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Action of passive, lossless optical systems in quantum optics
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A quantum optical formulation of the action of passive, lossless optical instruments on quantum
light fields is developed. The quantum Maxwell equations are formally solved and the commuta-
tion relations for various combinations of field operators at dift'erent times are studied. General
relationships between field correlation functions and correlation functions of source-quantity
operators and free-field operators are derived. Formulas are presented for the case when the free
field is the vacuum field. Furthermore, the mixing of source-field light with coherent free-field
light is treated. The theory is applied to the calculation of the photocount distribution. The
theory presented renders it possible to take into account the efT'ects of light propagation through
the optical system. It is shown that the eftect of the optical instruments may be taken into ac-
count by introducing an apparatus function in a way which formally corresponds to that of classi-
cal optics. However, the calculation of the corresponding convolution integrals is governed by
operator ordering rules, which are essential in the case of quantum light fields and which can give
rise to substantial differences between classical and quantum optics.

I. INTRODUCTION

Light sources producing light with nonclassical prop-
erties such as photon antibunching, sub-Poisson photon
statistics, and squeezing have been of considerable
theoretical and experimental interest. ' From a more
theoretical point of view, such nonclassical properties
may be defined by the requirement that the normally or-
dered variances of appropriately chosen (multimode)
field quantities are negative. Physically, they indicate
that the fluctuations of these quantities are reduced
below their standard quantum limits defined by the re-
quirement that the normally ordered variances are equal
to zero. For example, the fluctuations of the electric
field strength of squeezed light are reduced (in certain
space-time intervals) below the vacuum noise level. ' ''
For this reason nonclassical light fields are of interest for
high-performance optical systems such as low-noise opti-
cal communication or high-precision interferometric
measurements. ' ' Several methods for generating
such quantum light have been proposed and various ex-
periments have successfully been performed. '

The generation of the light and its application require,
of course, a more or less complicated experimental set-

. up, in which the sources producing the light are embed-
ded. In particular, the light must be transmitted
through various kinds of passive optica1 instruments
such as resonatorlike cavities, beam split ters, lenses,
filters, interferometers, and so on. Clearly, these optical
devices do not only modify the properties of the light in
the usual sense of classical optics but they may also be
expected to change the quantum features. For example,
from a more intuitive quantum-mechanical treatment of
a beam splitter it is known that dividing a mono-
chromatic plane-wave squeezed light field into two
beams of equal intensity reduces the squeezing eAect in
either beam to half of the squeezing e6'ect in the incom-

ing squeezed wave. This increase of noise results from
the vacuum fluctuations of the electric field strength in
the unused input port of the beam splitter. In the case
of more complex optical devices acting on complicated
multimode quantum light fields the problem of the
correct quantum-mechanical treatment of the action of
the optical instruments is not trivial and its solution
needs very careful consideration.

This may be illustrated by the following example. In
many cases of practical interest the light is generated
and/or amplified by sources that are situated inside a
resonatorlike cavity, which is in contact with the envi-
ronment via appropriately chosen mirrors, so that the
field inside the cavity (internal field) is coupled to the
field outside the cavity (external field). The experimental
studies are performed, of course, on the external field,
the properties of which are therefore the desired infor-
mation. Recently attempts have been made to solve this
problem by generalizing the well-known quantum-
mechanical noise theories usually used for finding the
properties of the internal field. In particular, the exter-
nal field is decomposed into an input field and an output
field and the output field is related to the internal field
and/or the input field. This theory is based on quantum
stochastic Markov approximations and its applicability
is restricted to high-Q-value cavities and to input fields
the spectra of which are su%ciently flat. Apart
from the fact that only a very particular experimental
setup is considered, the theory does not take into ac-
count the full space-time structure of the field.

An alternative approach to the problem of the
quantum-mechanical description of the action of passive
optical systems on light fields has recently been
developed on the basis of the concepts of quantum field
theory and was applied to the problem of spectral filter-
ing of light. ' The idea is to relate the properties of
the light to the properties of the sources that the light is
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attributed to. The properties of the light are defined in
terms of field correlation functions and the relationships
between these field correlation functions and the correla-
tion functions of source operators are derived. In partic-
ular, these relationships also answer the question of how
to describe the action of optical instruments in quantum
optics. The advantage of such an approach is that it
renders it possible to take into account the effects of
light propagation and to find the light properties in arbi-
trary space-time intervals. The only assumptions are
that the interaction between sources and light is linear in
the vector potential and the optical system is lossless.
The latter assumption, which is also made in the quan-
tum stochastic treatments, means that the absorp-
tion of light by the material of the optical devices can be
neglected and the dispersion associated with it can also
be disregarded. This renders it possible to model the op-
tical system by a dielectric with appropriately chosen
space-dependent refractive index n (r). Now the concept
of mode expansion can be formulated and the quantum-
mechanical formulation of the action of the optical in-
struments can be developed.

The aim of this paper is to develop this quantum-
mechanical theory from a more general point of view
than in Ref. 28 and to give a closed and detailed deriva-
tion of the relations used in Ref. 28. This general for-
mulation of the theory renders it possible to apply it to a
wide class of passive, lossless optical systems and to un-
derstand their action on quantum light fields. For in-
stance, the theory also allows the study of effects such as
the diffraction of nonclassical light at gratings. In this
case from the results of Ref. 29 the quantum fluctuations
are expected to be space dependent. In Sec. II the classi-
cal Maxwell equations with sources and optical devices
are formulated and solved by the procedure of mode ex-
pansion, and the quantized version is derived. In Sec.
III the Heisenberg equations of motion for the field
operators are derived and formally solved, so that the
field operators may be expressed in terms of free-field
and source-field operators. The commutation relations
for various combinations of field operators at different
times are studied in Sec. IV, and relationships between
field commutators and source-quantity commutators are
derived. In Sec. V these commutation relations are used
in order to express field correlation functions in terms of
correlation functions of source operators and free-field
operators and to clarify the effect of the optical system
on the properties of quantum light fields. In Sec. VI the
theory is applied to the photocount statistics. A sum-
mary and some conclusions are given in Sec. VII.

II. QUANTIZATION OF LIGHT
WITH SOURCES IN A DIELECTRIC

WITH SPACE-DEPENDENT REFRACTIVE INDEX

A. Classical basic equations

V.B(r, t ) =0,
V && E(r, t)+ B(r, t ) =0,
V D(r, t)=p(r, t),
VXH(r, t) —D(r, t) =j (r, t),

where

B(r, t) =p, oH(r, t ),
D(r, t) =EpE(r)E(r, t),

and

e(r)=n (r) .

(2. 1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

From Eqs. (2.3) and (2.4) the charge density p(r, t) and
the current density j(r, t) are seen to satisfy the continui-
ty equation

p(r, t)+V.j(r, t)=0 . (2.8)

j(r, t)= g Q, r, (t)5[r —r, (t)] . (2.10)

In these equations, the position vectors r, (t) obey the
equations of motion

m, r, (t)= —VU,„,{r,(t))

+Q. [E(r.( t ), t ) +r. ( t) X B(r.( t ), t )], (2.11)

where U,„,(r) is an appropriately chosen (external) po-
tential which ensures that the charges might be localized
in a certain range of space.

The Maxwell equations (2.1) and (2.2) are identically
satisfied if we let

B(r, t) = XVA(r, t),
E(r, t) = —A(r, t) —V V(r, t),

(2.12)

(2.13)

where V(r, t) and A(r, t), respectively, are the scalar and
the vector potential. Substituting Eqs. (2.12) and (2.13)
together with Eqs. (2.5) and (2.6) into the Maxwell equa-
tions (2.3) and (2.4), we obtain

EOV [E(r)VV(r, t)]= —p(r, t) —eoV [e(r) A(r, t )], (2.14)

V&& V)C A(1 t) +ppE EO'(r) A(r, t)

=po[j(r, t) EOE(r)V V(r,—t)] . ' (2.15)

If we put Eqs. (2.12) and (2.13) into Eq. (2.11) we arrive
at

m, r, (t)= —VU, „,{r,(t))

%'e now assume that the sources embedded in the
dielectric are point charges. Denoting the charge and
the mass of the ath particle by Q, and m, , respectively,
we may write

p(r, t) = g Q, 6[r —r, (t)],

As outlined in the Introduction, we shall be studying
the action of optical instruments in the sense of linear,
lossless filters, which may be modeled by a dielectric
with space-dependent refractive index n (r). The corre-
sponding Maxwell equations with sources are

—Q. [VV(r, (t), t )

+ A(r. (t), t) —r. (t)

XVX A(r, (t), t)) . (2.16)
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Remembering Eqs. (2.9) and (2.10) we can readily verify
that Eqs. (2.14)—(2.16) may be derived from the follow-
ing Lagrangian:

H H~ +Hf +Hint )

where

(2.29)

L= g —,'m, r, + J d r —,
' woe(A. +VV)— 1 (Vx A)'

Po
H, =g p'. + —,

' Q, V( r, ) + U,„,( r. )
2ma

(2.30)

+jA —p(V+ U,„,) (2.17)
H„= —,

' J d'r roe A + (VX A)~
Po

(2.31)

The generalized momenta are defined in the usual way,
viz. )

[2 A(r, )p, —Q, A~(r, )] .
a 2ma

(2.32)

BL =p, =m, r, +Q, A(r, ),
Br,

5L
~

———D=eoe( A+VV),
5A
5L
5V

(2.18)

(2.19)

(2.20)

We therefore may regard H, as the Hamiltonian of the
point charges including their mutual interaction via the
Coulomb coupling modified by the dielectric with space-
dependent refractive index n (r). Note that V(r, ) in Eq.
(2.30) is determined by Eq. (2.25). Analogously, H„may
be regarded as the Hamiltonian of the electromagnetic
radiation field in the dielectric. The interaction between
the two systems is described by H;„,.

Making use of Eqs. (2.10}and (2.14) the Hamiltonian

(2.21)
B. Quantization of the radiation field

without sources

may be written as

1 D2+
roe(r)

1 (Vx A)'
Po H=H =—,

' d r eoeA + 1 (VX A)'
Po

(2.33)

We first consider the simple case of light propagation
through the dielectric without sources being present.
The (classical) Hamiltonian reads as follows:

+ g [p, —Q, A(r, )] +U,„,(r, )
2m'

(2.22) [see Eq. (2.31)], in which the vector potential is deter-
mined from Eq. (2.28) with j=0,

In what follows we shall be working in the generalized
Coulomb gauge VXVX A(r, t)+ A(r, t)=0,

C
2

(2.34)

V (eA)=0
so that Eq. (2.14) simply reads as

eoV [e(r)VV(r, t)]= p(r, t), —

(2.23)

(2.24)

V(r, t}=P[ p(r', t)—], (2.25)

from which the scalar potential is seen to be a functional
of the charge density,

A(r, t) = g qi (t) Ai(r),1

&eo ~
(2.35}

where the (vectorial) mode functions Ai(r) and the am-
plitudes qi(t) obey the equations

where c =(poco)
By the familiar procedure of separation of variables

we may assume the solution of Eq. (2.34) of the form

and furthermore

V(r, t)=P[ —p(r', t)] . (2.26)

2
COg

V X V X Ai(r) e(r) —Ai(r) =0,
C

(2.36)

Remembering Eq. (2.8) we may rewrite Eq. (2.26) as (2.37)

V(r, t)=/[V j(r', t)] . . (2.27} where co& is the separation constant for each A. . Note
that the Ai(r) must fulfill the gauge condition

Inserting this form into Eq. (2.15) leads to

VXVX A(r, t)+poco@(r)A(r, t)

=PoIj (r, t) —co@(r)V/[V. j(r', t)] I . (2.28)

Expressing in Eq. (2.22) the generalized momentum —D
in terms of A and VV and making use of Eqs. (2.9) and
(2.24), we easily find that in the generalized Coulomb
gauge [Eq. (2.23)] the Hamiltonian of the system under
study may be decomposed in the following way:

V [e(r) Ai(r)]=0 . (2.38)

2

b A~(r)+el A~(r) =0, 1 = 1,2, 3,2 (2.39)

At this point we note that in many practical applications
the dielectric is composed of appropriately chosen
dielectric layers each of which has constant refractive in-
dex. Clearly, in this case Eq. (2.36) can only be stated
inside each layer and reads as



3806 L. KNOLL, W'. VOGEL, AND D.-G. WELSCH 36

where I labels the layers. The transition of the elec-
tromagnetic field across the discontinuity surfaces is
then determined by the boundary conditions which fol-
low from the integral formulation of Maxwell's theory in
the standard way.

From Eq. (2.36) the mode functions Ai(r) are easily
verified to be orthogonal in the following sense:

f d r e(r) Ai(r) Aq(r)=0 for coi&coi (2.40)

Now we may assume that they give a complete set of
normal modes in the space of vectorial functions satisfy-
ing the gauge condition (2.38) and that they are normal-
ized to unity and orthogonal in the sense of Eq. (2.40),

[a,,a, . ]=0=[a,'a', ] .
(2.49)

In terms of a~ and a& the Hamiltonian, which follows
from Eq. (2.43) by considering qi and pi, as operators qi
and Pi, may be written as

8= g Aevi(aia) + —,') (2.50)

and the Heisenberg equations of motion for a and a are

1
ax ——. [ag,H]= —icoiax,

iA
(2.51)

d3r e(r) Ai(r) Ai, (r) =5&i (2.41)

It should be noted that the mode index A. may also in-
clude continuous variables. In such a case parts of the
summations in Eq. (2.35) must be understood as integra-
tions, and the symbols 5ii in Eq. (2.41) represents, of
course, the 5 functions.

Inserting Eq. (2.35) into Eq. (2.33) and making use of
Eq. (2.41), we may represent the Hamiltonian in the fol-
lowing form:

Inserting Eq (2..47) into Eq. (2.35), the operator of the
vector potential may be written as follows:

A(r, t)= g Ai(r)[ai, (t)+ai, (t)] . (2.52)

For notational convenience in Eq. (2.52) we omit the fac-
tor (fi/2e~q)' and write it in the normalization condi-
tion, which now becomes

(2.42) J d re(r)Ai(r) Ai (r)=3

2Epcog
(2.53)

The electromagnetic radiation field in the dielectric is
therefore equivalent to an infinite set of uncoupled har-
monic oscillators, so that we have

(2.43)

BH

~Pa
=qx=px ~

BH = —p~ =~~q~

(2.44)

(2.45)

(2.46)

Combining Eqs. (2.44) and (2.45) yields the equations of
motions (2.37).

The quantization of the field is now straightforward.
Making use of standard approaches we associate Hermi-
tian operators q~ and p& with the classical variables qz
and p~ and postulate the commutation relations

instead of Eq. (2.41). In many cases it might be con-
venient to choose complex mode functions Az(r) instead
of real ones. It can be verified easily that in such a case
the Hamiltonian also takes the form given in Eq. (2.50),
but the operator of the vector potential now reads as

A(r, t)= g [Ai(r)ai(t)+ Ai(r)ai(t)] . (2.54)

It should be emphasized that Eqs. (2.50) and (2.54)
also include the case of radiation in free space, that is,
e(r)=—1. Clearly, in this case the mode functions Ai(r)
are the well-known (complex) plane waves. In the case
of optical instruments being present the actual mode
structure must be calculated from Eq. (2.34) [or Eqs.
(2.39) together with the corresponding boundary condi-
tions]. The mode structure of the field may therefore be
said to reAect the action of the optical system.

Finally, the operator of that part of the electric field
strength which is associated with the radiation field is
given by

Defining the non-Hermitian photon destruction and
creation operators a& and a&, respectively, in the usual
way by

1/2

[ A, 8]
= gicoi, [ Ai(r)ai(t) —Ai (r)ai (t)] (2.55)

2cog
(ai, +ai, ),

' 1/2

Pg =l
2

(2.47)

(2.48)

and the operator of the magnetic field strength reads as

B(r, t)=VX A(r, t)

= g [VX Ai(r)&i(t)+VX Ai (r)a i(t)] .

we derive from Eq. (2.46) the familiar commutation rela-
tions (2.56)
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It should be noted that the method of quantization ap-
plied above to the case of a dielectric with space-
dependent refractive index was developed for particular
cases in the past.

C. Quantization of the radiation field with sources

[p„A(r, )]=i%A(r, )V[lne(r, )] .

Introducing the Hermitian operator

J(r)= g [6(r—r, )p, +p, 6(r —r, )
2ma

(2.64)

We now turn to the problem of the quantum-
mechanical formulation of the interaction of a radiation
field with sources in a dielectric with space-dependent
refractive index. For this purpose we must find a Hamil-
tonian such that the Heisenberg equations of motion for
the field and source quantities, considered as operators,
reduce to equations having the same form as the classi-
cal equations of motion given in Eqs. (2.15) and (2.16) to-
gether with Eqs. (2.25) and (2.26). Starting from the
classical Hamiltonian in the form given in Eqs.
(2.29)—(2.32), we may write the quantum theoretical
Hamiltonian as follows:

8, = g ficuk(a qa k+ —,
'

) . (2.58)

According to Eq. (2.30), the source Hamiltonian H, may
be written as

p. + —,'Q, &(r. )+ U,„,(r. )
2ma

(2.59)

where r, and p, must now be considered as operators,
the Cartesian components of which satisfy the commuta-
tion relations

[rk Pk' 'l i~'fi ''|ikk'

[r„„r„,]= =0[p kp ,k] .
(2.60)

Note that in Eq. (2.59) the effect of the optical system is
included in the potential V(r, ), which must be calculat-
ed from Eqs. (2.24) and (2.25).

Finally, from Eq. (2.32) the interaction Hamiltonian
8;„,becomes

[ A(r, ) p, +p, A(r, ) —Q, [ A(r, )] j,
2p?zg

(2.61)

where A is now the operator of the vector potential, and

(2.57)

In this equation 8, is the field Hamiltonian as given in
Eq. (2.50),

—Q, A(r, )6(r —r, )], (2.65)

we may rewrite Eq. (2.61) as follows:

H;„,= —f d rJ A= —f d r A.J . (2.66)

In Eq. (2.66) the operator of the vector potential A is
again given by Eq. (2.54), the photon destruction and
creation operators a~, a& now obeying the Heisenberg
equations of motion with the full Hamiltonian 8 in Eq.
(2.57). The operator A can be used to derive the opera-
tor of the electric field strength E associated with the ra-
diation field by means of Eq. (2.55) and to derive the
operator of the magnetic field strength 8 [Eq. (2.56)].
All of these field operators may be written in the form

F(r, t)= g[pk(r)ak(t)+F&(r)ai(t)] . (2.67)

where

F'+'(r, t)= QF&(r)ai(t),

p( —)(r t) [p(+)(r t)]t

(2.69)

(2.70)

In particular, applying this decomposition to the vector
potential we may rewrite Eq. (2.66) as follows:

8;„,= —f d r(J A'+'+ A' '.J) . (2.71)

For notational reasons in the first term in Eq. (2.71) we
write J . As long as J is understood as the full operator
given in Eq. (2.65), this is trivial because J=J is valid.
However in the so-called rotating-wave approximation
widely used in quantum optics, the actual operator J in
Eq. (2.71) only represents a non-Hermitian part of the
full operator, and one must carefully distinguish J from
J .

In dependence on the choice of F, the functions Fk(r)
can be readily derived from the mode functions of the
vector potential Ak( r ).

It is often convenient to decompose a given field
operator F into two parts by

F(r, t)=F'+'(r, t)+F' '(r, t), (2.68)

[rk ak]=[rk ak]=0

[Pk. a, ]=[Pk., a', ]=0 .
(2.62)

III. HEISENBERG EQUATIONS OF MOTION
AND FORMAL REPRESENTATION

OF THE RADIATION FIELD OPERATORS
We note that the operators A(r, ) and p, do not com-
mute in general. By using the commutation relations
given in Eqs. (2.60) and (2.62) the commutator becomes

() A(r, )

[p, , A(r, )]= iA—(2.63)

Remembering the gauge condition (2.23) we arrive at

In many cases when the interaction of the radiation
field with the sources can be considered as an interaction
with bound states of atomic systems, in the interaction
Hamiltonian given in Eq. (2.61) the quadratic term in
the vector potential may be disregarded. In what fol-
lows we shall be studying this case in more detail.
Therefore let us assume that the operator J defined in



3808 L. KNOLL, W. VOGEL, AND D.-G. WELSCH

J(r) = g 2ma
[6(r—r, )p, +p, 5(r —r, )] .

Eq. (2.65) may be approximated by

(3.1)

~( )In particular, if we identify F&+' with the vector poten-
tial Ak+ we have, according to Eqs. (2.54) and (2.67),
F~&=—A~~, and the kernel EI,I, takes the form

By making use of Eqs. (2.57) —(2.59) and Eqs. (2.71)
and (3.1) together with the commutation relations given
in Eqs. (2.49) and (2.62), the Heisenberg equations of
motion for the photon destruction operators a& are de-
rived to be

az —— [a&,H]= icoz—a& — d r'Ak*z(r')Jk (r') .
iA

'
iA

(3.2)

Kkk'(r t r t } . y ~kk(r)~k'k(r
iR

x exp[ —i cok(t —t ') ] . (3.1 1)

Kkk'(r t r t ) y ~k ~kk(r) '4k'k(r }

Analogously, if we are interested in the electric field
strength of the radiation Ek+', from Eqs. (2.55), (2.67),
and (3.9) we obtain

Here and in the following, vector components are la-
beled by the index k and repeated indices mean summa-
tion. The general, retarded solution of Eq. (3.2) is

ak(t)=ak „„(t)+ak,(t),
where

x exp[ icgk(—t —t')] .

Note that the symmetry relations

Kk'k. ( r, t; r', t '
) = + Kk.k ( r ', t ', r, t )

(3.12)

(3.13)

and

ak „„,(t) =ak t,„(t')exp[ i cok(t —t—')] (3.4)

&z, (t)= — f d r' f dt'B(t t') exp[ ice—z(t —t')—]
iA

X ~k k (r')Jk (r, t ), (3.5)

Fk+ '(r, t) =Fk+&,'„(r,t)+F k+, '(r, t),
where

(3.6)

Fk, f ) X Fk&( (3.7)

F k+, '(r, t)= f d r' f dt'B(t —t')Kkk (r, t;r', t')

XJk'(r', t') .

In Eq. (3.8), the kernel Kkk is defined by

(3.8)

X exp[ icok(t —t')] . —(3.9)

B(t) being the unit step function. At this point it should
be noted that the operators Jz also obey Heisenberg
equations of motion, which, of course, are coupled to the
photonic equations of motion. The determination of the
time evolution of the operators J& therefore requires the
solution of a system of coupled differential equations,
which, in general, is hard to solve.

Combining Eqs. (2.69), (3.3), and (3.5) we may decom-
pose any field operator F&+' into a free-field operator
and a source-field operator as follows:

are valid.
Equation (3.10) together with Eqs. (2.68) and (2.70)

may be regarded as basic equation for describing the ac-
tion of a passive lossless optical system in quantum op-
tics. Since it is simply the general solution of the inho-
mogeneous Maxwell equations, it is clear that Eq. (3.10)
formally looks like the equation known for the case
without optical instruments. The difference between the
two cases consists in the mode functions FI,~ to be
chosen. In particular, the information about the action
of the optical instruments on the source field is con-
tained in the space-time structure of the kernel EI,~,
which may be regarded as the apparatus function also
used in classical optics. In quantum optics, however,
this function also determines the radiation field commu-
tation relations (cf. Sec. IV) and, in consequence, the
eft'ect of the optical instruments on the quantum noise
properties of the field.

It should be noted that in classical optics any light
field may be thought to be attributed to sources; hence
in classical optics the free-field term in Eq. (3.6) may be
omitted. In quantum optics, however, the situation is
changed drastically. The operator F&+' of a given field
quantity cannot be related to the source-field operator
F&+, ' solely, but it must also be related to the free-field
operator FI,

' &„'„which is obviously needed for the
correct description of the effects of quantum noise, at
least of the vacuum. From a more general point of view,
the free-field operator, which, in general, does not com-
mute with the source-field operator [cf. Eq. (4.13)], en-
sures the quantum-mechanical consistence of the theory.
To demonstrate this, let us consider the field commuta-
tion relations in more detail.

XJk (r', t')+Fk &„',(r, t) . (3.10)

Inserting Eq. (3.8) into Eq. (3.6) yields the the following
representation of F&

F k+'(r, t)= f d r' f dt'B(t t')Kkk (r, t;r', t')—

IV. COMMUTATION RELATIONS

The commutation relation for any combination of the
field operators F&+', FI', at equal times can easily be
constructed by means of Eqs. (2.69} and (2.70} together
with the basic commutation relations (2.49) for the pho-
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tonic operators a~, a~. We renounce the calculations of
such commutators because they may readily be per-
formed in a straightforward way. Note that the results
apparently are the same as in the case of the free-field
operators Fk &„'„Fk&„',. Clearly, the commutators of the
free-field operators at different times may also be con-
structed in the way outlined above, by including the time
exponentials given in Eq. (3.4) in the calculation.

In contrast to this, the calculation of the commutators
of the field operators F&+', Fq ' or combinations of
them at different times is nontrivial, because the solution
of the interaction problem with sources is needed.
Therefore, the aim of this section can only consist in ex-
pressing such commutators in terms of free-Geld commu-
tators and commutators of source quantities.

For the sake of notational clearness it will be con-
venient to use the following abbreviations and
definitions:

[~k, f (tl ) Q(t2 )1

d r', f dt ', e(t2 —t', ) exp[ —icuk(t, —t', )]iR

X &k* k(r'1)[J„(ri, t'1 ), Q(t2)],
1 1

(4.10)

and analogously

[~k, f (ti) Q(t2)]

d'r'1 f dt', e(t2 —t', ) exp[ice&(t, t'1 )]-
i%

X Ak. k(r', )[J„,(r'„t', ), Q(t, )] .
1 1

(4.1 1)

x=[r, tI, f dx. . . = f d r f dt. . .

Jk+'(x) =Jk(r, t), Jk (x) = [J k+ '(x)]

K/', /, '(X,X ') = [K/, /, (x,x '
)]*,

(4.1)

(4.2)

(4.3)

We now multiply Eqs. (4.10) and (4.11) with Fk k(ri) and

Fk*k(r, ), respectively, and sum over A.. Remembering
1

the definitions of the free-field operators Fk/f„, [Eq. (3.7)
together with Eq. (4.5)] and the kernel Kkk [Eq. (3.9)]
and using the abbreviating denotations and definitions
given above, we arrive at the following representation of
the commutator sought:

Fk(x) =Fk+'(x)+Fk (x),

Fk '(x)=[Fk+'(x)]

~k (x) ~kfree(x), +F k, s(x)

(4.4)

(4.5)

(4.6)

where (j) may be (+ ) or ( —). In Eq. (4.6), Fk'f'„, (x) is
given by Eq. (3.7) together with Eq. (4.5), and, according
to Eq. (3.8), Eqs. (4.1)—(4.3), and Eq. (4.5), Fk", (x) is
given by

Fk", (x)= f dx'e(t —t')Kk'k'(x, x')Jk" (x') . (4.7)

where Kkk (r, t;r', t') is defined in Eq. (3.9). Thus we
may write Eqs. (2.68), (2.70), and (3.6) as [Fk f ( 1),Q(t )]=— d ', e(t2 —ti )K„„.( i,x'1 )1'

1 1

(4.12)

Note that Eq. (4.12) may be regarded as the general for-
mulation of the results derived for special cases in
Refs. 32 and 33. The commutator rule (4.12) now
enables us to express commutators of the form
[t' k free(x, ),Fk, (x2)] in terms of source-quantity com-

mutators. Combining Eqs. (4.12) and (4.7) yields
~(j1) r (j2)[Fk,f (xi ) F k, (x2)1

= —f f dx', dx2e(t2 —t2)e(t2 —t', )

Now let us consider the commutator of Fk 'f„,(r, , t, )
1

and an arbitrarily chosen source-quantity operator
Q(t2). Combining Eqs. (3.3), (3.4), and (3.5) we readily
find

(j1), (j2)
XKk k» (xi, x

1 )Kk k(x2x»2)
1 1 2 2

(4.13)

az f„,(t, ) =ay(t2) exp[icok(t2 —ti )]

d r', dt&6 t2 —t&
iA

X exp[ —'fs/k(t, —t 1 )]

Making use of the relation e(t)+e( —t)=1, we may
rewrite Eq. (4.13) as follows:

p, (j1) ~(j1,j2)[+k free(X1)» k2, s(X2)] 1 k1k& (Xl»X2)+~k1k2 ( 1» 2)

(4.14)

X A k",
k ( r'1 )Jk, ( r 1, t 1 ) . (4.8)

1 1

According to the commutation relations (2.62), for equal
times photonic and source-quantity operators commute
and therefore the commutation rule

where

A(J1 j2) (xi,x2)

[&k(t2»Q(t2)]=0

holds. Hence, we derive

(4.9)
(jl), (j2)

XKk k, (xi, x 1 )Kk k, (x2,x2)
1 1 2 2

~(j1), ~(j2)
X [J„(x'1 ),J (x 2 ) ],

1 2
(4.15)
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and From an inspection of Eq. (4.16) we readily verify that

~(j1,j2)
~k, k, (xi xz)

~(j1,j2)
Dk k (xi,xz)=0 1f ti ) tz . (4.17)

r (j1), ~(j2)
X[&k, (x', ),J„, (x,')] .

1 2
(4.16)

= —f fdx idxzB(t, —tz)B(t,' t',—)B(t', t, —)
(j1), (j2)

XKk k, (x, ,x, )&k k, (x, ,x, )
1 1 2 2

We now turn to the problem of expressing commuta-
(jl ) r (j2)tors of the form [F k (xi),Fk (xz)] in terms of free-

field and source-quantity commutators. For this purpose
~(j1) r (j2)

we note that the operator product Fk (xi)Fk (xz)
1 2

may be decomposed, according to Eq. (4.6), as follows:

~(j1) ~(J2) ~(j1) ~(J2) ~(j1 ) ~(j2 )

Fk (X1 )Fk (X2 ) Fk1, free(X1 )Fkz, free(X2 )+Fk, , s(X1 )Fkz, free(X 2 )

n(j2) (j1) (j1) (j2) (jl ) (j2)+ kz, s(x2 ) k, free(xi )+Fk),s(x 1 ) kz, s(x2 )+ [Fk1,free(x1 )~Fk2, s(x2 )] (4.18)

Making use of Eq. (4.7) and Eqs. (4. 13)—(4. 15) and remembering the relation B(t)+B(—t) =1, we may easily prove
that combining the last two terms on the right-hand side in Eq. (4.18) yields

~(j1) w (j2) w (j1 ) w (j 2) ~ (j ) ~(J ) ~ (j2) ~ (j, )
Fk (xi)F kz (xz)=F k~ f„,(xi )F kz f„,(xz)+F k, (xi)Fk f„,(xz)+F k', (xz)F k 'f„„(x,)

+ f f dx', dx,'B(t, —t;)B(t, —t;)SC„",', (x, , x', )rC„"",, (x, ,x,')
1 1 2 2

~(j1) ~(J2), ~ (J1,J2)
&& T+J„(x,)Jk, (xz)+D k k (x, ,x, ) .

1 2 1 2
(4.19)

T+ A 1(t„)A2(tz) A„(t„)

=A, (t; )A;(t; ) A;(t, )

with t; ~t; & ~t;
1 2 n

(4.20)

and the symbol T introduces time ordering of the
operators A;(t; ) with the latest time to the far right,

T A, (t, )A, (t, ) A„(t„)

=A, (t, )A, (t, ) A, (t, )

with t; &t; & . . t;
I 2 n

(4.21)

From Eq. (4.19) we easily arrive at the commutator rela-
tion

(j1) (J, ) ~(j, ) (j2)
[~k (X 1 )~~kz (X2 )] [ ki, free(X 1)& kz, free(X2 )]

+~ k1k2 (Xi&X2)

~ k k (X2~X1)
2 1

(4.22)

%'e note that the field commutation relations derived
above are generalizations of the results found by Cresser
for the particular case of a field radiated by a single
atom in vacuum to the case of more complicated
source distributions and optical instruments being

Here and in the remainder of this paper the time-
ordering symbols T+ and T are used. They are
defined as follows. Let us consider any operator product
A 1(t1)Az(tz) . A„(t„). The symbol T+ introduces
time ordering of the operators A;(t;) with the latest time
to the far left,

and
present. ~ (jl,j2)Especially, the terms D k, k, (x i, x 2 )

D k 'k ' (xz, xi ) defined according to Eq. (4.16) represent
the so-called time-delayed contributions in the very
general case under study. From an inspection of Eq.
(4.22) we see that the commutators of fields that are at-
tributed to sources diAer from the corresponding free-
field commutators in the time-delayed contributions

(J1 J2) (j2,j1)D k „(x,,x, ) and D k k (xz, x, ). It is worth noting

that, according to Eq. (4.16), in the integrals over x', and
I (J1 J2 )

xz the terms that may contribute to D k k (xi,xz) are
2

time ordered in such a way that t& &t'~ & tz & t2. This is
just the time ordering necessary for the propagation of
light from the space-time point r], t& to the space-time
point r2, t2 via the sources. In the particular case when
the source is a single atom in vacuum the time-delayed
term D k k (xi,xz) can be nonzero only if the condi-

1 2

tion t, —t, ~ (1, +12)/c is fulfilled, where 11 and lz, re-
spectively, are the distances between the point of source
and the points r] and r2. The difference
8 k

'k (x, , xz) Dk k (xz, x, ) m—ay therefore represent

a nonzero contribution to the commutator~ (j1) r (j2)[F k, (xi ),F k (xz)] provided that the times t, and tz

satisfy the inequality
~

tz —t,
~

& (11+12)/c. In the
more general case when the field of the radiating atom
passes through an optical instrument the geometrical
paths l& and lz must be replaced by the optical paths.
In either case it is easily seen that nonzero time-delayed
contributions to the commutator in Eq. (4.22) may be ex-
pected only if the two times t

&
and t2 are chosen in such

a way that during the delay time
~

tz —ti
~

a light signal
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[F k, , free(X1 )~F k2, free(X 2 )]=O

[Fk), free(X 1 )~F k2, free(X2 )] =Fk)ki(X 1 X 2 )

where

(4.23)

(4.24)

Fk, k, (xi,x2) = g Fk, k(r1)Fk*,k(r2) exp[ —icuk(t 1
—t2)] .

(4.25)

Note that the effect of the optical instruments is includ-
ed in F„k (x, ,x2).

V. CORRELATION FUNCTIONS
OF FIELD OPERATORS

In this section we turn to the problem of expressing
quantum optical correlation functions of field operators
F k~'(x ) in terms of correlation functions of source-
quantity operators J kj'(x '

) and free-field operators
F k~'f„,(x). Since in many cases of practical interest the
field operators are subjected to normal ordering and cer-
tain time ordering, we will demonstrate the method for

has the chance to travel from one of the space points to
the other via the source atom. Clearly, the farther away
from the space points r1 and rz the radiating atom is sit-
uated, the larger becomes the time interval

I t2 t,—
~

in
~ (j1) ~ (g2)which the field commutators [Fk, (x1),F k (x2)] are

~ (j1)
simply given by the free-field commutators [F k f (x1),~ (j2)F k f„,(x2)]. As mentioned at the beginning of this sec-

tion, the latter may readily be constructed by means
of Eqs. (2.49), (3.4), and (3.7). The result is

the following important class of correlation functions:

(m, n)
Gk . k (x1& ~xm ~n )

1 m+n
r

m

T F',—' xj
j =1

(5.1)

In Eq. (5.1), the time-ordering symbols T+ and T are
defined according to Eqs. (4.20) and (4.21).

For example, from Glauber's theory of light detection
the photocount distribution function is determined by
correlation functions of the type given in Eq. (5.1) with
n =m, m = 1,2, 3, . . . and the identification
F 1k—+ '(x)—:E k

—1(x) (cf. Sec. VI). ' Correlation func-
tions with n&m may be observed in photon detection
experiments after homodyne mixing the light under
study with a reference beam. The homodyne detection
scheme for observing squeezed light is an example. In
this case correlation functions G~ 'I, ' and Gj,'. '~ ' also con-

tribute to the detection signal.
Practically, in Eq. (5.1) the field operators F k

— are
(+)decomposed in source-field operators Fz, and free-field

operators F k
—

[.,'„, and by means of the commutation rela-
tions given in Eq. (4. 14) the resulting, mixed operator
products are rearranged in such a way that the operators
F &+f„'„are on the right of the operators F ~+' and, corre-
spondingly, the operators F q f,'„are on the left of the
operators F I, ,

To perform this procedure let us begin with the opera-
tor product Fk+'(x, )Fk '(x2), which, according to Eq.
(4.19) with (j, )=(j2)=(+ ) and according to Eqs. (4.2)
and (4.3), may be written as

F k+, (x, )F k+, '(x2) =F k+, f„,(x1)F k+ f„,(x2)+F k+, '(x, )F k+ f„„(x2)+Fk+,'(x2)F k+ f„,(x1)

+ f fdx ', dx' e(t, —t', )e(t —t' )K „,(x, ,x ', )K „,(x ,x
'

)
1 1 2 2

)& T+ Jk, (x ', )Jk, (x 2 )+D k+/ +(x1,x 2 ) . .
1 2 1 2

(5.2)

Writing down the analogous expression for the operator product F k+1(x2)F k+'(x, ) and remembering that, according
to Eq. (4.17), for t» t2 the time-delayed term D k+i '(x, ,x2) vanishes and, accordingly, for t2 & t, the time-delayed
term Dk+k'+'(x2, x1) vanishes, we readily derive

2 1

T+F k+'(x1)F k+ (x2)=F k+f'„,(x1)F k f„,(x2)+F k+,'(x, )F k+f„,(x2)+F k+, (x2)F k f„„(x1)

+ dx'dx'0 t, —t', 0 t2 —tz K x1x1 K x2x2 T J x'1 J 2 . ,$3
1 1 2 2 1 2

Note that in the first term on the right-hand side in Eq.
(5.3) the time-ordering symbol T+ is left because the
free-field operators F k+f„'„commute [cf. Eq. (4.23)]. We
see that the T+ time ordering of the operator product
F k+'(x, )F k+ (x2) obviously rules out any time-delayed

effect. The T+ time ordering may therefore be said to
pick out the commuting parts of F k+ '(x, ) and F 1k+ (x2)
in the product F k+ (x, )F k+ '(x2 ).

Remembering Eqs. (4.6) and (4.7) we may write Eq.

(5.3) in a more compact form as follows:

T+F k+, (x„)Fk+ (x2) =0+ [F k, free(x1)+F k+, ,'(x1)]

+ [F ki, free(X2 )+F k2, s(X2 )]

(5.4)

In Eqs. (5.4) and the following ones the ordering symbols
0+ and 0 are used. The symbol 0+ introduces the
following operator ordering in products of operators
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ucts before performing the integrations with respect to
t

(i) Ordering of the operators F k+,'(x; ), F &tt,'„(x, ) with

the operators F k+t„,(x, ) to the right of the operators
F" '„+,'(x, ).

(ii) Substituting of Eq. (4.7) for the operators F Ik+,'(x; )

and T+ time ordering of the source-quantity operators
J k, (x ) in the resulting source-quantity operator prod-

'

ucts before performing the integrations with respect to
I

The symbol 0 introduces the following operator order-
ing in products of operators F k,'(x; ), F k fusee(x, ):

(i) Ordering of the operators F k,'(x;), P'i, f„,( x, )

with the operators F (k t„,(x, ) to the left of the operators
P„','(x; ).

(ii) Substituting of Eq. (4.7) for the operators F i, ,'(x;)
and T time ordering of the source-quantity operators
J

k (x; ) in the resulting source-quantity operator prod-
t

Equation (5.4) may now be generalized to the case of
higher-order products of operators Fk+)(x). As shown
in the Appendix, the result is

n n

T Q F'„+'(x, )=O g [F „+„'„,(x, )+F'+I(x, )] .
j= 1 j= 1

(5.5)

Taking the Hermitian conjugate of Eq. (5.5) and
remembering the definition of the ordering symbols T
and 0, we obtain

T Q F'„'(x, )=O Q[F','„,(x, )+F', (x, )) .
j=1 j=1

(5.6)

Finally, combining Eqs. (5.1), (5.5), and (5.6) we may
represent the correlation functions Gk "q as fol-

lows:

G„', "'„(x,, . . . , x „)= O ~ [F"I„-)„,(x, )+F"'„-I(x,)]
j=1

m +n
[F'+, '„,(, )+F . ,'(, )]

j =m+1
(5.7)

F k+, rr'ee & =o= &F 'i, t'ee (5.8)

In particular, when the radiating sources are optically
pumped and the pump field can be treated in the sense
of a free field, the range of observation must be outside
the pump beam. At this point it should be noted that
apart from the vacuum field any real light field may be

In practice, the field properties that are closely related
to the source field are often desired to be observed. This
implies an observational scheme that guarantees that at
the points of observation the following conditions are
fulfilled:

thought to be attributed to sources. That is, we may re-
gard any real pump field as part of the source field and
therefore include it in the source field originally con-
sidered. From this point of view the only free field is the
vacuum field so that the conditions (5.8) are always
fulfilled.

Assuming that the conditions given in Eq. (5.8) are
fulfilled and remembering the definitions of the ordering
symbols 0+, we may omit the free-field operators
F I, t„, in Eq. (5.7). This enables us to express the corre-j 0

lation functions Gk '"'& in terms of source-quantity

correlation functions solely:

foal rn +noi-'„ I, , . . . ,...„I=( o itP'„-,'I, I o, rt P'
j= 1 j =m +1

which, according to the definitions of the ordering symbols 0+, may be written in more detail as

(m, n)
Gl, '

i, (x, , . . . , x +„)
1

' m+n

dx', e(t, —t', )K„*„,(x, ,x', ) J dx' B(t —t' )K„* „, (x,x' )
~ ~ ~

1 1 m m

(5.9)

d+m +1 m +1 m +1 ' m +1~ m +1
m+1 m+1

f dx' +„B(t +„—t' +„)K«. (x +„,x' +„)
m+n m+n

X([T J„(xi) J„(x' )]
1 m

x[T+&k ~ „J„, (x' +„)]& .
m+1 m+1 m +n

(5.10)
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Equations (5.9) and (5.10) establish that in the case of
the conditions (5.8) being fulfilled, in the calculation of
field correlation functions of the type defined in Eq. (5.1)
the total field operators P ]k—+ ' may formally be replaced

by the source-field operators I' 'k
—'„ the T+ and T timej'

ordering originally concerning the operators F ~+' and

P k ', respectively, being transferred to the correspond-
J

ing source-quantity operators J
&

and J
k

. Clearly, this
J

ordering rule is a consequence of using the quantum
mechanically correct basic equation (3.10). Similar re-
sults were also found by Apanasevich and Kilin studying
correlation functions of (plane-wave) photon destruction
and creation operators for the case of radiating sources
in vacuum. We emphasize that the results derived
above render it possible, at first, to describe the full
space-time structure of (multimode) field correlation
functions and, at second, to take into account the action
of optical systems. As known from Sec. III, the effect of
optical systems is included in the actual structure of the
kernel Kk~, which is simply the apparatus function
known from classical optics. However, there is an essen-
tial difference between classical and quantum optics,

namely, that the (multitime) convolution integrals in Eq.
(5.10) cannot be performed independently from each oth-
er as is possible in classical optics. Hence, in the case of
quantum light fields the result of the integrations in Eq.
(5.10) is expected to be different from that predicted
from classical optics. This implies that in the case of
quantum light fields the effect of the optical instruments
on the field may be changed drastically (cf. Ref. 28).

It should be noted that the more general equation (5.7)
must be used, for example, for describing (homodyne or
heterodyne) mixing of source light with a reference light
beam provided that the latter can be described in terms
of a free field. Commonly, such a mixing is experimen-
tally performed by means of a beam splitter. In our
theory the effect of the beam splitter is described by the
structure of the mode functions and the structure of the
integral kernel Kkk, the latter giving rise to the prescrip-
tion of how to relate the source quantities to the field
quantities.

Let us consider the case when the reference beam can
be regarded as a free field which may be approximated
by a multimode coherent field. For this purpose we
rewrite Eq. (5.7) as follows:

m +n
Gk, '"'k (x], . . . , x „)=Tr 0 g [Fk+&„,(x, )+F k+,'(, )] p 0 g [Fk &'„, ( )+F k+,'( )]

j =m +1 j =1

(5.1 1)

p =pfieldpsources (5.12)

where p is the density operator at the initial time, which
may be assumed to be the time of the beginning of the
interaction between the light field and the sources. Now
we assume that p is given in the factored form

(m, n)
Gk . . . k (xi ~xm+n )I''' m+n

0— Q [Pk, (xq )+F k, ,'(x, )]
j=1

with

ps, ]d =
I I ak I & & I ak I I

(5.13)

m+n
x 0 ri [p(, ]~F'„,'(, )] )

.
j=m+1

(5.18)

ak t„,(t) I Iak] & =ak exp[ icokt-
Making use of Eq. (3.7) we therefore arrive at

~k, f .«)
I [ad] & = &» (x)

I [akI &

(5.14)

(5.15)

where the (complex) c-number function 9'k is given by
the relation

&k(x) = g Fkk(r)ak exp( icokt ) . — (5.16)

where
I [akI & is the multimode coherent state of the

free field, viz. ,

We see that in this case in Eq. (5.7) the free-field opera-
tors are simply replaced by c-number functions, so that
the ordering symbols 0+ only affect the source-field
operators. After multiplying out the products in Eq.
(5.18), the result is an expansion of G„' "'k in terms1''' m+n
of source-quantity correlation functions of the type given
in Eq. (5.10); the coefficients are determined by the c-
number functions Vk. We emphasize that Eq. (5.18) is
the correct quantum-mechanical formulation of mixing
source-field light with a coherent free-field reference
beam. Clearly, if the range of observation is outside the
reference beam, Eq. (5.18) simply reduces to Eq. (5.10).

Combining Eqs. (5.12), (5.13), and (5.15), we obtain

F k, free(x)pF k', free(x ) ~k(x)~k (x )p (5.17)
VI. PHOTOCOUNT DISTRIBUTION

Remembering the definitions of the ordering symbols
0+, we therefore may rewrite Eq. (5.11) as

We now turn to the application of the results derived
in Sec. V to the problem of determining the photocount
statistics of a quantum light field in the presence of a
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passive optical system. Following Glauber's theory of
photo detection, ' the probability of observing precise-
ly n events in a counting time interval t, t+At is given
by

p„(t,6t )= (1) [f'(t, 6t )]"exp[ —f'(t6t ),[), (6.1)
1

n!
where

XE k '(r;, t, )E k+'(r, , f, )

(6.2)

may be interpreted as the operator of the number of
photoelectrons which are produced by the absorption of

light in the time interval t, t+At. in Eq. (6.2) the sum
runs over the detector atoms, each of which is assumed
to give rise to an equal, isotropic response described by
the response function S(t). Note that in Eq. (6.2) the
rotating-wave approximation is used. In Eq. (6. 1) the or-
dering symbol 6 introduces the following operator or-
dering: (i) normal ordering of the operators
E [k '(x), E [k+[(x) with the operators E [k '(x) to the left
of the operators E k+'(x), (ii) T+ time ordering of the
operators E k+'(x) and T time ordering of the opera-
tors E '„—'(x).

Expanding the operator exponential in Eq. (6. 1) we see
that the photocount distribution is just determined by
correlation function of the type studied in Sec. V. Iden-
tifying in Eq. (4.6) the field operators F with the opera-
tors of the electric field strength E and inserting this
equation into Eq. (6.2) yields

f'(f, ~r)= y f'+"dr[ f""~f,S(f[ —f, )[Ek f pe(eI tt )[+E„,'(r;, t, )][Ek fpee(r, , tz)+Ek+, '(r;, t2)].
I

(6.3)

Making use of the results given in Sec. V, we may
identifically perform Eq. (6.1) as follows:

where the 0 ordering is simply replaced by the 0 order-
ing defined as follows:

(i) Normal ordering of the operators P [k, '(x ),

f,(x ), P k+, '(x ), P, k f,(x ) with the ojierators
(x ) It k f,(x ) to the left of the operators E k+, '(x ),

(ii) 0+ ordering of the operators E [k+'(x), E k[+f,'„(x)
and 0 ordering of the operators E k, '(x), E k f,'„(x).

In particular, when the conditions given in Eq. (5.8)
are fulfilled, the photocount statistics may directly be re-
lated to the statistics of the source quantities because in

this case Eq. (6.3) may be simplified as follows:

f'(t, At)= g J df, f dt2S(t[ tz)E k, '(—r;, t[)
I

(6.5)

Note that the 0 ordering in Eq. (6.4) requires that, after
expanding the operator exponential exp[ —I (t, At )] into
a power series, the source-field operators E ,k'(r, , t )[,

E k+'(r, , t2 ) must be expressed, according to Eq. (3.8), in
terms of source-quantity operators J k (r,', t[),Jk (r,', t2).
The operators J k (r,', t[), which stand to the left of the
operators Jk (r,', t2), are T time ordered and the opera-
tors Jk (r,', ti) are T+ time ordered. Finally, we point
out that in the case of mixing the source-field light with
a coherent free-field reference beam, as considered at the
end of Sec. V, in Eq. (6.3) the free-field operators can
simply be replaced by c-number functions, viz. ,

P(f, A~)= Q f dt, f dt2S(t[ —t~)[Bk(r, , t[)+E'k. (r t[),][( k(r f2)+Ek, '(r; f2)]
t

(6.6)

provided that Eq. (6.4) is used.

VII. SUMMARY AND CONCLUSIONS

%e have presented a quantum-mechanical description
of the interaction of sources with light for the very gen-
eral case when passive, lossless optical devices such as
beam splitters, pin holes, Fabry-Perot spectral filters, or
other cavitylike filters, gratings, and optical fibers are
present. Such kinds of optical instruments may be
modeled by a dielectric with space-dependent refractive
index and/or a composition of dielectrica with stepwise
constant refractive index and appropriately chosen

boundary conditions. The particular case when the
sources are in the free space comes out by setting the re-
fractive index equal to 1. Starting from a mode expan-
sion, where the mode functions reAect the presence of
the optical instruments, we have presented the mul-
timode field operator of a given field quantity of the light
in terms of free-field quantities and source-field quanti-
ties. The latter are related to source quantities by a
linear integral transformation, the information on the
optical instruments being involved in the integral kernel.

Apart from the neglect of the term proportional to the
square of the vector potential in the interaction Hamil-
tonian, this result is exact. It should be noted that in
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most cases of practical interest the term quadratic in the
vector potential may be neglected. Insofar as such a
term does not appear in a relativistic theory, the con-
clusions drawn in this paper may be expected to be valid
also under more general conditions.

A more serious restriction on validity is the assump-
tion that the optical devices are lossless. In consequence
of the neglect of any absorption of light by the material
of the optical instruments, the corresponding dispersion
of light is also disregarded. That is, the theory in the
formulation given in this paper is therefore applicable to
cases when within the bandwidth of the light the disper-
sion caused by certain elements of the optical system is
sufTiciently small. If the dispersion cannot be omitted,
these disperse elements must be described microscopical-
ly. In this case the disperse elements give rise to addi-
tional source distributions, and the construction of an
appropriate apparatus function requires further con-
siderations.

The representation of multimode field operators (as
functions of space and time) in terms of free-field and
source-field operators renders it possible to study the
space-time behavior of the light field, including the
effects of light propagation. We therefore need not dis-
tinguish between operators describing the field inside the
optical instruments and operators for the field outside
the instruments, and in the case of frequency-sensitive
devices we need not restrict ourselves to small transition
band widths.

The examination of the commutation relations of the
field operators at different space-time points shows that
they differ from the corresponding free-field commuta-
tion relations in the time-delayed contributions.

The time-delayed contributions, which represent a
pure quantum effect, can only be omitted if the two
space-time points in the commutators are chosen in such
a way that the time difference is smaller than the time
required for the light to travel from one of the two space
points to the other via radiating sources. When we iden-
tify the two space points with points of observation, we
see that under standard experimental conditions the dis-
tances between a given light source and the points of ob-
servation are not large enough to exclude time-delayed
effects from the consideration.

The examination of light by means of usual photo
detection experiments allows the determination of the
photocount distribution, which itself is determined by all
orders of a specific type of normally and time-ordered
field correlation functions. We have answered the ques-
tion of how to express correlation functions of this type
in terms of free-field and source-quantity correlation
functions. We have shown that the time ordering origi-
nally concerning the field operators is transferred to the
source-quantity operators. In particular, when the free
field is the vacuum field the field correlation functions
under study can be expressed in terms of time-ordered
source-quantity correlation functions solely. Formulas
are also presented for the case of mixing a source field
with a multimode coherent reference beam. Further-
more, the theory is applied to the calculation of the pho-
tocount statistics.
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APPENDIX: PROOF OF EQ. (5.5)

Let us consider the time-ordered operator product

P=F k+' (x„+,)J„(x„') J „,(x,') . J „,(x'i ) (A 1)

with

t„+i&t„»t . . » ti (A2)

By means of standard commutator algebra we may write
Eq. (Al) as follows:

It is worth noting that the normal and time orderings
of the field operators in the correlation functions exam-
ined in usual photo detection experiments prevent the
observation of time-delayed effects because time-delayed
terms do not contribute to this type of field correlation
function. From the commutation relations time-delayed
effects are seen to be typical for fields attributed to
sources. Except the vacuum field any real light field is
attributed to sources; hence the question is raised,
whether a quantum light field can (approximately) be
treated as a free field (and what conditions must be
fulfilled) or must it be described by taking into account
the contact to its sources. Clearly, the answer cannot be
given on the basis of usual photo detection experiments.
It might be given, for example, from photon detection
experiments with Mandel's detectors allowing the deter-
mination of antinormally and time-ordered field correla-
tion functions. In correlation functions of this type the
time-delayed terms may give rise to nonzero contribu-
tions. This problem will be the subject of a forthcoming
paper. At this point we only note that the application of
Eq. (5.7) to cases when the free field is not the vacuum
field but a real quantum field requires a careful con-
sideration. In such a case it might be more promising to
attribute the total field under study to its sources and to
use Eq. (5.7) in the form of Eq. (5.9).

Finally, it should be pointed out that Eqs. (5.7) and
(5.9) may be used for the practical calculation of normal-
ly and time-ordered correlation functions of light pro-
duced by various kinds of light scattering and observed
after having passed through certain optical instruments.
In cases when the excitation of the radiating sources
may be assumed to be independent of the radiation pro-
duced, the calculation is straightforward. If nonlinear
optical processes must be taken into account, the formu-
las can also be used. Since in these cases the equations
of motion for the source-quantity correlation functions
(or appropriately chosen source-quantity Green's func-
tions) are coupled to equations of motions for field corre-
lation functions (or field Careen's functions), a more or
less complicated system of equations must be tried to be
solved.
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P=[F'„' (x„~,),J „,(x„') J „,(x,') . J„,(x', )]~J„.(x„') J„(x,') J „(x))F k+', (x„~))

= g J z. (x„') .J k, (x,', )[F k+ (x„ l),J k (x')]J k, (x,', ) . J k, (x', )
j=1 n j+1 1

+J k. (x„') Jk.(x&') J „(x') )P 'I+' (x„~,) .
n~1 n+ (A3)

Expressing the commutators [F ~k+' (x„+I),Jk, (x~')] in Eq. (A3) in terms of source quantities, according to Eqs. (4.6),

(4.7), and (4.12) we arrive at

n

+1+k p' + +I + +1 ~ ~1 ~1 j ~1 ~k' X ~k' &j ~1n+1 n+1 n j+1j =1

X [Jk (x„'~( )J„,(x~')]J„(x~', ) J„,(x', )
n+1 i J —1 1

~J „,(x„') J ~.( x') J „.(x) )F k+' (x„~l) .
n+1

(A4)

Rearranging the sum in the large parentheses and substituting Eq. (4.6) together with Eq. (4.7) for F zI+' (x„+&), we

obtain

P= f dx„'~IKk k (x„~l,x„'~) )

nial

n~1

X [B(t„, t„', ) —B(t„—' t„', )]J„, —(x„', )J ~ (x„') J„.(x,') J„(x', )
J 1

n

~ g [B(t'—t„', ) —B(t', —t„', )]J„,(x„') J,(x')J „, (x„', )J „, (x', ) J„,(x', )
n j n+1 j —1 1

J =2

+e(t' —t,' )J„(x„') J„(x,') J„,(x I )J„, (x„', )
n J 1 n @1

+J
q (x„) J„.(x,') Jk. (x', )F I+' t„,(x„~,) .n+1, ree n j (A5)

Making use of the relation B(t)~e( —t)= 1 and remembering the conditions (A2), we may write

e(t„,—t„' „) e(t„' —t—„' „)=e(t„,—t„', )e(t„'„—t„), (A6)

e(t,' t„', ) —e(t,', —t—„', ) =e(t„,—t„', )e(t,' —t„', )e(t„', —t,', ),

e(t', —t„', )=e(t„„t„,)e(t, —

Inserting Eqs. (A6) —(A8) into Eq. (A5) yields

(A7)

(A8)

tP = dx„,KI ~, (x„~,,x„', )B(t„,—t„', )
n+1 n+1

X B(t„'+, t„')J„, (x„'+, )J„,(x„—' ) J„,(x,') J„,(x', )
J 1

+ g B(t, —t„', )e(t„—t, )Jk ~ (x„') ' ' ' J„,(x')J„, (x„' )J„, ( ' ) ~ ~ J, ( ')
fl Ij =2

+e(t'I —t„'~) )J k, (x„') Jq, (x~') Jk, (x', )Jq, (x„'~, )
n J 1 n ~1

+J„(x,)
' J„(x,') Jk (xI )F'„+' t„„(x„~,) .

n J 1
n+1, ree n / (A9)

From an inspection of Eq. (A9) it is seen that the expression in the large parentheses is just the T time-ordered
product of the operator J k, (x„'+~ ) with the T+ time-ordered operator product J „,(x„') .J,(x ) J, (x' )

n+ I n J 1

We therefore arrive at
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n n

F'„+' (x„,)T g J„.(x')= T g J„.(x') F'„+' „,(x„,)

j=1 j=1
n+j

+ f dx„', e(t„, t—„',)K„„. (x„„x„',)T g J„.(x,'),
n+1 n+1 J= J

I I I
tn+] ) t]$tZ7 ~ ~ ~ y tn ~

Multiplying Eq. (A10) with

f d&J ' d& 8 ti —t] +J, /,
1 1 n n

(A10)

remembering Eq. (4.7), and introducing the ordering
symbol 0+ defined in Sec. V, we obtain the result

=o+ [F '1+„,', , tr-«m+1)+F 'I'„', , (x. + i)]

n n

T g F'„+'(x.)=O g [F'„+„,(x, )+F I„+,'(x )] .
j=1 j=1

(A13)

Inserting Eq. (A13) into the left-hand side of Eq. (A12)
yields

(+)X g F/c, s(xj) tn+]) tl tp, . . . , tn
j=1

(Al 1) F +', ( „)T gF' ( ))
j= 1

Since the ordering rule 0+ includes ordering of the
free-field operators F I,+t„'„(x) to the right of the source-
field operators F k+'(x), the equation (All), of course,
remains valid when we complement the operators
F k+, (xj ) by the operators F k+t„„(x,). We therefore

derive

F 'k+„', ( ~ )o Q [F 'k', t-.(, )+F k+, '( i ) l
j=1

n+1
=O P [F"'„+'„,(x, )+F"&+,. (x )],

j =1

n+1
=O, g [P'„+,'„,(x, )+P'„+i,I(x, )],

j=1

t„+))ti, fz, . . . , t„ (A14)

At this point we see that the left-hand side of Eq. (A14)
is just the T+ time-ordered product of n +1 operators
F k+'(xi ), so that we arrive at the result

J

n+1 n+1
T, g F',+'(, )=o, g [F',+,'„,(,)+P,'+,'(, )].

i=&

tn+[- t~ tZ tn (A12) (A15)

Now, we assume that Eq. (5.5), which is valid for n =1
and which has been shown to be valid for n =2 [see Eq.
(5.4)], is valid for arbitrary integer n (n ) 1), viz. ,

That is, if Eq. (A13) is valid in the case of the product of
n operators F k+'(xj), then it is also valid for n +1j
operators; hence Eq. (A13) is proved.

H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett.
39, 691 (19?7).

zR. Short and L. Mandel, Phys. Rev. Lett. 51, 384 (1983).
M. C. Teich and B. E. A. Saleh, J. Opt. Soc. Am. B 2, 275

(1985).
4J. G. Walker and E. Jakeman, Opt. Acta 32, 1303 (1985).
5C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1985).
Y. Yamamoto, N. Imoto, and S. Machida, Phys. Rev. A 33,

3243 (1986).
7R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and F.

Valley, Phys. Rev. Lett. 55, 2409 (1985).
8R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. De

Voe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
L. -A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev.

Lett. 57, 2520 (1986).
oM. Schubert and W. Vogel, Phys. Lett. 68A, 321 (1978).

' D. F. Walls, Nature 306, 141 (1983).
J. N. Hollenhorst, Phys. Rev. D 19, 1669 (1979).

' H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory IT-
24, 697 (1978).

J. H. Shapiro, H. P. Yuen, and J. A. Machado Mata, IEEE
Trans. Inf. Theory IT-25, 179 (1979).
H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory IT-
26, 78 (1980).
Y. Yamamoto and H. A. Haus, Rev. Mod. Phys. 58, 1001
(1986).
C. M. Caves, Phys. Rev. D 23, 1693 (1981).
R. S. Bondurant and J. H. Shapiro, Phys. Rev. D 30, 2548
(1984).

W. G. Unruh, Phys. Rev. D 18, 1764 (1984).
A. Heidmann, S. Reynaud, and C. Cohen- Tannoudji, Opt.
Commun. 52, 235 (1984).
C. M. Savage and D. F. Walls, Phys. Rev. Lett. 57, 2167
(1986).
M. Schubert, W. Vogel, and D.-G. Welsch, Opt. Commun.
52, 247 (1984).



3818 L. KNOLL, W. VOGEL, AND D.-G. WELSCH 36

M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386
(1984).

~C. 'W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761
(1985).

~sY. Yamamoto and N. Imoto, IEEE J. Quantum Electron.
QE-22, 2032 (1986).

~sO. Nilsson, Y. Yamamoto, and S. Machida, IEEE J. Quan-
tum Electron. QE-22, 2043 (1986).

~7L. Knoll, W. Vogel, and D.-G. Welsch, Abstracts of the Fifth
International Conference on Lasers and their Applications,
Dresden, 1985, p. 151.

"L. Knoll, W. Vogel, and D.-G. Welsch, J. Opt. Soc. Am. B 3,
1315 (1986).

~~W. Vogel and D.-G. Welsch, Phys. Rev. Lett. 54, 1802

(1985).
C. K. Carniglia and L. Mandel, Phys. Rev. D 3, 280 (1971).

'P. W. Milloni, Phys. Rev. A 25, 1315 (1982).
P. A. Apanasevich and S. Y. Kilin, J. Prikl. Spektr. 29, 252
(1978).
H. J. Kimble, A. Mezzacappa, and P. W. Milloni, Phys. Rev.
A 3I, 3686 (1985).

~4J. D. Cresser, Phys. Rev. A 29, 1984 (1984).
~sR. J. Glauber, in Quantum Optics and Electronics, edited by

C. De Witt, A. Blandin, and C. Cohen-Tannoudji (Gordon
and Breach, New York, 1965).
P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A 316,
(1964).
L. Mandel, Phys. Rev. Lett. 49, 136 (1982).


