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Optical-frequency conversion in gaseous media
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This paper presents a general theoretical analysis of optical-frequency mixing of the radiation of
n difterent laser beams (n =1,2, 3, . . . ) in gaseous media with arbitrary density distribution.
Phase-matching conditions between the induced nonlinear polarization and the generated optical
radiation are calculated for third- and fifth-order sum- and difference-frequency mixing in free ex-
panding gas jets taking into account absorption of the generated light and displacements of the
foci of the laser radiation from the center of the gas jet.

INTRODUCTION

Four- and six-wave mixing of powerful laser radiation
are we11 established methods' for the generation of in-
tense coherent light in the vacuum ultraviolet spectral
region (vuv, A,„„„=100—200 nm) and at wavelengths in
the extreme vacuum ultraviolet region (xuv) below the
transmission cutoff of LiF (A,„„„~100nm). For third-
and fifth-order frequency conversion ultraviolet and visi-
ble laser light is focused into gaseous nonlinear media
like metal vapors or rare gases. For the generation of
vuv light (A,„„„=105—200 nm) the gases are contained in
a simple glass or meta1 cell equipped with a vuv
transmitting (LiF or MgF2) output window. In the xuv
spectral region, where transparent solid window materi-
als are not available, the generation and detection of xuv
radiation requires a differentially pumped, windowless
system. In this case a pinhole (of 0. 1 —0.3 mm diame-
ter), a rotating disc combined with a pinhole, or a
capillary array ' have been used as xuv transmitting
windows.

In addition to these devices pulsed free expanding gas
jets are we11 suited for this purpose. ' Compared to a
cell (equipped with a pinhole} the gas consumption and
thus the pump capacity (required in differentially
pumped systems) is reduced by up to two orders of mag-
nitude. Since the gas jet is well defined in space (and
time} it provides in a windowless environment a short re-
gion (0.5 —3 mm) of high gas density (of up to 5&(10'
atoms/cm ). The small diameter of the gas jet strongly
reduces possible absorption of the generated xuv radia-
tion.

Experimental results of optical-frequency mixing in
pulsed gas jets have been published by several research
groups. ' So far, however, no rigorous theoretical
analysis of frequency mixing in inhomogeneous gas
media (such as pulsed free jets) has been reported.

This paper presents a general description of optical-
frequency mixing of the radiation of n different laser
beams (n =1,2, 3, . . . } in gases of arbitrary density dis-
tribution. The derived results are used to calculate the
phase matching and the power of the optical radiation

generated by third- and fifth-order sum- and difference-
frequency mixing in gas jets with different density distri-
butions taking into account possible absorptions of the
generated vuv light and displacements of the foci of the
laser light from the center of the gas beam.

THEORY

For optical-frequency conversion intense laser radia-
tion is focused into an appropriate nonlinear medium.
The polarization induced by the laser light consists of a
linear part which accounts for the refractive index and
for possible absorptions of the laser radiation and a non-
linear part which causes all nonlinear effects such as fre-
quency mixing. The induced nonlinear polarization is
calculated as the expectation value of the induced atom-
ic dipole moment by means of time-dependent perturba-
tion theory. The result, multiplied by the density of the
medium, provides the value of the macroscopic polariza-
tion.

The frequency spectrum of the nonlinear polarization
contains frequencies which are a linear combination of
the laser frequencies. The electric field (and thus the
power) of the optical radiation generated by the induced
oscillating polarization is calculated by solving the corre-
sponding inhomogeneous Maxwell equations.

The first theoretical description of harmonic genera-
tion in nonlinear optica1 media has been published by
Armstrong et al. ,

' Bloembergen and Pershan, ' and
Kleinman. ' These authors solved the inhomogeneous
Maxwell equation for the second harmonic generated in
crystals by plane light waves. Second-harmonic genera-
tion by focused light beams was calculated by decompos-
ing the electric light field into its plane-wave Fourier
components. With the solutions known for plane waves
the inverse Fourier transformation yielded the electric
field generated at the second harmonic. This Fourier
method was used also by Boyd et al. ' to take into ac-
count the finite beam aperture in second-harmonic gen-
eration of plane light waves and by Bjorkholm' as well
as by Kleinman et al. ' to determine the second har-
monic of focused Gaussian beams.

The same method was applied by Ward and New' to
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treat the third-harmonic generation in gases and by
Bjorklund to describe the third-order sum- and
difference-frequency mixing in homogeneous isotropic
media. It should also be mentioned that the inhuence of
higher modes of Gaussian laser beams on third-
harmonic generation has been investigated by Yiu
et al. ' In order to take saturation effects into account
Vidal et al. solved a set of coupled inhomogeneous
Maxwell equations. The results have been published in a
series of papers. Calculations of the power of the
light generated by higher-order conversion processes
have been reported, for example, by Tomov and
Richardson and by Reintjes et al.

Another way to calculate the electric field generated
by an induced nonlinear polarization is to use the in-
tegral equation formalism proposed by Bloembergen and
Pershan. '" With this formalism Franken and Ward
calculated the second harmonic generated by plane light
waves in crystals. McMahon and Franklin determined
the second harmonic generated by focused beams using
Huygen s construction of wave fronts which is, in princi-
ple, identical with the integral method. Boyd and Klein-
man applied the integral method (in a more heuristic
way) to investigate the optimum conditions for second-
harmonic generation and for parametric frequency con-
version of focused Gaussian light beams. In this paper
we use this integral equation formalism to calculate the
phase matching and the output power of frequency mix-
ing of nth order in inhomogeneous gaseous media.

The electric field E(r', t) generated by a polarization
P(r, t) is equal to the following integral: '

E(r' t)= f VXVX ' dV.[P(r, t)]
V

The brackets denote the retarded value of P and R is the
distance between the volume element dV [located in the
medium at r=(x,y, z)] and the point of observation [at
r'=(x', y', z')]. According to this equation the electric
field observed at the point r' is determined by the super-
position of the components of the dipole radiation gen-
erated by the polarization P in all parts dV of the non-
linear medium. It should be noted that Eq. (1) can be
derived by solving the inhomogeneous Maxwell equation
using Green's method.

The following considerations will be restricted to gase-
ous media. Since E(r', t) is calculated at a point r' locat-
ed outside of the nonlinear medium the sequence of the
integration and of the VX V operator in Eq. (1) can be
changed. Thus the field generated by the Fourier com-
ponent P~(r, cog ) of P(r, t) oscillating at the frequency cog

is determined by the following expression:

Pg(r, cog )
E(r', t)=VXVX fv

linear polarization Pg(r, co&
) at the frequency cog is relat-

ed to the electric fields Ej(j =1, . . . , n) of the laser
beams and to the gas density X(r) by

Ps(r, cog )=D„X(r)X'"' g E, (r, cuj)
j=1

with

nt

2n —i

I& =1

The factor g'"' is the tensor of the nonlinear susceptibili-
ty of (n+ 1)th order, m is equal to the number of
different frequencies which contribute to the conversion
process (m &n), and the numbers nt, indicate how many
times the different frequencies ~~ are involved in the
mixing process.

In order to simplify the calculation it is assumed that
the laser light consists of Gaussian beams of lowest or-
der propagating collinearly along the z axis with confo-
cal parameters b~. , wave vectors kj, and focused at zo j.
Under these conditions the amplitudes of the com-
ponents of the electric field are given by

k~. (x +y )
exp b)(1+i ej )

1 + l E'j
EJ(r, t)= Ao~

UJ =exp i f k~(z")dz"

From Eqs. (3) and (4) the induced macroscopic polariza-
tion Pg ( r, cps ) can be determined as

Pg (r, cog ) =D„X'"' + Ao Jexp
j=l

(x 2+y2)f(z) 2 2 1

g(z) g(z)

~ exp i k' z" dz"

with
k'=k1+

n

f(z)= g
s=1

2
with ej —— (z —zo) ) .

J

Since the refractive index is assumed to be a function of
z the phase factors U, =exp(ikjz) are written in the gen-
eralized form

l
~exp —i' t —— dV .

c
(2) n

g( )= Q (I+'e, ) .
j =1

The parameter l is the optical length of the distance be-
tween the points r and r' and c is the speed of light. The
real electric field is obtained by taking the real part of
the complex field described by Eq. (2). The induced non-

As for the fundamental light beams the phase factor
of the generated radiation Us = exp[i cps(l /c)] is general-
ized by the expression
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QPg

Ug
——exp i dl

C

The optical length can be calculated by the integral
along a straight line between the points at r and r'.
Since the vector components x' and y' are usually small
compared to z' the line integral has the following value:

f dl = f kg(z")dz" f —kg(z")dz"

+ kg (x' —x) (y' —y}+
2 z —z Z —Z

where kg is the wave vector of the generated radiation in
the nonlinear medium.

The generated electric field Eg(r', t) is obtained by in-
serting (5) and (6) into Eq. (2). If all fundamental light
beams have the same linear polarization g'"' is a scalar.
In the far-field approximation ' all terms in 1/8 of
higher than first order are neglected and the operator
VX V is replaced by the expression —conc sin(8),
where 8 is the angle between Pg(r) and the vector
(r' —r). Because 8 is close to m/2 the value of sin(8)=1.
Integrating over the x and y coordinates and using the
approximation (z' —z)=R the following result is ob-
tained for the generated electric field Eg(r', t),

Eg(r', t) = —2miD„+'"'exp(i(t )exp( icogt) —+ Ao j kg
j=1

exp[ —(x' +y' )q(z, z')]
(X) a(z, z') 00

with

bk(z")=ks(z") —k'(z"), a(z, z')=g(z) i —f(z), q(z, z')=, , P= kg(z")dz" .. 2(z —z'), f (z)
kg a (z,z'} '

The difference b, k(z") is the wave-vector mismatch be-
tween the generated radiation and the driving polariza-
tion. The wave-vector mismatch is related to the gas
density by the equation b,k(z")=C(Ag, A, ( A, „)N(z),
where C accounts for the wavelength dependence of the
wave-vector mismatch per atom caused by the dispersion
of the medium. The wave-vector mismatch b,k (z") has
the same spatial dependence as the gas density. For the
integration over the x and y coordinates the gas density
is assumed to vary slowly so that within the diameter of
the light beams a constant value provides a good approx-
imation. The power I~ of the generated radiation is
determined by the amplitudes of the electric field
E~(r', t),

n —1

10
Ig ——(2 " AD„NO)

C
~y(n)

~

2

k, I, F'"' . (9)
~1 j=l

I''"' is a dimensionless generalized phase-matching func-
tion defined as

Ig —— f 2rrr'
~

Eg(r', t)
~

dr',
8~ o

where r' = (x ' +y '
)
' . For the normalized density dis-

tribution S(z)=N(z)/No the output power Ig is given
by the following equation:

n b, 4kF(n)
1b, b1

2 2
2 ~, m g(z),2, . zf r' f, exp[ —r' q (z,z')]exp i f b—k (z")dz" dz dr'

b( 0 — a (z,z')

with (10)

b k (z" ) =S (z")bko,

where the confocal parameters bj were normalized to 61.
The phase mismatch 4ko corresponds to the density No.
In Eqs. (9) and (10) all physical quantities are taken in
cgs units, except the powers Ij and Ig which are taken in
watts. Absorption by the medium can be considered by
using the following complex wave vectors,

with

27Tn j cxj+ ~ J
2

aj =N(z)cr(k~ ), j =g, 1, . . . , n
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where o. (A,, ) is the absorption cross section at the wave-
length A. . Equation (9) is valid for a mixing process of
nth order of focused Gaussian light beams (of lowest or-
der) in a medium of inhomogeneous density. The funda-
mental light beams have different confocal parameters
and are focused at difFerent positions at the common axis
of the laser beams. Equation (9) includes the case of
plane light waves which corresponds to the limit of
bj —+ oo and hence a (z,z')~1 and q (z,z')~0.

The following investigation will be restricted to equal
confocal parameters and identical positions of the foci.
Under these conditions the mode of the electric field
generated by sum-frequency mixing is a lowest-order
Gaussian. The integration over r' [Eq. (10)] can be per-
formed analytically with the following result:

2

~(n)
(1+i@)"

(12)

The output power Ig of a certain process can be opti-
mized, for example, by varying the gas density of the
nonlinear medium. In this case the density dependence
of the generated power is determined by the dimension-
less function G'"'=( beak )0F'"'.

RESULTS

In the following the dependence of the phase-
matching function F'"' on different experimental param-
eters is investigated for conversion processes of third,
fifth, and nth order in a gaseous medium with homo-
geneous and inhomogeneous density distribution. F "'
depends essentially on the parameters bAkp, b/L, L/lp,
and z p /L. L is the full width at half maximum
(FWHM) of the gas density distribution N(z), lo is the
absorption length at density Np, and zp the distance be-
tween the position of the focus and the center of the
nonlinear medium.

THIRD-ORDER SUM-FREQUENCY MIXING

The phase-matching function F' ' for third-order
sum-frequency generation (cos =co, +~&+co~) is calculat-

ed assuming the following distributions S&, S2, and S3 of
the gas density,

S,(z)=
1+ 2z

'2

2& z 3Lcos — for tz
~

(
3 L 4

S2(z) =
3L0 for ~z~& 4

(13)

1 for ~z~( —,L

Sq(z)= '

0 for ~z~) —.L
2

The Lorentzian (S& ), the cosine (Sz ), and the homogene-
ous (S& ) distribution have the same FWHM. S, and S2
are similar —to a certain extent —to the density distri-
bution of a free expanding gas jet, whereas S3 describes
the homogeneous density in a gas cell. For a numerical
evaluation of the integrals [Eq. (12)], the variable z is

substituted by u which is determined by the following
equations:

Z
S&(z): u =arctan 2—

L

2& zS,(z): u =sin
3 L (14)

2
S&(z): u =—z .

b

These transformations of the variable parameter provide
the following equations for the phase-matching functions
F[3).

L —~/2 —+i tan(u)—
L

z exp( ia&u)du—
2Z p

L

L bAkp
with a] ———

b 2

vr L 3 2Zp—+i —arcsin( u )—
L I

2
L bucko

z exp( —ia2u)du with az ————
vr b

(15)

F(3)
3 —L/b 2Zp

b L
1+i u ——

bhkp
z exp( i a

&
u )du wit—h a 3

——
2
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n (beak) exp(bb, k) for bb, k &0,F( )

0 for beak)0 (16)

The dependence of Fz ' on beak is shown also in Fig. 1.
Fz ' is independent of the distribution of the density, but

Figure 1 shows the values of F'& ', F'2 ', and F3 ' calcu-
lated as functions of bhko for three different ratios of
b/L. The focus of the laser light is located in the center
of the gas medium (zo/L=O) and absorption is neglect-
ed. It should be noted that F3 ' is identical with the re-
sult obtained by Bjorklund for a gas contained in a cell
of length L.

For strong focusing (b/L=0. 1), the shape of FI ',
F2 ', and F3 ' is almost the same. Even the values of the
maximum of these three functions are not very different
and the maxima are obtained at almost the same nega-
tive value of bucko. If b/L=0. 5 or b =L the optimum
values of F'& ' and of Fz ' are observed also at nearly the
same value of b hko, F3 ', however, optimizes at a some-
what smaller mismatch. For these ratios of b/L the
maximum values of F'& ', Fz ', and F3 ' are rather
different.

The results displayed in Fig. 1 indicate that each of
the three phase-matching functions provides to a good
approximation the same dependence of the phase match-
ing on bucko if the laser radiation is strongly focused.
For this reason a detailed analysis of the third-order
sum-frequency conversion in a free expanding gas jet will
be performed only for a Lorentzian distribution of the
gas density.

In the limit b/L ~0 the three functions F' ' converge
to the same solution Fz ' derived analytically for tight
focusing (b «L),

F( )

't 2
2L

sin
2

2

where P is the total integrated phase mismatch, given by
the following integral

P=ak, f" S(z)dz . (18)

F~
' is identical with the phase-matching function for the

frequency conversion of plane light waves in homogene-
ous media, generalized by the integrated phase mismatch
P according to Eq. (18).

In Fig. 2 the function G'& ' is shown for several values
of the parameter b /L. As is seen from this figure
Gq (bh——k) Fq ' provides a good approximation for
G'& ' as long as b/L &0.3.

The optimum values F,'~', and G,~', of the functions
FI ' and GI ' (which correspond to the optimum values
of the parameter bucko) were calculated as functions of
the ratio b /L. The results of this calculation are
displayed in Figs. 3(a) and 3(b) together with the op-
timum values (bb, k )0,~,. The functions F,' I, and GI~',
are normalized to their values at b/L=O. As seen from
Fig. 3(a) optimum phase matching is obtained at b/L=O
which corresponds to the maximum value of F,'p', . For
the function G',„'„on the other hand, maximum values
are obtained if the confocal parameter b is equal to L. It
should be noted that a similar result has been reported
by Bethune et aI."

depends only on the value of

beak

calculated at the z po-
sition of the focus and thus on the local density in this
region of the focus.

F' ' can also be calculated analytically for the plane-
wave limit (b »L)

2

70-
b
l j —= 0.5

L

50

-10

b/kp
FlCs. 1. F' ' as function of bucko for different values of the

ratio b/L and different distributions of the gas density S(z):
, Lorentzian; ———,cosine; and —.——., homogene-

ous. For the ratio b/L=0. 1 the values of F' ' calculated for
the different density distributions coincide —except at the
maximum —within the width of the line of the drawn curve.
This is valid also for the analytical function F&".

10

-20 -10

bucko

FIG. 2. G'1" as function of bAko calculated for a Lorentzian
density profile of the gas jet and different values of b!L.
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0.5
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0
U

10

ZQ

(b)
FIG. 4. G~ ' as function of the normalized displacement

ZQ /L of the focus from the center of the gas jet for various
values of the parameters bhkQ and b/L =0.3.

CL
O

10

FICz. 3. (a) The optimum value of F'~" and GI" as function
of the ratio b/L normalized to b/L=O. (b) The values of
bhkQ which provide the maximum values of the corresponding
functions F~ ' and G ~

'.

jet at its center. The dependence of 6' ' on the position
of the focus provides a sensitive method for positioning
the focus at the center of the gas jet. Moreover, it al-
lows us to measure the local gas density and thus the
density profile of a gas jet. '

In argon the generated third harmonic' (A,,„,=104.4
nm) is not absorbed. In an absorbing gas the maximum
of G'& ' is obtained at a position of the focus outside of
the center of the jet in direction of the light beam. This
is shown in Fig. 6 for difFerent gas densities for the ratio
b/L=0. 3 and for L/lo ——3. To account for absorption
of the generated radiation the phase-matching function
F~& ' is extended in the following way:

The inhuence of the normalized displacement zo/L of
the focus from the center of the gas jet on the values of
G'& ' (and thus on the power of the generated sum fre-
quency) is shown in Fig. 4 for different values of the gas
density at the jet center. If this density provides a
mismatch bucko g —4 the maximum output power is
achieved for a focus position at the jet center (zo=0),
the location of highest density. Any displacement from
this position causes a decrease of the conversion
efficiency. For bucko & —4 G'& ' has a minimum at
zo ——0 and two maxima located symmetrically to this po-
sition. If, for example, b Ako ———8 the two maxima
occur at zo ——L/2 where the gas density is one half of
the one at zo ——0.

The shape of G'& ' has been measured for third-
harmonic generation in an argon gas jet (Fig. 5). In the
experiment the focus of the uv laser light is moved along
the optical axis of the laser beam which crosses the gas

-4 0 2

zo ( mm)

FIG. 5. Third harmonic generated in an argon gas jet at
A,„„„=104.4 nm as function of the focus displacement zQ

(b/L =0.3; bhkQ ———7.2).
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where two narrow maxima are observed [Fig. 8(c)]. To
compare the experimental results with the theoretical
predictions 63 ' has been calculated for the correspond-
ing parameters b/L and bhkp. The dependence of the
vuv output on zo determined in this way (displayed also
in Fig. 8) is in good agreement with the measured re-
sults.

SUM-FREQUENCY MIXING OF nth ORDER

For sum-frequency mixing of nth order (cos =co
&

+ +co„) the phase-matching function F~"' is calcu-
lated in a similar way as for the third-order process. For
a Lorentzian density profile of a nonabsorbing gas, F'1"'
is given by the following equation:

F(n)
1

fl —2
~/2

vr/2
Q 2z

L
—+i tan(u)—

L

, exp( ia—, u)du (20)

As an example Fig. 9 shows the values of the phase-
matching function F'1 ' for sum-frequency mixing of fifth
order as functions of bhkp for four difFerent ratios b/L.
If biL&0. 1, F', ' has a maximum at bb, ko= —6. The
position of the maximum shifts to larger negative values
of b Akp if b /I is increased. A similar dependence on
bAkp and b/L is obtained for sum-frequency conver-
sions of even higher order. The maximum of F'1 '

occurs, for example, at bAkp ———10 and the one of F'1 '

at b Ak p = —14. The dependence of these phase-
matching functions on absorption of the generated light
and on displacements of the focus from the center of the
nonlinear medium are very similar to those described for

22'
(n —2)!I. (n) 2

for beak &0,
0 for beak) 0 .

2n —4

exp(beak)

(21)

The maximum of F„'"' is obtained for bb, k = —2(n —2),
whereas Gz"' has a maximum value for b Ak
= —2(n —1). This result is the same as the one report-
ed by Ward and New. '

third-order conversion. In the limit of strong focusing
(b «L) the function F'"' can be calculated analytically,

DIFFERENCE-FREQUENCY MIXING

Experiment

(C)

The di6'erence-frequency mixing in gas jets will be in-
vestigated only for the fifth-order process cog =co1+co2
+ co3 +co4 co5 The reason for this restriction is the

fact that third-order difference-frequency conversion
generates radiation in the region of the vuv. For this
conversion gas cells with homogeneous density distribu-
tion are thus very appropriate.

Theory

1.5

(c)

L

2
L

2 2

Zp

L L
2 2

2p

0.5

FIG. 8. Experiment: Third harmonic at A,,„,= 143.4 nm as
function of the focus displacement zp in a gas cell (L=5 cm).
(a) b /L =0.75, bkkp = —6.2; (b) b /L =0.75, bkkp = —15.1;
and (c) b/L=0. 06, bhkp ———7.8. Theory: G3 ' calculated for
the experimental parameters and a homogeneous density distri-
bution.

bed ko

FIG. 9. F'~ ' as function of bhkp for a Lorentzian density
distribution of the gas jet and different values of b/L.
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with

h(z)= 1

1+p2 kg

(22)

2 2it—, e= —(2 —zo), e'= —(z' —zo).
b

'
b

The phase-matching function depends in addition on
the ratio 0/ks where k =k, +kz+ k3+ k4+ ks and

kg =k&+k2+k3+k4 —k5', kg is the wave vector at the
generated wavelength. The intensity distribution in the
far field of the generated radiation is almost a Gaussian
mode if bb, kp &0, but a ring pattern if bhkp ~0. This
ring pattern is symmetric to the optical axis of the light
beam. The radius of the ring increases for larger posi-
tive values of bAkp. It should be noted that the same
result is obtained for difference-frequency mixing of
third order in a homogeneous gas medium.

The function I'I is calculated for k/ks=1. 5 and
diff'erent parameters of b/L The pos.ition of the focus is
on the jet axis. The results shown in Fig. 10 indicate
that the maxima of Fi occur at negative values of
bhkp. This result is different from F] ' calculated for
third-order difference-frequency mixing. The maximum
of F'& ' is obtained for bhkp=0.

For tight focusing (b/L ~0) and f/ks =1 from Eqs.

2.5

2.0

0.5

-10

bBkp
FICs. 10. F'& ' as function of bhko for a Lorentzian density

distribution of the gas jet and different values of b /L;
k /kg = 1.5; the analytical phase-matching function F~' is
shown also (b/L=0, k /ks =1).

In general, the intensity distribution of the radiation
generated by difference-frequency mixing is not a Gauss-
ian mode. It is therefore not possible to derive an equa-
tion for the corresponding phase-matching function F' '

which is similar to Eq. (12). The calculation of the in-
tensity distribution in the far field requires a numerical
integration of Eq. (10) over the radius r'. For the addi-
tional integration over the coordinate z the functions
a (z, z') and q(z, z') defined by Eq. (7) are expressed in
the following way:

a (z,z') = ( I+ ie) ( I+ e )[1 i (e——e')b (z)],
kg h (z)

q (z,z') =
b 1 i (e ——e')h (z)

(10) and (22), the following analytical phase-matching
function is derived for fifth-order frequency mixing,

64
[(beak —1) +1] exp(beak) for beak &0,

2 (23)

16
exp( bb—.k) for bb, k &0 .

The dependence of this function on b Ak is also shown in
Fig. 10. Although difference-frequency mixing with
k /k' =1 is physically impossible, Eq. (23) allows an esti-
mate of the principle dependence of the phase matching
of focused 1aser light on the dispersion and the gas den-
sity.

CONCLUSIONS

It has been demonstrated that the integral equation
formalism is very appropriate for the calculation of the
electric field —and thus the output power —of the light
generated by optical conversion processes in nonlinear
media. This method has been used to determine the gen-
eral phase-matching conditions between the induced
nonlinear polarization and the generated optical radia-
tion if n different laser beams are focused in a gaseous
medium with arbitrary density distribution. The de-
tailed calculations presented in this paper provide the
phase-matching conditions for third- and fifth-order
sum- and difference-frequency mixing and their depen-
dence on the displacement of the foci in a free expanding
gas jet as well as in a gas cell taking absorption of the
generated radiation into account.

This analysis was restricted to laser beams with equal
confocal parameters and identical positions of the foci.
It should be mentioned that the results of a detailed in-
vestigation of effects caused by different confocal param-
eters of the laser beams (which was performed with the
same method ) will be presented in a paper published
elsewhere.

In addition, it should be noted that the integral
method presented in this paper is also very useful for the
investigation of the phase matching in anisotropic
media. By changing the integration path of the line in-
tegral of Eq. (6) in order to account for double refraction
present in a nonlinear crystal the electric field of the
second harmonic, for example, is obtained straightfor-
ward. The result is identical to the one reported by
Boyd and Kleinman [Eq. (2.9) in Ref. 30] which is the
main equation for the theoretical studies performed by
these authors on the optimization of second-harmonic
generation in crystals. Because of the wide validity of
the theoretical results obtainable by the integral equation
formalism, it should be considered as a general and
powerful method for a detaiIed description of optical
conversion processes.
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