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Intermittent spatial chaos in the polarization of counterpropagating beams
in a birefringent optical fiber
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Two counterpropagating intense light beams linearly polarized along the fast axis of a
birefringent fiber may constitute a spatially unstable polarization eigenarrangement. Chaotic be-
havior in the steady-state polarization evolution of the waves occurs for input powers in a certain
interval of values. By evaluating Lyapunov exponents we show intermittent trapping of irregular
trajectories around regular islands. The characteristic length scale of this spatial disorder is typi-
cally of the order of one beat length.

The field of instabilities and chaos in nonlinear optical
media has been rapidly growing over the past years. ' It
has been recently discovered that the coherent coupling
between copropagating waves in a nonlinear medium may
originate spatially unstable nonlinear eigensolutions.
Predicted self-switching of the polarization state at the
output of a birefringent fiber has been recently experi-
mentally observed by raising the input power across the
instability threshold. In the presence of longitudinal in-
homogeneities such as periodic perturbations to the fiber
birefringence, the coupling is modeled by a nonauto-
nomous one-degree-of-freedom nonlinear system which
exhibits chaos.

In this work we consider two arbitrarily polarized in-
tense beams counterpropagating in a birefringent Kerr-
type medium. On traversal through an isotropic Kerr
medium, beams of diff'erent intensity and linearly polar-
ized along the same direction (or constituting a non-
linear eigenpolarization arrangement ) experience a
power-dependent nonreciprocal phase shift. " This
may substantially affect the operation of devices such as
Aber-optic gyroscopes. ' For beams possessing a generic
input polarization state, field components along orthogo-
nal axes suffer different nonlinear retardations, which en-
tails nonreciprocal polarization changes. ' For non-
birefringent media, it has been shown that this eff'ect

may induce an intrinsic spatial instability in the collinear
degenerate four-wave-mixing (DFWM) process. '

In a monomode fiber, unavoidable deviations from cir-
cularity of the core or external perturbations such as
winding on a coil lift the ideal degeneracy in the propa-
gation constants of two orthogonal linearly polarized
(low-power) eigenmodes, and a relatively weak linear
birefringence results. In order to overcome the resulting
light depolarization, a dominant birefringence with
well-defined principal axes can be directly built into the
fiber. Consider the effect of a slight misalignment from
the fiber axes of two counterpropagating waves linearly
polarized at the respective input ends. The linear phase
shift between the modes combines itself with a self-
induced ellipse rotation' and an additional nonlinear
birefringence due to the counterpropagating wave. ' We
show how, for a critical range of input powers, the com-
petition of these effects may lead to spatial disorder in
the polarization state of the waves, even for equally in-
tense beams. Abrupt transition from quasiperiodic to
chaotic (and vice versa) evolutions may occur after an
unpredictable distance. To our knowledge, this is the
first example of spatial intermittency.

The total electric field (at optical frequency cL)0) along
the propagation distance z can be written as

2

E(r,z, t)= g IE „(z)exp[ i( —l)jp—„z]x+Ey(z)exp[ i ( —l)jp z]—yI f(r)exp( itoot) . —

We denote with f (r) the common field distribution in the transverse (x,y) plane of the two nearly degenerate linear
modes, with propagation constant p„and p, respectively. The four waves in Eq. (1) are coupled by the third-order
nonlinear polarizability'

P' '= A(E E*)E+(B'/2)(E E)E', (2)

where A =6X)z,2(coo;(oo, coo, —coo) and B'=6X,22, (coo, coo, coo, —too). In the slowly-varying-envelope approximation, the
mode amplitude E,y(E2y ) obeys the system

i( 1)jdEjy/dz R I(
~ Ejy ~

+2
~
E(3 j)y ~

)Ejy+(1 B/2)(
~
Ej

~

+
~
E(3 &)x ~

)Ejy

+BE&„E(3 j) E(3 j)y+(1 B/2)Ej„E(3 j)yE(—3 j) exP[ i( —1)j26—Pz]

+ (B /2)Ej„Ejy exP[ i ( —1)j2bPz ]I, —
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where 3/3=p —p, R =konz4rr10 InicA, ff n2 (n i)
is the nonlinear (linear) refractive index, A ff

=( f f dr ) / f f dr, and 8 =8'12'/n, n, . The equa-

tions for the amplitudes Ei„are obtained from (3) by ex-
changing x with y and AP with —613 throughout. From
Eqs. (3) one obtains that the powers in the two beams
P] ——E&~+F-» and Pz=Ez~+Ez~ are separately co-
served. The existence of a third invariant of Eqs. (3)
leads to showing that the polarization evolutions of the
waves are generated by a two-degree-of-freedom Hamil-
tonian. ' Since we will be only concerned here into nu-
merically investigating the stochasticity transition, we
adopt the Stokes vector formalism, '' that allows for
substantial reduction of complexity in the dynamic equa-
tions.

Rewriting Eq. (3) in terms of the Stokes parameters

So =
I

Ei. I

'+
I

E i, I

', S i
=

I
E i. I

' —
I iy I

'

Sz —2 Re[E,„Ei~ exp( i APz )],
S3 ——21m[Ei E&~exp(ihPz)],

(4)

and similarly associating 8'p, 8'&, 8'z, 8'3 with E2 and

E2~, one obtains

dSp /dz =0 d W'p /dz =0

d Sldz = [Q(S+ 2W)+ QL ]x S,
dW/dz =Wx [QL +Q(W+2S)],

(5)

with S—:(Si,S2,S3), and W—= ( Wi, W2, W3). Further,
QL

—= ( b)t3, 0, 0) represents linear birefringence, while
Q(x)—:(R /2)((1+8/2)x, , (1+8/2)x2, (1 —38/2)x3) is
associated with light-induced birefringence.

For low power beams, the only eigenpolarizations (i.e. ,

the fixed points of Eqs. (5), defined by d S/dz
=d W/dz =0) are S= (+So,0, 0) and W = (+Wo, 0, 0),
which represent waves linearly polarized along fiber
principal axes. Define the normalized powers

pi 2—=Pi 2/P, =R (1+8/2)Pi z/2bP and take p, )p2.
As

axis polarization instability occurs for
p ) (1+8/2) /28 . For silica, this last condition
reduces to p & 1, therefore observation of instability in
the polarization of a single beam requires twice as much
total power with respect to the case considered here.

As a consequence of this instability we will show that,
even in the particularly symmetric case of equally in-
tense beams, the solution of Eqs. (5) exhibits chaotic
properties. We will focus our attention onto the relevant
case 8 = —,'. Defining s=S/P and w—=W/P, Eq. (5)
reduce in explicit form to

which yields the loca/ maximal Lyapunov exponent

(Z) == ( I /Z)in[ II
t (Z) II /II t (0) II ], (10)

where Z=z /Lb ——j/2ir. Figure 1 refers to the case of a
normalized power p =0.5, and illustrates the estimated
values of k (Z) for five evolutions corresponding to

s
&

——ps2s3+2ps3wp

sz ———ps]s3 —2ps3 w] $3

s3 =2p (s2wi —w2s& )+s2

where primes denote diff'erentiation with respect to the
distance g=bPz, and the derivatives for the tc s are ob-
tainable from Eqs. (8) by exchanging the sign of the
right-hand sides and s; and with w; everywhere.

In order to characterize the transition to stochasticity
in the DFWM process, we estimated the maximal
Lyapunov exponent A. which measures the exponential
rate of divergence of nearby trajectories. ' From Eqs. (8)
(and corresponding equations for the tc s) written as
dx Idj=f (x), j =1, . . . , 6 one obtains the vector t
tangent to the six-dimensional evolution x(g) by in-
tegrating

6

dt, Id/= g (r)f, /r)x, )t,t,r i =1, . . . , 6

p]+p2) —,
' and p&

—p2 (—,
' (6)

101

6,=( —,')tan '[(1 f )'/ If]—(7)

the point S=(—So, 0, 0), W=( —Wo, 0, 0) become unsta-
ble and two new stable eigenarrangements of linearly po-
larized waves occur. The forward field is oriented at

100

10 1

10

b

with respect to the fast axis, with

f—=p i
—pz /p i + 1/(4p, ). For the backward propaga-

ting beam, 62 [obtainable from Eq. (7) by interchanging
subscripts in f] is measured from the fast axis in the
counterrotating direction with respect to 0&. In particu-
lar, whenever p] ——p2

—=p
—=P/P, the arrangement orient-

ed along the fast axis bifurcates for p ) —,', and

I
e,

I

=
I
Bz

I

= —,'tan '(16p —1)'/ . Taking A, ff=10
cm, nz ——2&& 10 esu, a beat length Lb ——2n/bP=5 m,
and A, =co/2mc =1 pm, bifurcation occurs for P =14 W
coupled to a silica [8 = —', (Ref. 16)] monomode fiber.
Notice that for a single beam polarized along the fast

10-4
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FIG. 1. Maximal Lyapunov exponents k (Z) vs
Z= j/2rr=z/Lb for diff'erent polarization states and p =0.5.
a, [s(0);w(0)]=( —0.5, 0, 0. 866; —0.5, 0,0. 866); b, ( —0.5,
0,0.866; —0.4,0, 0.917); c, ( —0.98, 0,0.2; —0.98, 0.2, 0);
d, ( —0.9999, 0.01, 0.01412; —0.9999, —0.01, 0.01412); e,
(0.95, 0. 1, 0.296; 0.95, —0. 1, —0.296).
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different states of polarization s(0) and w(0) at the end
face Z =0 of the fiber. As can be seen, stochastic (A.

converges to positive values: cases a —c in Fig. 1) as well
as ordered (A, ~0 as 1/Z: cases d and e) evolutions

Th r
coexist at a certain fixed optical power of th be

earns.

erefore, onset of chaoticity in DFWM may sim 1 de-

p upon the specific form of the reflectivity tensor of aend
mirror with 100% intensity reflection positioned at the
fiber end face.

Figure 2 displays the power spectrum of the s3 coordi-
nate of trajectory b in Fig. 1. A highly irregular spatial
frequencies content is superimposed onto a linear decay,
a behavior that is typical of chaotic solutions. Deter-
mining the scale of length for the exponential separation
of the trajectories in the x space is of primary physical
relevance. In fact, this distance sets a fundamental limit
to the length of a fiber since the chaotic exchange of
power between the fiber axes could spoil the operation of

L a
a er-based four-wave mixer. Figure 3 hs ows

yapunov exponents, computed using diFerent p and a
xed choice of polarizations at z =0. As can be seen,

the characteristic scale for chaos (defined as z, =Lb/A, )m

decreases as p grows larger, ranging from z, =1.4Lb for
p= —,

' own to z, =0.7Lb at powers p &2. In practice,d
the instability could be observable using short fibers (of
length =z, ) if the threshold power for competing non-
linear effects [such as stimulated Brillouin scattering
(SBS) induced by an individual beam] were higher than
P, . For the typical fiber parameters given above, a sam-
ple of length L =30 cm and a laser bandwidth of 1 GHz,
the SBS threshold is Pb ——400 W. ' This power yields

p =0.5 using Lb ——26 cm (so that L/L~ =z, /Lt, ). Polar-
ization chaos becomes the lower threshold power non-
linear effect (also using longer fibers or spectrally nar-
rower sources) when using SBS suppression (e.g. , by
means of a thermal gradient' ' ).

As can be seen from Fig. 3, the trajectory becomes
chaotic just above p & 4 and is regular once again for

p &3, owing to the fact that the nonlinear birefringence
quenches the linear one. At suKciently high powers al-powers, a
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FIG. 3. Lyapunov exponents A (Z) vs power p for initial
conditions as in case b of Fig. 1.

most all of the chaotic trajectories get trapped by regu-
lar Kolmogorov-Arnol'd-Moser (KAM) tori, topological-
ly equivalent to those of an isotropic medium [Eqs. (5)
integrable as bP/R ~0 (Ref. 13)].

Figure 4 shows the evolution of s3 as extracted from
trajectory a, as it would be obtained by placing at Z=0
an ideal metallic mirror [i.e., only the propagation direc-
tion and therefore the wave handedness is reversed in
sign upon reflection, with no change in eccentricity of
the polarization ellipse: s, (0)= w

&
(0), s2(0) =w2(0) and

s 3 ( 0 ) =w 3 (0 ) ]. The polarization state, initially trapped
along an invariant torus, suddenly evolves in an erratic
way. This intermittency does not stem from numerically
generated noise, but rather constitutes a universal
feature common to a wide class of nonlinear area-
preserving systems and maps: See, for example, the
Ulam map (associated with the Fermi acceleration of
cosmic rays).

Figure 5 illustrates the fact that a single polarization
trajectory may alternately get captured along a KAM
torus, corresponding a Z ' slope for the Lyapunov ex-
ponent, and then escape into chaos for an essentiall
unpredictable distance. Since most of the computed evo-
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FIG. 2. Log power spectrum against spatial frequency
co=2m/g from a 2' -points fast Fourier transform of the s3
component of trajectory b in Fig. 1 over the interval
0&Z & 128.

FIG. 4.
z =s/2vr

Evolution of s3 as in case a of Fig. 1, against
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lutions exhibit the intermittent trapping phenomenon as
p & 2, in Fig. 3 we reported maximal Lyapunov ex-
ponents relative to the chaotic subsections only [e.g. , es-
timated from the top of the bumps in cases e and f of
Fig. 5].

Suppose that one slightly varies in the stochasticity in-
terval the power of an intense light beam launched into a
fiber and mirror combination. Abrupt switching of the

FIG. 5. A, (Z) vs Z for initial polarization as in case b of
Fig. 1, and difFerent powers. (a), p =1; (b), p =3.31; (c),

p =4; (d), p =2; (e), p =3.047 (f)k p =2.272.

intensity of one polarization component (detected
beyond an analyzer) of the back-refiected wave should be
expected as observable consequence of the exponential
separation along the fiber sample of nearby polarization
trajectories.

It is interesting to point out that scalar models for
counterpropagating fields in nonlinear distributed feed-
back structures predict flat plateaus of the transmitted
intensity as a function of the incident intensity, an eA'ect

originating from spatially chaotic or unstable solutions. '

Extensions to the vectorial case which has been treated
in the present work is under investigation and will be re-
ported elsewhere.

Finally, as the temporal dependence of the field en-
velopes and the nonzero medium response time are ac-
counted for, temporal instabilities of the output intensi-
ties may occur even for the spatially stable eigenarrange-
ments. ' A still open issue is the analysis of the re-
gimes of spatiotemporal turbulence.

We gratefully acknowledge many valuable suggestions
by A. Vulpiani. We thank R. W. Boyd for sending
copies of his work prior to publication. This work was
carried out under an agreement between the Fondazione
Bordoni and the Istituto Superiore Poste e Telecomuni-
cazioni.

Also with Dipartimento di Fisica, Universita degli Studi di
Roma I, P. Moro 2, 00185 Rome, Italy.

~See Optical Instabilities, edited by R. W. Boyd et al. (Cam-
bridge University Press, Cambridge, England, 1986).

2J. Yumoto and K. Otsuka, Phys. Rev. Lett. 54, 1806 (1985).
B. Daino, G. Gregori, and S. Wabnitz, J. Appl. Phys. 58, 4512

(1985); B. Daino, G. Gregori, and S. Wabnitz, Opt. Lett. 11,
42 (1986); G. Gregori and S. Wabnitz, Phys. Rev. Lett. 56,
600 (1986).

4H. G. Winful, Opt. Lett. 11, 33 (1986).
5F. Matera and S. Wabnitz, Opt. Lett. 11, 467 (1986); S. Trillo

and S. Wabnitz, Appl. Phys. Lett. 49, 752 (1986); S. Wab-
nitz, E. W. Wright, C. T. Seaton, and G. I. Stegeman, ibid.
49, 838 (1986); A. Mecozzi, S. Trillo, S. Wabnitz, and B.
Daino, Opt. Lett. 12, 275 (1987)~

S. Trillo, S. Wabnitz, R. H. Stolen, G. Assanto, C. T. Seaton,
and G. I. Stegeman, Appl. Phys. Lett. 49, 1224 (1986)~

7S. Wabnitz, Phys. Rev. Lett. 58, 1415 (1987).
8Polarized at the respective fiber input ends so that they rnain-

tain their state of polarization unchanged.
R. Y. Chiao, P. L. Kelley, and E. Garmire, Phys. Rev. Lett.

17, 1198 (1966).
A. E. Kaplan and P. Meystre, Opt. Lett. 6, 590 (1981).
A. E. Kaplan, Opt. Lett. 8, 560 (1983).
R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 7, 282
(1982).

' S. Wabnitz and G. Gregori, Opt. Commun. 59, 72 (1986).
P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev.
Lett. 12, 507 (1964); note that, owing to their relatively weak
birefringence [6n —=(p„—p» )I(,/2~= 10 ' —10 6], isotropic
third-order susceptibility is generally assumed for optical
fibers.

~5E. Caglioti, S. Trillo, and S. Wabnitz (unpublished).
' A. Owyoung, R. W. Hellwarth, and N. George, Phys. Rev. B

5, 628 (1972).
G. Benettin, L. Galgani, and J. M. Strelcyn, Phys. Rev. A 14,
2338 (1976).
R. H. Stolen, Proc. IEEE 68, 1232 (1980).
M. D. Levenson, M. R. Shelby, M. D. Reid, D. F. Walls, and
A. Aspect, Phys. Rev. A 32, 1550 (1985).

~ A. J. Lichtenberg and M. A. Lieberman, Regular and Sto-
chastic Motion (Springer-Verlag, New York, 1983), Chap. 3,
p. 190; V. Merlo, M. Pettini, and A. Vulpiani, Lett ~ Nuovo
Cimento 44, 163 (1985).
F. Delyon, Y. E. Levy, and B. Souillard, Phys. Rev. Lett. 57,
2010 (1986); A. Mecozzi, S. Trillo, and S. Wabnitz, Opt.
Lett. (to be published).

Y. Silberberg and I. Bar-Joseph, Phys. Rev. Lett. 48, 1541
(1982).

A. L. Gaeta, R. W. Boyd, J. R. Ackerhalt, and P. W. Milon-
ni, Phys. Rev. Lett. 58, 2432 (1987).


