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We study laser-induced dissociation of a Morse oscillator by an ir field as a prototype of multi-

photon excitation and dissociation of molecular systems. The driving field is modeled both by a
sinusoidal interaction term and by a sequence of 5 impulses. We have found that the latter case
yields results which closely resemble those of the former and considerably facilitates the computa-
tion and analysis. Primary and a sequence of secondary resonances are found in our classical
dynamical study and are analyzed by using Chirikov's nonlinear resonance theory. We have also
calculated the dissociation rate as a function of time, dissociation fractions, and half-lives, all for
ensembles of initial states uniformly distributed over regions in the phase space. The half-life as a
function of the driving field amplitude follows a scaling law with a critical exponent in close agree-
ment with that predicted for the standard map. This fact and the time-dependent dissociation rate
reflect the effects on dynamic flows of the partial barriers formed by cantori.

I. INTRODUCTION

With the development of high-power infrared lasers,
there has been considerable interest in investigating the
dynamical behavior of a molecular system under inten-
sive laser radiation. ' A prototype in such investiga-
tions is a periodically driven Morse oscillator with a
Hamiltonian given by'

H=p /2lt+D(1 —e '
) —e(r —r, )cos(ft) .

Because of the high nonlinearity in the potential, the
classical dynamics of a driven Morse oscillator can be
very complex. On the other hand, due to recent devel-
opments of the general theory of dynamical systems,
much has been known about the stochastic behavior of
the Hamiltonian systems with few degrees of freedom.
However, most of the theories developed are either pure-
ly mathematical or rigorously valid only for the simplest
models such as a driven pendulum. It would be interest-
ing to see how far the conclusions of these theories can
be used in the understanding of more realistic models
such as a driven Morse oscillator. More specifically, we
would like to apply Chirikov's nonlinear resonance
theory directly to the analysis of the resonance struc-
tures in the Morse oscillator system.

One interesting recent development in nonlinear dy-
namics is that of the transport theory' '" in Hamiltoni-
an systems in which invariant cantor sets called cantori
form partial barriers to trajectories. ' ' This concept
of cantori has been incorporated into new theories of
unimolecular chemical reactions, ' and intramolecular
relaxation, ' and been used in the discussions of the
photo-dissociation dynamics. One of the objectives of
the present paper is to investigate the last process more
closely and try to give some quantitative measure of the
role played by cantori in the dissociation dynamics of a

Morse oscillator.
To facilitate the computation and analysis we have re-

placed the sinusoidal driving term in Eq. (1) by an
infinite sequence of periodically pulsing terms. This
reduces a problem of one-and-one-half degrees of free-
dom into one of a two-dimensional area-preserving map.
An important consideration for this simplification is that
a corresponding quantum study can be carried out to
give direct comparison between classical and quantum
behavior. '

Organization of this paper is as follows: In Sec. II we
present the equations of motion in the way we calculate
them. Chirikov's theory is applied to the analysis of the
primary and secondary resonance structures seen in the
driven Morse oscillator. The area-preserving map is in-
troduced in Sec. III and is used extensively in the calcu-
lation of dissociation rates, dissociation fractions, and
half-life of ensembles of trajectories. A scaling law is
found for the half-life in the vicinity of the critical field
strength for global instability. Discussions and summary
of results are given in Secs. IV and V. Some details of
transformation relations and nonlinear resonance
analysis are given in Appendixes A and B.

II. NONLINEAR RESONANCE ANALYSIS
OF A DRIVEN MORSE OSCILLATOR

dT/dt =p /9,
dp/dt = 2Dae ' (1——e ' )+ecos(ft) .

(2)

Introducing dimensionless variables defined by

Hamilton's equations associated with Eq. (1) are given
by
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—a(r —r jx=1—e

y =p/&(2Dp),
r =a&(2D /p, )t,
A =e/(2Da),
0=f&(pl2D) la,

we can write Eq. (2) into the following form:

dx /d r = ( 1 —x )y,
dy /dr = —(1 —x)x + A cos(Qt) .

Equation (4) is written in a form appropriate for nu-
merical computation. All the calculations reported
below will be done for the laser frequency A, =0.9 which
is red shifted from the Morse frequency, the frequency in
the harmonic limit, set to unity in Eq. (4). This value of
frequency fL is chosen such that the maximal dissocia-
tion rate is generated at a fixed field amplitude A. By
using molecular constants of the HF molecule we can
get an idea of the magnitudes of quantities involved
here. The Morse frequency equals to 4138 cm ' and a
field amplitude A=1 corresponds to a laser intensity of
320 TW/cm .

For the purpose of nonlinear resonance analysis it is
more convenient to rewrite Eq. (4) in terms of action-
angle variables (I and 8) of an isolated Morse oscillator.
We show in Appendix A that the transformation rela-
tions are given by

x = (E +&E cosg) /( 1+&E cos 8),
y = co&E sin8—/(1+&E cosg),

where E =I —I /4 is the dimensionless energy of the
unperturbed Morse oscillator and

The standard theory gives the following formula of the
resonance width:

O. e) =—i 1/2

0.6 3/0

-8/g

02

where E denotes the energy determined by Eq. (7).
In Fig. 1(a) we present surface-of-section plots of 14

trajectories of Eq. (4) in the E gplan-e where II=0.9 and
A =0.025. We list also the resonance locations and
widths predicted by the theory in Table I. We see that
the calculated locations and widths of the first two pri-
mary resonances with the winding number co/0=1/1
and 1/2 are approximately given by the theory. Table I
also shows that 1/2 and 1/3 resonances do overlap with
each other. This explains why the 1/3 resonance has not
been found. In fact all the phase points lying in the sto-
chastic layer around the 1/2 resonance islands dissociate
within a few optical cycles. This implies that no bound-
ing torus exists between the 1/2 resonance region and
the continuum where E& 1. Furthermore, a global sto-
chastic instability sets in when 1/2 and 1/1 resonances
overlap. The critical field strength for the global insta-
bility predicted by Eq. (8) is A,'""=0.0605. This can
only be considered as an order of magnitude estimate,
which is usually too large. Numerical simulation yields

co=BE/BI =1—I/2 0.5 1.0

is the natural frequency of the oscillator. We note that
E has a value between 0 and 1 for a bound state.

In terms of new variables the Hamiltonian becomes

H'=H/D =E —2A in[(1+&E cosg)/(1 —E)]cos(Qz)

1.0

(b)
1/2

2/3

where

=E —2A g f„( E)c os(n 8)c os(Q r),
n =0

fo(E)=( I/m ) f in[(1+&E cosg)/(1 E))dg-
= in [ [ I +&( I —E)] /[2( 1 —E)] I

(6) 0.6 3/4
4/5

0.2
d

7 c t'.P~r-.'. ~ 'L

4
0. ~ .

—1.0 -0.5 1 00.50.0

FIG. 1. Surface-of-section plots for a driven Morse oscilla-
tor with the driving frequency set at A=0.9. The winding
numbers of some of the trajectories in the resonance regions
are labeled on the right-hand side of the plot. (a) Trajectories
calculated from differential equation (4) with 2 set at 0.025,
which is slightly below the critical field strength. (b) Trajec-
tories calculated from map (13) with the driving strength a
fixed at 0.03, which is slightly above the critical value.

We begin the analysis by considering first the primary
resonances. Substituting co~ for 0 on the right-hand side
of Eq. (6), we obtain conditions for occurrences of pri-
mary resonances

neo(I)+0=0 . (7)

f„(E)=(2/7r) f cos(n )l8n[(1 &+Ecosg)/(1 E)]dg—
0

= —(2/n)[ —VE/[I+V'(1 E)][", n =1,2, . —. .
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TABLE I. Locations and widths of the first three primary
resonances of a driven Morse oscillator with 0=0.9 and
3 =0.025. hw = 32coo&(p/A, )e

Winding number co/Q
Resonance location E
Resonance width AE

1/1
0.19
0.4535

1/2
0.7975
0.1720

1/3
0.91
0.0850

where w measures the distance to the pendulum separa-
trix in unit of dimensionless energy and

A. =0/cop,

p = ( 16m /3)A, Pe

A,'"~(0.0292. The discrepancy between the theory and
numerical experiment is due to the fact that the phase
variable 0 depends linearly on time only in the zeroth-
order approximation. The resonance structures of a
driven Morse oscillator are actually much more compli-
cated than those which appear explicitly in the Hamil-
tonian. Indeed, in Fig. 1(a) a sequence of secondary
resonances with the winding number given by
co/Q=(n —1)/n, n =3,4, 5, . . . can clearly be seen be-
tween the 1/1 and 1/2 resonance regions.

To understand the appearance of this sequence of
secondary resonances, we consider below the interaction
between the 1/1 and 1/2 resonances and neglect all oth-
er resonance and antiresonance terms in the Hamiltoni-
an (6).' We write the Hamiltonian in the following
form:

H'=E —Af &
(E)cos(8—Qr) —Af2(E)cos(28 fir) . —

(9)

to transform Hamiltonian (9) into a form for a driven
pendulum

K (P, O) =P /4 —2coocos 8—P cos(20 —Qr), (10)

where coo ——Q( Af &/2), b = —Af2.
We show in Appendix B that by examining the motion

in the vicinity of the pendulum separatrix system (10)
displays an infinite sequence of secondary resonances
near the separatrix as a result of the breakup of those
tori whose frequency is an integer submultiple of the
driving frequency, namely, 0 =A~/n, n =2, 3,4, . . . .
Transforming back to the original system (9) we obtain

9=(n —1)Grin +a.

or

coQ=(n —1)/n, n =2, 3,4, . . .

Thus this analysis correctly predicts the winding num-
bers of the secondary resonances.

To go one step further we can estimate the critical
field strength A, at which the global instability sets in
based on the overlap criterion. The locations and
widths of these resonances are given, as shown in Ap-
pendix B, by the following formulas:

Assuming that f~(E) and f2(E) are constants we can
perform a time-dependent canonical transformation

I~P =I —2(1 —0),
O~O=Q~ —0—~

From Eqs. (11) we conclude that the resonance width de-
creases more slowly with n than the spacing between res-
onances. Therefore for any values of the perturbation
strength there always exists a stochastic layer in the
neighborhood of the unperturbed pendulum separatrix in
which the overlap does take place. But the global insta-
bility sets in only after the 1/2 and 2/3 resonances over-
lap with each other. If we use the values of f~ and fz at
the location of the 1/1 resonance, we can obtain from
Eq. (11) the critical perturbation strength A,'""=0.16
for the global instability. Unfortunately this value is far-
ther away from the numerical value than that predicted
based on the primary resonances alone. The large
discrepancy is obviously caused by the assumption that
f, and f2 are constants. To improve the prediction
higher-order approximations which take into considera-
tion the energy dependence of f, and fq should be used.

Numerical calculations show that at A=0.025 reso-
nance regions associated with the winding number
cu/0=1/2, 2/3, and 3/4 do overlap while resonances
with higher winding numbers are still separated from
them by Kolmogorov-Arnol'd-Moser (KAM) tori [a tra-
jectory between the 4/5 and 5/6 resonance regions is
shown in Fig. 1(a) which is believed to be a bounding
KAM torus]. It seems that in the present case the wind-
ing number of the most robust KAM torus which is the
last torus to break up when A reaches the critical value
A, is an irrational number between 0.8 and 1. This situ-
ation is different from that in the standard map where
the most robust KAM torus has a winding number given
by (&5—1)/2, the golden mean. '

III. DISSOCIATION DYNAMICS
AND EVIDENCE FOR THE SCALING BEHAVIOR

NEAR DISSOCIATION THRESHOLD

Using the driven Morse oscillator as a model we shall
investigate in this section the molecular dissociation pro-
cess induced by an intense laser field. We consider a tra-
jectory as being dissociated once its dimensionless energy
becomes greater than 1. The support of this definition of
dissociation comes from numerical calculations. Due to
the short-range nature of the Morse potential de-
excitation, restabilization of a trajectory which is on its
way to dissociate is thus very unlikely. A more sophisti-
cated definition of dissociation can be introduced at a
later stage.

As mentioned in Sec. II, when driving strength is in-
creased beyond a critical value, all resonances overlap
and a global instability sets in. This critical
phenomenon dictates the existence of a dissociation
threshold for the low-lying states of a molecular system.
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This threshold can be disclosed by physical and numeri-
cal experiments.

Since numerical simulations of a dissociation process
near threshold by using differential equations are time
consuming, we shall replace the sinusoidal driving term
in Eq. (4) by the following infinite sequence of periodic
impulses:

a g I 5(r—2n n /fl ) —5[v—(2n + 1 )n/0] 'I
n = —oo

=(2aQ/n. ) g cos(2n —1)Qr .
n=1

(12)

where K represents the mapping at the impulse and S
that of the free evolution. They are given explicitly by

K (x,y) =(x,y +a),
S(E,O)=[E,8+m&(1 —E)/0] .

(14)

We note that Eq. (12) shows that by using the periodi-
cally pulsing form we have introduced infinitely many
higher harmonic frequencies of the driving field into the
equation. However, because the natural frequency of the
Morse oscillator is always less than I, with the driving
frequency fixed at 0.9 the leading term with the funda-
mental frequency should dominate. We thus expect that
diff'erential equations (4) and mapping (13) yield approxi-
mately the same results. In Fig. 1(b) we show 14 orbits
of mapping (13) in the E 8plane with-a and 0 fixed at
0.03 and 0.9. The similarity between the phase portraits
displayed in Figs. 1(a) and 1(b) is clearly seen.

We have calculated the trajectories of map (13) for an
ensemble of initial points densely and uniformly distri-
buted over an energy curve in the E-0 space for several
initial energies. Any trajectory whose energy becomes
greater than 1 is removed from the ensemble and the
fractions of trajectories left after N iterations are record-
ed as P(N). Since the trajectories with initial points ly-

ing inside a stability domain will never dissociate,
lim& P(N) is generally a positive number. We define
the dissociation fraction of an ensemble as

F =1—lim P(N) .
X~ oo

In Table II we list the calculated dissociation fractions
for several quantum energy levels of an HF molecule

With this change the motion of the oscillator on the sur-
face of section can be described by the following two-
dimensional mapping:

(13)

0
1

2
3
4
5
6

8

9
10
11
12
13
14
15

0.041 45
0.121 73
0.198 50
0.271 75
0.341 50
0.407 73
0.470 46
0.529 67
0.585 38
0.637 57
0.686 26
0.731 43
0.773 10
0.811 26
0.845 90
0.877 04

0.9290
0.5791
0.5314
0.5765
0.6693
0.7947
0.9486
0.9983
0.9992
0.9880
0.9998
0.9999
0.9999
0.9763
0.9986
1.0000

resonance is also recognizable.
The dissociation rate of an ensemble of initial states

can be defined by the expression

R (N) = —[ I /P (N) )dP (N)/dN .

For an exponentially decaying ensemble R is a constant.
However, for the system of interest here the dissociation
rate not only varies with time, but also depends sensi-
tively on its initial conditions. We plot in Fig. 2 the dis-
sociation rate as a function of time for four ensembles of
trajectories with essentially four different initial energies.

R(N)

0.02-

0.018.

0.016~,

0.014.

0.012.

0.01.

0.008-

0.006-

0.004

TABLE II. Dissociation fractions of a Morse oscillator at
different energy levels for laser strength a =0.06 and laser fre-

quency 0=0.9.

F = 1 —P ( 5000)

E„=(n + —,
' )v —(n + —,

'
) v /4, (15) 0-002-

where v=&(2/pD)a=0. 083 786. We used 10 trajec-
tories for each ensemble and the limiting value is calcu-
lated after 5000 iterations which is about 20 times of the
average half-life of an ensemble. Two pronounced mini-
ma of the dissociation fractions located at quantum
numbers n=2 and 13 can be seen in Table II. They are
caused clearly by the presence of the 1/1 and 1/2 reso-
nances. A less pronounced one at n=9 close to the 2/3

0. 1000 2000 5000

FIG. 2. Dissociation rate as a function of time for ensem-
bles of 3.6X 10 trajectories edith initial points uniformly distri-
buted in small squares located at 0=0 and (a) E=0.04145, (b)
E=0.1985, (c) E=0.2718, (d) E=0.4077. The driving strength
and frequency are a=0.06 and 0=0.9.



3792 YAN GU AND JIAN-MIN YUAN 36

Each ensemble contains 3.6)&10 initial points distribut-
ed in a square box of length 0.0001 in the E-0 plane. To
suppress the fluctuations in statistics we have presented
average values of R over a hundred iterations. A re-
markable fact disclosed in this figure is that all these
four curves converge quickly to a common dissociation
rate which appears to decrease gradually with time.
This fact can be understood by invoking the theory of
transport in Hamiltonian systems developed by Mackay
et al. ' and Bensimon and Kadanoff. " According to
this theory, beyond the onset of the global instability in-
variant cantor sets called cantori, remnants of tori, still
exist in the phase space. They form partial barriers to
the stochastic phase flows. Due to the obstructions of
these partial barriers, ensembles of trajectories initiated
at different locations of the phase space approach a com-
mon quasiequilibrium state which yields essentially the
same dissociation rate. In Fig. 3 we show several ensem-
bles of trajectories at selected times. Figures 3(a) and
3(b) are results of an ensemble initially located at
E=0.04145 and 9=0. Figures 3(c) and 3(d) belong to
another ensemble initially at E=0.271 75 and 19=0. Al-
though after a short time evolution (40 iterations) the
two distributions generated from these two ensembles

are different [Figs. 3(a) and 3(c)], they become quite simi-
lar after 400 iterations as shown in Figs. 3(b) and 3(d).
Also recognizable are the partial barriers from the sud-
den change of density in these distributions.

An important conclusion of the transport theory is
that the flux through the gaps (or turnstiles) of the tori
satisfies a universal scaling law for the parameter a
above and close to its critical value, a„of the global in-
stability. In order to test this scaling law half-lives of an
ensemble of initial points within a dense distribution lo-
cated at E =0.1985 and 0=0 have been calculated as a
function of a. Numerical results are presented in Fig. 4,
in which we plot the half-life, N&&2, as a function of a.
We have found by the least-square method that our data
are best fitted by the following straight line given by

in%, /2
———g ln(a —a, )+B,

where the fitted constants for 18 data points with
a &0.038 are

a, =0.025,

g =3.01,
8 = —4.53 .

1.0 1.0
(b)

0.5 0.5

0.0
—1.0 0.0

e/
1.0

1.0
—1.0

I

0.0

e/

1.0
(cj

0.5

1.0
—1.0 0.0 1.0

0.0
—1.0 0.0

e/
1.0

FIG. 3. Diffusion of an ensemble of 10 trajectories initially confined in a region of dimension 0.0001, indicated in (a) and (c) by
a solid circle. For (a) and (b) the initial distribution is located at E =0.04145, 8=0: (a) the distribution after 40 iterations, (b) the
distribution after 400 iterations. For (c) and (d) the initial distribution is located at E =0.2718, 8=0: (c) the distribution after 40
iterations, (d) the distribution after 400 iterations. The parameters a and 0 are the same as given in Fig. 2.
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14.0

1 1.7— +

9.4

In (N)
7. 1

2.5
-6.5 -4.25 -2.0

( & —0.025 )

FIG. 4. Dissociation half-life NI/2 of the Morse oscillator as
a function of the driving strength a. The driving frequency is
set at Q =0.9 and the initial distribution is located at
E =0.1985 and 0=0.

If we change the range of data points for fitting, the
value of a, changes only slightly, while g changes from
3.24 (10 data points with a (0.031) to 2.85 (all 47 data
points used with a (0.1) The critical exponent g can be
compared with the value q'""=3.0117 predicted by the
scaling theory for the standard map. ' The last bound-
ing torus observed here is not one with the winding
number equal exactly to the golden mean, but maybe
equal to a number related to it. The good agreement be-
tween the theory and our numerical results provides
more evidence of the universality of the scaling law.

IV. DISCUSSIONS

Since the natural frequency of the Morse oscillator de-
pends on the energy in a square-root relation, Eq. (A3),
in principle, there exists an infinite sequence of primary
resonances given by 1/n, for any positive integer n and
the positions of these resonances converge to the field-
free dissociation limit. In reality these resonances over-
lap with one another for any finite driving amplitude;
therefore we will only see a finite number of them. In
the cases of Fig. 1(a) and 1(b) we have found only the
1/1 and 1/2 resonances. The infinite number of secon-
dary (n —1)/n resonances generated via the interaction
of these two primary resonances, on the other hand, con-
verge to the separatrix of the 1/1 resonance. The over-
lap between them yields the chaotic layers around the
separatrix. Therefore it is not an accident that at the
stage of overlapping of Fig. 1 few bounding tori or can-
tori can be found. The torus with a winding number be-
tween 4/5 and 5/6 shown in Fig. 1(a) is a bounding
torus, because the 3 value used there is below 3, . All
trajectories (or states) initiated below this torus will
remain trapped below it, while those initiated above it
(except those which fall inside the quasiperiodic
domains) dissociate very quickly. Thus the last bound-
ing torus acts as the effective dissociation limit for the
oscillator + field system, or the quasidissociation limit.
The bounding torus shown in Fig. 1(b), on the other
hand, has already started to break up; therefore it is ac-

tually a cantorus. The partial barriers almost recogniz-
able in Figs. 3(b) and 3(d) belong to this kind of cantori,
but they have further evolved in the breakup process.

To see the effects of cantori on measurable quantities
of a dissociation process, we have calculated the dissoci-
ation rate as a function of time and the half-life as a
function of the driving amplitude. The common asymp-
tote approached from states with very different energies
shown in Fig. 2 is a clear signal of the existence of can-
tori. The dissociation rate there should be a rather good
measure of the Aow rate through the cantori. But the
value there does not approach a constant, instead it de-
creases gradually. This slow decay may actually reflect
the fact that increasingly finer structures exist in the vi-
cinity of the cantori. The explicit calculation of the scal-
ing law further quantifies the lifetime —driving-amplitude
relation as affected by the cantori ~

The above two properties and the results of the disso-
ciation fractions of ensembles of trajectories originated
on energy curves with the energies given by the eigen-
states of a Morse oscillator can all be tested against
quantum results and experimental measurements. Of
course, it is well known that the laser intensity required
to dissociate a diatomic molecule is far too high to be
practical, but we hope some of the phenomena that we
have discussed here, especially the scaling law found, is
universal to all molecular photodissociation processes.

One final note is that the Franck-Condon principle is
not applicable to the multiphoton process discussed
here. In fact, our results show that for the low-lying
states trajectories originated near the inner turning point
(8=+m) have very little or zero chance to dissociate.
On the other hand, trajectories originated near the outer
turning point (6=0) have the best chance to get to the
dissociation region.

V. SUMMARY

In this paper we present numerical results of the sto-
chastic behavior of the Hamiltonian system of a Morse
oscillator and attempt to understand them based on ex-
isting theories. Two aspects are of special interest. One
is the resonance structures displayed by the phase-space
trajectories. By selecting the appropriate laser frequency
and intensity, we have found that between the 1/1 and
1/2 resonance regions there exists a whole sequence of
secondary resonances with the winding number given by
(n —1)/n, n =3,4, 5, . . . . The existence of such a se-
quence can be understood by applying the classical reso-
nance analysis ' to a periodically driven pendulum
model. However, a straightforward application of this
analysis does not yield good predictions of the half-
widths of resonances or spacings between them. As a re-
sult, the prediction of the onset of the global instability
is not better, in fact is even worse, than that predicted
by applying the overlap criterion to the primary reso-
nances alone.

Another aspect that we have focused on is the dissoci-
ation dynamics of a driven Morse oscillator. As laser in-
tensity increases beyond a critical value, all resonances
overlap and global instability sets in. Dissociation of a
molecular system can be interpreted as a consequence of
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this global instability and can therefore be elucidated by
applying the transport theory in the Hamiltonian sys-
tems recently developed for the area-preserving
maps. ' '"

To facilitate numerical computation we have replaced
the sinusoidal term in system (1) by an infinite sequence
of periodical impulses so that the dynamics can be de-
scribed by an area-preserving map. This makes it possi-
ble for us to follow the evolution of a thousand to hun-
dreds of thousands of trajectories at the same time to get
statistically meaningful results. The dissociation rate
thus obtained not only varies with time, but also depends
heavily on the initial conditions. But very interestingly
the dissociation rates associated with different initial en-
ergies may converge quickly to a common value, which
decreases slowly with time. This fact indicates the ex-
istence of cantori which form partial barriers to the sto-
chastic Aows.

We have also calculated half-lives of ensembles of tra-
jectories for laser intensities slightly above the dissocia-
tion threshold for low-energy states. A scaling relation
was found with a critical exponent in good agreement
with that predicted by the scaling theory. '
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z =coy/(x E—),
then it follows that

dz/dr= —a)(1+z ),
which has the following solution

z = —tan(cur)

= —tanO . (A4)

Finally from Eqs. ( Al) and (A4) we obtain the transfor-
mation relations (5) of Sec. II.

APPENDIX B: NONLINEAR RESONANCE ANALYSIS

K (p, 9, r) =Ko(p, 9)—P cos(29 —Qr),

Kp ——p /4 —2copcosO .
(Bl)

This Hamiltonian has the form of Eq. (10) of Sec. II.
The motion on the separatrix of the unperturbed pendu-
lum can be obtained explicitly as

9,(r ) =4 arctan(e '
) —n. ,

p, (r) =+4copcos(9, /2) .

We define the local coordinate w by

(B2)

(B3)

In this appendix we shall apply the nonlinear reso-
nance analysis developed by Chirikov and others ' to
the study of secondary resonances near the separatrix of
a special form of a driven pendulum.

We consider a pendulum under a periodic perturba-
tion described by the following Hamiltonian:

APPENDIX A: TRANSFORMATION RELATIONS
BETWEEN (E,O) AND (x,y)

The dimensionless energy E is defined by dividing the
energy Hp of the field-free oscillator by the dissociation
energy D:

w =Ko(p, 9)—2coo,

which measures the distance from the separatrix in unit
of energy. By differentiating w directly and using the
equations of motion for the perturbed system, the time
evolution of w is determined by

E =Ho/D =p /(2pD)+(1 —e '
)

dw/dr= —Ijp sin(29 —Qr) . (84)

=x +y (A 1)

The last relation follows from the definitions of x and y.
The dimensionless action I is defined by dividing the ac-
tion by D and the inverse of the Morse frequency, that
1sp and

5$=(Q/coo)ln(64coo/
~

w
~

) (B5)

During the phase oscillation when 0 goes from 0 to 2m. ,
the increments of g=Qr and w for rotation near the
separatrix can be, separately, approximated by

I = [av'(2/Dp)/(2m. ) ]fp dr

=( I /m. ) fy /(1 —x)dx

=(I/vr) f E sing/(1 &E cosP)d cosP-

=2[l —&(I—E)] .

Thus it follows that

(A2)

5w = —P f p, sin(29, —Qr)dr . (B6)

By inserting (B2) and (83) into (B6), we obtain the so-
called Melnikov-Arnol d integral, which in the limit
0/coo »1 yields (see the appendix of Ref. 3)

5w =p singo,

where

If we define

(A3)
p=(16~/3Q, Pe

A, =0/cop

where go denotes the phase Qro of the driving term at
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w„+ (
——w„+p sing„,

g„+,=g„+k.ln(64coo/
~ w„+)

~

) .
(87)

The map (87)is equivalent to a Hamiltonian system with
the following time-dependent Hamiltonian:

the instant of 0=0. Thus the motion between two con-
secutive 0=0 crossings can be described by the following
%'hisker map: '

iltonian system (88) as 2nt; . thus the resonance condition
is given by

$=0r=n9 .

Hence 0=Q~/n, n =2, 3, . . . gives a sequence of secon-
dary resonances of the original system (Bl). By reducing
the Hamiltonian (88) to a pendulum form, we may also
estimate the widths of these resonances as given by

H(w, g, t)=wA, [ln(64coo/~ w
~
)+1]

+p cos/ g cos( 2n.n t ) . (88)

bw =4&(pw (n)/A, ),
where w (n) is determined by

dg/dt =2mn,

(89)

This Hamiltonian displays an infinite sequence of pri-
mary resonances. Note that 0 appears in the new Ham-

which yields

( ) =64 2 —2nvr jil. (810)
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