property of the two-photon laser. For a certain
value of 3 /C, which is much larger than the threshold
for a resonant single-mode laser and is much smaller
than that for a nonresonant one, the output light of the
two-photon laser may approximately be considered a
coherent state.

The property of the two-photon laser derived from the
exact Hamiltonian may be quite different from that ob-
tained from the effective one. The photon statistics are
not equivalent between the results of the exact Hamil-
tonian and the effective one.
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