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We present the quantum theory of a microscopic maser operating on a degenerate two-photon
transition between levels of the same parity. We derive both a master equation and a Fokker-
Planck equation for this system, and show that quantum effects may have a substantial influence
on the behavior of the maser. They modify the oscillation threshold and make external triggering
of this maser unnecessary, whereas, according to semiclassical theory, such a triggering is required
to start up the maser oscillation. We derive the phase-diffusion properties of the field and show
that the diffusion coefficient is complex in this case, its imaginary part being associated with a fre-
quency shift of the field inside the cavity. We show that, in steady state, the photon-number statis-
tics is sub-Poissonian for a wide range of pumping rates.

I. INTRODUCTION

Lasers operating on two-photon transitions between
levels of the same parity have attracted considerable in-
terest in the last 20 years. ' This interest has been
based on several grounds. These devices would present a
faster growth of the field density than would usual
lasers, and would be able to produce any frequency
within the range allowed by the equation co=co&+co&,
where Ace is the energy difference between the two levels
and co&,co2 are the frequencies of the two photons gen-
erated by the transition. In addition, it has been point-
ed out that the field emitted by these devices might
present interesting statistical properties, leading to the
generation of "squeezed" states of light. '

In spite of this interest, however, no realization of a
continuous-wave two-photon oscillator has been made so
far. This is due to the exceedingly small gain on two-
photon transitions between low-lying levels, and to the
existence of very strong competing nonlinear processes
(multiple-wave mixing and stimulated Raman eff'ect).
Only a few articles reporting two-photon stimulated
emission and gain have been published so far. '

On the other hand, the development of Rydberg atom
physics in the last few years, as well as of high-Q super-
conducting cavities, has led to the construction of
masers which operate at a very low threshold, down to
one atom at a time in the cavity. "' Several aspects of
these devices, which have been called "micromasers, "
have been studied recently. ' ' In particular, they have
been shown to offer the possibility of an unambiguous
realization of a two-photon continuous-wave oscillator. '

In this article, we develop the quantum theory of a
two-photon micromaser. We introduce new techniques,
which allow a rigorous derivation of Fokker-Planck-like
equations both for the diagonal and nondiagonal ele-
ments of the reduced density matrix of the field inside
the cavity, in the photon-number representation. These
techniques, although very simple and of general applica-
bility in laser theory, do not seem to have been noticed
before. They are based on a continuous approximation

of the finite-difference master equation for the reduced
density matrix of the field, and are therefore valid in
principle only for large photon numbers. However,
comparison of their solutions with the results obtained
by numerical integration of the master equation shows
that they remain valid even for small photon numbers.

The equations thus obtained allow a simple physical
picture of the time-dependent behavior of the system, as
well as of the steady-state solution. In particular, they
demonstrate the existence of two time scales in the evo-
lution of the photon-number distribution (similar results
have been found in Ref. 13). The short-time scale corre-
sponds to the evolution of the initial distribution to-
wards a "local equilibrium" peak, often exhibiting sub-
Poissonian statistics. The long-time scale corresponds to
the slow diffusion of this peak, leading to the steady-
state solution which, if the pumping rate is sufficiently
high, may present extra peaks. These peaks are associat-
ed with a multistable behavior of the micromaser in the
semiclassical limit. '

When applied to the off-diagonal matrix elements in
the photon-number representation, the same techniques
lead in a straightforward way to the phase-diffusion
coefficient, which turns out to be complex for the two-
photon micromaser. Its imaginary part corresponds to a
frequency shift of the field inside the cavity, which can
be interpreted as a self-induced frequency pulling,
present even when the incoming atoms are resonant with
the cavity frequency, and due to the quadratic Stark
shift induced on the initial and final atomic levels by the
field of the cavity, through the coupling with intermedi-
ate states (this shift is inexistent for a two-level model).

Even though these approximate equations are ex-
tremely useful for getting physical insight into the be-
havior of the system, we do not use them to get the nu-
merical results concerning the statistics of the field.
These results will be obtained directly from the master
equation, since this equation is valid for any number of
photons and, besides a numerical solution of the
Fokker-Planck equation would involve its descretization
anyway, leading thus again to a finite-difference equa-
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tion. The numerical results thus obtained thoroughly
confirm the physical analysis based on the approximate
differential equations.

The system we are going to consider is the same as in
Ref. 15: a two-photon maser operating on a degenerate
two-photon transition such that there is a relay level

I
i )

nearly halfway between the initial state
I
e) and the

final state
I f ). The two-photon transition amplitude is

thus greatly enhanced.
The atoms, initially prepared in the excited state

I
e ),

cross a cavity tuned to the frequency

co=(E, Ef )/2f—i,
where E, and EI are the energies of the initial and final
states, respectively. In this process, each atom under-
goes a coherent second-order Rabi nutation' ' between
the levels

I
e ) and

I f ).
The practical feasibility of this device has been

demonstrated in Ref. 15. The transition of interest
occurs between nS&/z and (n —1)S,/z states, being thus
two-photon allowed and one-photon forbidden. For
alkali-metal Rydberg atoms, the intermediate level
(n —1)P3/2 has a detuning with respect to (E, +Ef )/2
which is much smaller than E, —E&. In particular, it is
exceedingly small for n =40 in rudibium and n =44 in
cesium, but yet sufficiently large so as to allow one to
discriminate the direct two-photon nS»2~(n —1)S,/2
process from the resonant one-photon cascade
nSi/2~(n —1)P3/p~(n —1)Si/2. The level config-
uration in this case is shown in Fig. 1. As shown in Ref.
15, a two-photon maser operating on a degenerate two-
photon transition between these levels in a Q —10 cavi-
ty should oscillate with only about one atom at a time in
the cavity and a few tens of microwave photons. Under
these conditions, quantum effects may play an important
role in the behavior of the system.

In Sec. II and in Appendix A, we derive the master
equation for the two-photon micromaser, after reviewing
some of the results of Ref. 15. The semiclassical evolu-
tion is analyzed in Sec. III, and the stability of the zero-
intensity point is considered. Both the effect of thermal

I e)

photons and the velocity spread of the atoms in the cavi-
ty are taken into account. In Sec. IV, we derive a
Fokker-Planck equation for the photon-number distribu-
tion, and we discuss the steady-state solution and the ap-
proach to equilibrium. We show in particular that, even
though the semiclassical theory predicts that, at low
temperatures, an external field is necessary to start the
laser oscillation' (even if one is above the oscillation
threshold), quantum theory on the contrary predicts
that, above threshold, the system will start oscillating by
itself, without need of a triggering field. In Sec. V, we
study the phase diffusion of the field inside the cavity,
and establish the existence of a self-induced frequency
pulling. The method used for this study is quite general,
and is applied in Appendix 8 to the Scully-Lamb mod-
el' as well as to the one-photon micromaser. In Sec.
VI, we show that, under certain conditions, the field in-
side the cavity exhibits a sub-Poissonian statistics. Fluc-
tuation properties of the field are discussed in Appendix
C. Our conclusions are summarized in Sec. VII.

II. THE MASTER EQUATION

The Hamiltonian corresponding to the system de-
scribed in Sec. I can be written as'

H =H„+HF +H;„, , (2.1)

where H„, HF, and K;„, are, respectively, the atom,
field, and interaction terms

(2.6)

where (e
I

D
I
i ) and (i

I
D

I f ) are the matrix elements
of the electric dipole operator D and 60 is the field "per
photon" in the cavity (of eff'ective volume V)

H. =E. Ie&&e I+E Ii&&i I+Ef If &&f
I

HF fico( a ——a + —,
' ),

H;„,=RA„( aIe)(i I
+a Ii )(e

I
)

+&&f(a
I

i &&f
I
+a'If &&i

I
) (24)

In these equations, a and a are the photon annihila-
tion and creation operators, while Q„and 0;& are the
elementary one-photon Rabi frequencies

(2.5)

6'0 ——(fico/2F. OI/) ' (2.7)

In H;„„one has made the rotating-wave approxima-
tion, which amounts to neglecting terms such as
a

I
e)(i

I
which couple levels whose energies diff'er by

E, —E;+Aco=2fuu. We also assume that the atom-field
coupling is constant. This is generally not the case when
the atoms move in an actual cavity mode. However, this
variation can be taken into account by redefining 0.

The intermediate level
I
i ) is detuned by the amount

RA=E; —(E, +Ef )/2 (2.g)

FICx. 1. Energy levels relevant to the two-photon rnicro-
maser.

from the average of the energies of the
I
e ) and

I f )
states.
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It has been shown in Refs. 15 and 17, using the
dressed atom formalism, that the evolution of the system
reduces to a two-level problem with an eff'ective Rabi
frequency of

Q(N) = II,', (2N +3)/5, (2.9)

where

+
(

'n'~" 1)—
2N +3 (2. 1 1)

is the probability amplitude of finding the system in the
initial state, and

where N is the number of photons in the cavity, so long
as

~

Q(N}lb.
~

&& I and Q„=Q;&. These conditions are
actually satisfied by the system described in Sec. I, and
will be assumed throughout the paper. We may notice
that Q(0) does not vanish because of the two-photon
spontaneous emission. If

~

e, N ) and
~
f,N +2 )

represent the atomic states
~

e ) and
~ f ) with N and

N+2 photons, respectively, in the cavity, and if
~

e, N)
is the initial state of the system, we get then for the state
of the system at time t

~e, N(t))=A(N t) ~e, N)+B(N+2, t}
~ f N+2),

(2.10}

conditions specified in Appendix A):

p(t) =Lp(t)+R [P'(t;„,)p(t) —p(t)] . (2. 13)

In this equation, Lp is associated with the loss mecha-
nism

Lp= (Nr+1)(2apa —a ap —pa a)Ci)

2

+ Nz. (2a pa —aa p —paa ),CU

2Q
(2.14)

for a cavity with a quality factor Q and a thermal equi-
librium mean-photon number given by Nz. The damp-
ing time of the cavity is t„„=Qleo.

The remaining term on the right-hand side of (2.13)
stands for the atomic contribution to the reduced density
operator of the field. The expression in square brackets
is the variation of this operator due to the passage of a
single atom through the cavity, during the interaction
time t;„„while R =t,,

' is the atomic fiux (average num-
ber of atoms arriving per unit time). As shown in Ap-
pendix A, writing Eq. (2.13) for the micromaser presup-
poses a Poissonian distribution for the arrival times of
the incoming atoms in the cavity. The atomic contribu-
tion can be calculated in a well-known way' from Eq.
(2.10) (we neglect atomic relaxation during t;„,):

B(N+2 t) (N+2)(N+1} (,n(x), 1)2N+3 (2.12)
PNM I.t. = RPXM[—1 A(»t—.t)A*(M t.t)]

+RPN 2M ~B(N, t;„~)B*(M,t;„, ) . (2. 15)

is the two-photon transition amplitude. Again, the fact
that A (O, t)&1 is due to spontaneous emission.

In order to write down the master equation corre-
sponding to this system, we adopt the Scully and Lamb
approach, ' which is shown in Appendix A to be
equivalent to the formulation in Ref. 13. In the interac-
tion representation, the reduced density matrix for the
field, p(t), satisfies the equation of motion (under the

For N =M, the first term on the right-hand side
represents the depletion of the N-photon state due to
atomic transitions from

~

e ) to
~ f ); the second term on

the right-hand side represents the contribution to pz&
from downward atomic transitions starting from the
(N —2)-photon state.

Adding to (2.15) the contribution of the loss term, we
obtain the full master equation in the interaction picture:

pxM = Rp+M[1 —A —(»tini }A '(M tini))+Rp~ —2M zB (»t ~)B*(—M t

2Q
[N +M +2Nr(N +M + 1)]p~~+—(Nr+ 1)&(N + 1)(M + 1)p~~ ) M+ )+—Nr&NM p~

(2.16)
which assumes a monoenergetic beam of atoms, since t;„„which depends on the atomic speed, is fixed.

If one allows a velocity distribution for the atoms, the master equation in the interaction representation becomes

P~M = RP~M 1 —J —dt;„,P(t;„, ) A (N, t;„, ) A *(M, t;„, )
0

+Rp~ qM 2 f dt;„,P(t;„,)B(N, t;„,)B*(M,t;„, ) — [N+M+2Nr(N+M+1)]P~M
2Q

+—(Nr+1)&(N+ 1)(M +1)p~+) M+)+ Nr&NM p~— (2.17)

where P(t;„,) is the interaction time distribution normal-
ized so that

I

this paper. From it we will get both the semiclassical
behavior as well as the specifically quantum eff'ects.

J dt;„,P(t;„, ) =1 .
0

(2.18) III. THE SEMICLASSICAL EVOLUTION

The master equation (2.17) is the central equation of
From (2.17), we can obtain an equation for the time

rate of change of ( N ):
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N

=2R 1 — dt;„tP t;„, A X, t;„t
0

cavity. It generalizes the corresponding equation in Ref.
15, since it includes both the e6'ects of the velocity distri-
bution and of thermal photons. The steady-state solu-
tions are obtained from the equation

(N NT—) . (3.1)
—222

n n—T
———,'[1—e " cos(2ng;„, )] . (3.10)

The first term on the right-hand side represents the
contribution to (N) from the downward transitions.
The factor 2 comes from the fact that each transition
yields two photons. The last term is associated with dis-
sipation by the cavity, which makes (N ) approach Nr
within t„,. The semiclassical approximation is obtained
by setting N »1 and by assuming that the mean-square
deviation of N is small, so that

(3.2)

In the limit N ~~1, expressions (2.9), (2.11), and (2.12)
can be simplified, so that

This equation states simply that, in steady state, the
losses, represented by the term on the left-hand side,
equal the gain, expressed on the right-hand side. Both
terms are represented on Fig. 2, as a function of n, and
for several values of P;„„nT, and o.. The steady-state
solutions are given by the intersections of the straight
line with the gain curves. They are stable if the slope of

I I l I

t
I I l I

j
I I I f

)
I I f

2 (N, t)=exp(iQ„Ntlb, )cos(Q„Nt/b, ) . (3.3)

This approximation amounts to neglecting the contribu-
tion of spontaneous emission terms.

VVe now define as in Ref. 13,

+ex Rtcav tcav ~tat (3.4) 0.5

N, „being the number of atoms passing through the cavi-
ty during its damping time. We also introduce a re-
duced interaction time P;„, and reduced photon numbers
by

p;„,=2N, „Q„t;„,/b„n = (N ) /2N, „, nr NT/2N, „.——
(3.5)

We get then, from (3.1) and (3.3), 0.5
I l l l l l

1.5 2

n=—

where

n nT —f"—dP, „,P(P;„,)sin (n(t;„,)
cav - 0

2X 0 2%

(3.6)

(3.7)

0,2

0.1

P(P;„,) = (2m o )
' exp[ —(P;„,—P;„,) /2o ], (3.8)

so that (3.6) can be replaced by an explicit expression,

1 —2 2-2
[n nT —,'[1—e— "—cos(2ng;„, )]] .

tcav
(3.9)

This equation [or, alternatively, Eq. (3.6)] provides the
semiclassical evolution of the number of photons in the

is the atomic interaction time distribution expressed in
terms of P;„,. Expressed as a function of the speed, this
distribution should be Maxwellian. However, this is not
the case for P(P,„,), since P;„, is proportional to the in-
verse of the speed. Nevertheless, if this distribution is
sufficiently peaked around some average value P;„„one
can write approximately

0.05 0.1

FIG. 2. Semiclassical model of the two-photon maser: loss
and gain contributions to n vs n, where n is the normalized
photon number (1V)/2X,„. The loss term is linear in n. (a)
No thermal photons. The three curves correspond to (a)
o. =0, P;„,=0.9'/2; (P) o =0, P;„,=5vr/2; (y) cr =n,
P;„,=3a/2. Stable operation points are shown by circles.
Note that n =0 is always a stable operation point. (a) is just
above threshold. Disappearance of multistability as o in-
creases is apparent in curve (y). (b) Kith thermal photons.
P;„,=3m/2. The three straight lines correspond, from top to
bottom, to nT ——0, 0.011, and 0.022, respectively. Triggering
field is nT ——0.011.
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the absorption curve is larger than the slope of the gain
curve at the intersection point. The threshold for oscil-
lation is obtained when the straight line becomes tangent
to the gain curve for the first time. For nT ——0 and
o. =0, one recovers the solutions studied in Ref. 15, with
their characteristic multistable behavior. In this case,
the point n =0 is always stable, even if one is above the
threshold for oscillation (which occurs at P;„,=0.9~/2),
implying that a triggering field is necessary to start the
maser action. This feature, which is not present in the
one-photon micromaser, was analyzed in detail in Ref.
15.

Changing nT amounts to translating the straight line
in Fig. 2 along a direction parallel to the vertical axis.
We see that, as nr increases, for a fixed value of P;„„the
stable points get displaced towards larger values, as ex-
pected. In particular, the stable point at the origin
moves away from it, until it finally disappears, right
after the straight line becomes tangent to the gain curve
for the second time [see Fig. 2(b)]. This means that,
above this critical value of nT, the maser starts by itself
due to the thermal photons, without need of any
coherent triggering field. Alternatively, for a given nT,
there is a critical value of P,„, for which the maser starts
by itself. These critical values can be calculated by con-
sidering the system of equations formed by Eq. (3.10)
and the equation obtained by differentiating both sides of
(3.10) with respect to n, which, for o =0, is written as

P;„,
' = sin(2n P;„,) . (3.1 1)

In this way, we get, for instance, that the critical value
of nT is approximately 0.011 for P;„,=3m. /2, yielding
Nr =0.7 for N,„=30 (and cr =0). Of course, for such a
low number of photons the semiclassical analysis may
not be valid anymore, and we will see indeed in Sec. IV
that it must be substantially modified when quantum
effects are taken into account.

As a /P;„, increases, the multistability disappears. For
large values of this ratio, one cannot really use Eq. (3.8),
which was based on the assumption that the velocity dis-
tribution is suSciently sharp. However, going back to
Eq. (3.6), we see that if P(P;„,) is very broad, one may re-
place the average over the squared sine by —,', getting
therefore as a unique stationary solution n = n T + —,',
which corresponds to an average number of photons
given by

(N) =N, „+NT . (3.12)
This limit leads to the usual laser theory: The average

over speeds replaces the average over lifetimes present in
the Scully-Lamb theory. ' It could also be obtained
directly from Eq. (3.9) by setting cr ~ ao.

The semiclassical picture discussed in this section does
not take into account spontaneous emission effects.
They will be considered in the following sections, where
we will show that they may affect considerably the be-
havior of the system around N =0, specially for low N,„.

IV. FOKKER-PLANCK EQUATION: STEADY STATE, MULTISTABILITY,
AND APPROACH TO EQUILIBRIUM FOR THE FIELD DIAGONAL MATRIX ELEMENTS

A. Recurrence relation for the steady state

From (2.17), we can see that the diagonal matrix elements in steady state satisfy the recurrence relation,

&p~~ 1 f t; tP(t; t)
~

&(N, t' t)
~

+Rp~ p~ p f dt tP(t ) ~8(N, t; )
~0 0

[N +NT(2N —+1))ptvtv + (Nr+ 1)(N + 1)p~+~ ~+~+ NTNp~, ~—
~
——0, (4.1)

with the definition

P —1, —1 P —2, —2 (4.2)

As opposed to the one-photon case, ' ' this re-
currence relation does not admit any simple analytic
solutions; due to the presence of the term p& 2 & 2, it
cannot be solved by the usual detailed balance argu-
ment. ' We will therefore seek a continuous approxima-
tion of the discrete master equation (2.17), which will al-
low us to find an approximate steady-state solution.
This solution will be useful to get physical insight into
the behavior of the system. It will be shown to coincide
very closely with the numerical solution of (4.1) and
(4.2), so long as N »1. Furthermore, the same approxi-
mation method, when applied to the equation for the
off-diagonal matrix elements, will be useful to study the

B. Derivation of the Fokker-Planck equation

Let us define

Let

n =N/2N, „6=1/2N, „. (4.3)

A (n, P;„,) = 3 (N, t;„,), (4.4)

with N and t;„, expressed in terms of n and P;„, by (4.3)

phase-diffusion properties of the field. However, the
dynamical evolution of the system will be obtained nu-
merically directly from (2.17). The master equation will
also be required to study the behavior of the steady state
close to N =0. This will be done in Sec. IVE, directly
from (4.1) and (4.2).
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and (3.5), so that, from (2.11), 7=Rt (4.6)

~

g( y. )
~

~
1

("+5)("+ 5)
(2n +35) and replace the discrete distribution p»(t) by the con-

tinuous function

z 2n +35
)& sin

2 1 lit

We also define a dimensionless time

(4.5) p(n, r) =pz&(t) .

We get then from (2.17)

(4.7)

r

p(n, r) = —p(n, r) 1 —f dP,„,P(P;„,)
~

3 (n, P;„,)
~

+p(n —25, r) 1 —f dP;„P~(P;„,)
~

2 (n —25, P;„,) ~87 0 0

—2[n +Nr(2n +5)]p(n, r)+2(NT+1)(n +5)p(n +5,r)+2Nrnp(n —5, r) . (4.8)

We now expand this equation into powers of 5, keeping terms up to O(5 ). This approximation is valid as long as
n »6, that is, X»1, and 6 «1, that is, 2',„»1. We get then

a = a $2 Q2

p(n, r)= —5 [a, (n)p(n, )r]+ [ a2(n) p(n, r)] +0( 5),
87 '

Bn Bn

where

(4.9)

a~(n)=2 dP;„,P(P;„,) sin (nP;„,)+ sin(2ng;„, ) —n+nT
0

Int

a2(n)=4 f dP;„,P(P;„,)sin (nP;„,)+2n (1+2Nr ),
0

(4.10)

(4. 1 1)

and, according to (3.5) and (4.3), nT ——5Nr.
This is an equation of the Fokker-Planck type. It is

easy to show that the same procedure, applied to the
one-photon micromaser, leads precisely, except for the
terms of O(5) in (4.10), to the Fokker-Planck equation
obtained in Ref. 13 by another method, which is valid in
principle only for small times. The present approach is
explicitly valid for all times. Besides, it allows, as we
will show in Sec. V, the analysis of the behavior of the
off-diagonal elements of the density matrix and therefore
of the phase diffusion properties of the micromaser.

The first term on the right-hand side of (4.9) is the
drift term; the second-order contribution is the diffusion
term. One should notice that a z(n ) & 0, yielding a
positive-definite diffusion coefficient, as it should be. It
is easy to show from (4.9) that

d Bp(n, r)(n)= f n
' dn=5(a, (n)),

d7 0 87
(4.12)

which is just the semiclassical evolution equation (3.6),
with the approximation (a&(n)) =a, ((n ) ) and the om-
ission of corrections of order 5. It is tempting to associ-
ate with a, (n) a potential defined by

U(n)= —5 f a&(n')dn',
0

(4.13)

which would govern not only the semiclassical evolution
[Eq. (4.12) being thus analogous to that of a forced over-
damped oscillator] but also the probability distribution.
We will see, however, in the following that this last
statement is not true, due to the n dependence of the
diffusion coefficient.

C. Steady state

The steady-state solution of (4.9) is easily obtained:

„a&(n')
p (n) = exp dn

a2(n) 5 o a2(n')
(4. 14)

where C is a normalization constant. This expression
diverges when n ~0, which is a consequence of the non-
validity of (4.9) in this limit. It has the form of a
Boltzmann distribution,

p (n)=exp[ —2VF(n)I5],

with an effective potential,

„a,(n')
VF(n)= —f, dn'+ —lna2(n) ——lnC .

o aq(n') 2 2

(4.15)

(4.16)

This potential completely determines the behavior of
p (n), which is peaked around the absolute minimum of
VF(n). If differs, however, from the semiclassical poten-
tial (4.13), precisely because of the n dependence of the
diffusion coefficient. Since 6«1, the second term on
the right-hand side of (4.16) will give a small contribu-
tion, the same being valid for the 5-dependent term in
a&(n). Thus, the extrema of VF(n) will practically coin-
cide with the zeros of a&(n), which correspond to the
steady-state operating points in the semiclassical model
[unstable ones corresponding to the maxima of VF(n),
stable ones to the minima].

We display in Fig. 3 the effective potential VF(n), for
several values of P;„„when a and nzare set e-qual to
zero, and N,„=30. In the same figure, we show the po-
tential obtained, through Eq. (4.15), from the numerical
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FIG. 3. Effective potential VF (n ) and VM (n ) for a,
09m/2; b, P;„,=1.5~/2; c, P;„,=5m/2 Th. e s. olid curve

corresponds to the potential VF obtained from the Fokker-
Planck equation; the dashed curve to VM, obtained from the
master equation. o.=0 and nT ——0.

solution of (4.1) and (4.2). We call this potential V~(n).
The coincidence is remarkable, except for very small n,
as expected. In Fig. 4, we show the potential VF(n) for
P;„,=5'/2 and several values of o, still for nT =0. The
multistable nature of the solution disappears as o. in-
creases. The limit o.~ac is easily obtained from (4. 10),
(4.11), and (4.14). We get

p (n) =C'(I+nl )' +" ' exp( 2n/5—1), (4.17)

where C'=C/2 and

I =1+2N (4.18)

The disagreement with (3.12) is due to the NT depen-
dence of the diffusion coefficient, leading to an uncer-

This distribution has only one maximum, at n = —,,

corresponding to

(4.19)

tainty in the number of photons which is bigger than the
difference between (3.12) and (4.19).

For I =1(NT ——0), one finds for the photon-number dis-
tribution,

P(N) = 1+
ex

6N „
exp( —2N) . (4.20)

The semiclassical model threshold corresponds, to the
P,„, for which the potential develops for the first time an
extra minimum, besides the one around the origin. For
o. =0 and nT ——0, we know already that the threshold is
obtained for P;„,=0.9m. /2, and we see indeed that for
this value of P;„, there appears a minimum of VF (n ) [and
also of VM(n)] around n =1. However, in this situation,

p (n) is still maximal for n =0, and the steady-state
mean photon number is close to zero, as can be explicit-
ly seen in Fig. 5, which exhibits (N ) as a function of
P;„, for the steady state. The threshold condition is thus
not the same as in the semiclassical model; a minimum
of VF(n) for n&0 must exist, but its value must be lower
than the value of n =0 (that happens for P;„,) 1.4m/2;
the corresponding threshold value of (N ) is —50, for
N,„=30).

As P;„,~ oo, the average photon number goes to a
limit which is approximately given by (4.19). This is a
consequence of the fact that, as P;„,~ ac, the tri-
gonometric functions in (4.10) and (4.11) oscillate very
fast as n varies, and therefore can be replaced by their
averages in the calculation of (N ), which is precisely
the effect produced by the limit o.~ oo. It is not surpris-
ing, therefore, that the two limits yield the same value
for (N).

In Fig. 6, we display the potential VM(n), obtained
directly from (4.1) and (4.2), for cr =0, P;„,=3m/2, and
different values of NT (again N,„=30). Contrary to the
semiclassical analysis, VM (n ) has a minimum at n =0,
independently of the value of NT. This will be discussed
in Sec. IV E. As NT increases, the potential well around
N = 30 gets wider and flatter, because the diffusion
coefficient az(n) increases with Nr.

I I I I I I I I
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I I l I

I
I I I 1

~ 0.15
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V 20—

I I I I k I I I I j I I I I

0.5

FIG. 4. Effective potential VM(n) for P;„,=5m/2 and a,
a. =m/4; b, o. =m/2; c, cr =3m/2.

0 5K/2 10~/2 15~/2 20m/2
REDUCED INTERACTION TIME

FICr. 5. Average photon number (N) in steady state, as a
function of the reduced interaction time P;„, (o =0, NT=0,
N,„=30).
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FIG. 6. Effective potential VM(n) for o =0, $,„,=3rr/2,
N„=30, and a, NT ——0; b, NT ——0.3; c, NT ——0.7.

B~
'

Bn
p(n, r)= —5 [a I(nL )(n —nL )p(n, r)]

$2 a2
+ aq(nL ) p(n, r) .

Bn
(4.21)

This equation is associated with a Ornstein-Uhlenbeck
process. ' Its solution, subject to the initial condition
p(n, r=0)=5(n —no), can be explicitly found and pre-
dicts an approach to equilibrium with a time constant
[5

~

a'I(nL )
~ ] '. Since

~

aI(nz )
~

is of order unity and
in (4.21) time is measured in units of t„, this means that
the time constant for the approach to local equilibrium
is of the order of N,„t„=t„,. Of course, Eq. (4.21) is
valid only if this local equilibrium time is much smaller
than the passage time, since writing (4.21) is equivalent
to assuming that initially p( n ) "sees" but the local

Another distinction between the semiclassical analysis
and the present treatment is that, in the former case, the
steady-state solution depends on the initial condition (for
instance on the presence of a triggering field). This is

certainly not the case here; p (n) is the same no matter
what the initial condition is. The connection between
these two results will be clarified in the following.

D. Local and global approaches to equilibrium
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The Fokker-Planck equation (4.9) allows a simple
physical picture of the time-dependent behavior of the
statistics of the field.

Let us consider the time evolution of the system when
p(n) is initially peaked around an arbitrary no value.
The approach to equilibrium will proceed in general in
two steps, corresponding to two quite diferent time
scales. ' Because of the drag term ar(n) in (4.9), the
mean photon number will reach in a short time a value
close to the nearest local minimum of VF(n) (as we will
show below, the time scale of this process turns out to be
t„„). Correspondingly, the initial peak will be displaced
and, at the same time, its shape will change, turning into
a "local equilibrium" distribution, often sub-Poissonian.
generally, this minimum is not the lowest one, and the
state reached is only metastable. Because of the Auctua-
tions [associated with the term az(n)], p(n) will escape
from this potential well and reach a more stable one.
The corresponding passage times are usually much
larger than t„„,and become infinite when N„~ oo, we
recover, then, the semiclassical results. The solution
will, in this situation, depend on the initial condition
even for very large times since passage to other wells just
does not occur, in this limiting case.

The local equilibrium behavior is obtained by setting,
in (4.9), a, (n) equal to its value at the closest local
minimum nL of VF(n), and by expanding a I (n) around
nL, up to first order n nI . We get th—en for p(n) the
following equation:

0
0 20 40

NUMBER OF PHOTONS
I r r

[

A

30—

20
L

0 20
T IME

I I I I

40 60

FIG. 7. Dynamics of the photon distribution for $,„,=5rr/2,
o. =0, NT ——0, N, „=30. The potential VM(n) corresponds to
curve c in Fig. 3. The initial distribution corresponds to a
coherent state with (N) =45. (a) Evolution of the photon-
number distribution: (a) t =0; (P) t =0.5t„„, () ) t =10t„„
(6) t =60t„„. Notice the very fast change from the initial
coherent distribution to a sub-Poissonian one centered around
the local minimum of V~ ( n ) at n = —,, corresponding to
N =40. (b) Evolution of (N). Time is expressed in units of
t„. Note the change in slope around time t —t„„,correspond-
ing to the transition from the fast drift to the local minimum
to the slow passage to the absolute minimum.
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2
&(exp —[ VF(n, ) —VF(nL )]

5
(4.22)

where n& is the value of n corresponding to the max-
imum of the potential between nL and its neighbor. In
other words, VF(n & ) —VF(nL ) is the height of the poten-
tial barrier which separates the well around nL from its
neighbor.

From Eq. (4.22) and Fig. 3, we see that T~ is of the or-
der of t„„exp(aN,„),where a is a constant of order 0.1.
A similar analysis was applied in Ref. 13 to the one-
photon micromaser, where the same kind of result is ob-
tained. In particular, it is clear that when N„~ ao, so
does the passage time, and the semiclassical limit is at-
tained.

In Fig. 7(a), we display the time-dependent behavior of
p(n, r), starting from an initial coherent state, for

P;„,= 5vr/2 and N,„=30(o and nr are set equal to zero).
In this case, if one starts around the rightmost well of
VF(n), depicted in Fig. 3(c), the passage time will be of
the order of 20t„,. The local equilibrium distribution
corresponds to the curve P in Fig. 7(a), which clearly ex-
hibits a sub-Poissonian statistics. The evolution of the
average number of photons is shown in Fig. 7(b). The
exponential dependence of the passage time on N„ is
verified in Fig. 8 [the 6 dependence of VF(n) is negligible
for the values of N, „considered in this figure]. All these
graphs are obtained by direct numerical integration of
the master equation (2.16), with nT ——0.

E. Low-N behavior and spontaneous self-starting

The same mechanism explains why the N =0 solution
can be quantum mechanically unstable. Even though ex-

minimum of VF(n).
On the other hand, the passage time, which governs

the leaking of probability from one potential well into its
neighbor, is given by Kramers s formula, which yields in
the present case, in real time units' ''

—]/2
a~(n, )

T~ =2~t„,
~

a', (nL )
~

a
&
(n

&
)

Qp PAL

pression (4.22) cannot be applied in this case, this can be
explicitly verified again by direct numerical integration
of (2.16). In Fig. 9, we plot the average number of pho-
tons as a function of time, for the case in which no
triggering field is initially present in the cavity. For
P;„,=3~/2 and N,„=30, the passage time is actually
very small (of the order of a few t„„)already for rr =0
and nT ——0. As o. and nT increase, this time becomes
even smaller (Fig. 9 illustrates the dependence with nz).
This implies that, at least for not very large values of
N, „, a triggering field is actually not necessary in order
to start the maser oscillation.

The behavior of the starting time as a function of P;„,
is shown in Fig. 10(a). We notice that, for P;„,=5m/2,
the starting time suddenly decreases, becoming of the or-
der of t„,. This happens because, for such high pump-
ing rates, n =0 is not even a minimum of VM(n). This
can be seen explicitly from (4.1) and (4.2). Setting N =0
in (4.1), one gets

P» = P00NT+1 0

Np

N„ (4.23)

Q0 I 1 I 1

The mininum of the effective potential VM (n ) (or,
equivalently, the maximum of the probability distribu-
tion) at N =0 will disappear when p&& & poo. Imposing
this condition on (4.23), we find that this happens when

R 1 —j dt;„,P(t;„, ) A(0 t;„, )
i

& 1/t„„. (424)
0

This relation has a simple physical interpretation.
The left-hand side is the rate of production of photons
by spontaneous emission, while the right-hand side is the
cavity loss rate. Equation (4.24) simply states that
p» ~p00 if the spontaneous emission rate at N =0 is
larger than the loss rate. In this case, the potential bar-
rier around N =0 disappears and this point becomes un-
stable (of course, before this situation is attained, the
point N =0 is already metastable).
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FICz. 8. Passage times as a function of N,„. Conditions are
the same as in Fig. 7. T~ expressed in units of t„-„.
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FICr. 9. Self-starting of the micromaser: (N ) as a function
of time (in units of t„,), when the cavity is initially in thermal
equilibrium with a, NT ——0; b, NT ——0.3; c, XT ——0.7.
(P;„,=3m. /2 and X,„=30for the three curves. )
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Taking (2.11) and (3.5) into account, we can write
(4.24) in the form

(8N,„/9) j dP,„,P(P;„,)sin (3P;„,/4N, „)& 1 . (4.25)
0

For P;„,/4N, „«1,and for cr &P;„„we can write ap-
proximately, from (4.25), that the condition for the po-
tential barrier around N =0 to disappear is

P;„,& (2N,„cr )'— (4.26)

where we have used that P =(P) +o
For a=0 and N„=30, we find that the critical value

of P;„, is 4.9vr/2, consistent with the behavior shown in
Fig. 10(a). The threshold lowers as o increases, a conse-
quence of the fact that the speed fluctuations add up to
the spontaneous emission fluctuations in rendering the
N =0 point unstable. In Fig. 10(b), we verify that, as
long as P;„,&4.9n/2, the escape time from N =0 grows
exponentially with X,„, thus extending to this region a
result valid originally only for N &&1.

The above discussion shows that the condition for
% =0 to be a local maximum of the probability distribu-
tion does not depend on the number of thermal photons.
This is contrary to the semiclassical analysis, which pre-
dicts that this maximum should get displaced and should
eventually disappear as nr increases (cf. discussion in

FIG. 10. Self-starting titne as a function of (a) P,„, for
N,„=30;(b) N, „ for P;„,=3'/2. We take o =0 and Nr=0. T~
expressed in units of t„„.

Sec. III). This discrepancy is due to the increase of the
diffusion coefficient with Nz-, smoothing out the poten-
tial around N =O. Furthermore, as Nz increases, the
potential wells get flattened, and the passage time out of
N =0 approaches indeed a value of the order of t„,.

The above considerations allow us to predict a hys-
teresis cycle around N =0. Indeed, as P;„, gets larger
than the critical value (4.25), the system starts oscillating
by itself in a time of the order of t„„going to the first
minimum of the effective potential VM(n). Assume now
that P;„, is made to decrease past that critical value, in a
scanning time much smaller than the passage time but
much longer than t„,. The average number of photons
adiabatically follows the minimum of the evolving poten-
tial well, until this well finally disappears, at
P;„,=0.9rr/2, when (N ) again goes to zero. The system
stops oscillating therefore at a value of P;„, smaller than
the one for which it starts oscillating; we have thus a
hysteresis cycle. We have verified this numerically, by
direct integration of Eq. (2.16) with Nr ——0, as shown in
Fig. 11. The cycle duration is 10t„,. Note that in this
figure (N ) does not go back to zero. This is due to the
fact that the end of the cycle, when the system is again
below threshold, is swept in a time of the order of t„„
so that the cavity field does not have time to decay com-
pletely.

Let us note that the metastability of the N =0 solu-
tion and the existence of hysteresis cycles in two-photon
laser operation were already discussed in Ref. 9, which
analyzed the evolution of a two-photon laser with
thermal noise as a phase-transition phenomenon. This
work was dealing with macroscopic lasers in which fluc-
tuations alone are usually unable to start the oscillation
if there is a potential well at N =0. It thus did not esti-
mate the untriggered laser start-up time and focused in-
stead on the behavior of triggered two-photon lasers.
The theory in Ref. 9 was based on a Fokker-Planck
equation different from the one presented here, which in-
volved the field amplitude and not the photon-number
distribution.
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V. PHASE DIFFUSION AND SELF-INDUCED
FREQUENCY PULLING

A. Fokker-Planck equation for nondiagonal elements

We apply now the method of Sec. IV to the off-
diagonal elements of the density matrix. The elements

p~ ~+~ determine the ensemble average of the electric
field, according to

(E(t)) =60+pivtt+i(t)&N+lexp( idiot)—+c.c. , (5.1)
N

g (n, ~) =piv ~+i(t),
where ~=Rt, we get

(5.2)

and therefore also the power spectrum and the maser
linewidth. We analyze in this section the time-
dependent behavior of pz&+&. In the Appendix C, we
consider p&~+2(t), which is important to discuss the
squeezing properties of the field.

We set thus in (2.17) M =N+1, and introduce the
normalized variable n, as before [Eq. (4.3)]. Setting

g (n, r)= —g (n, r) 1 — dttt;„tP(ttt;„t) A (n, ttt;„t) A "(n +5,$;„t)d7 . 0

+g(n 25, r—) f 1 t;t„tPt(P;„ )Bt(n, g;„ )Bt'(n+5, $;„t)—[2n +5+4-NT(n +5)]g(n, r)
0

+2(NT+1)&(n +5)(n +25)g (n +5,r)+2NT&n (n +5)g (n —5, w) .

Developing this equation in powers of 5, and keeping terms up to 0 (5 ), we get

d = a $2 Q2

g (n, )r= p(n—)g (n, r) 5—[b, (n)g (n, r)]+ 2 [a2(n)g (n, r)]+O(5 ),d~ Bn Qn

where a2(n) is given by (4.11), and

(5.3)

(5.4)

tM(n) =5' f dp, „,P(p;„t)p;„,+ +i5 p;„t— dttt, „,P(p;„t)p,„t (5 5)

bi(n)=2 f ™
dP;„tP(t)t;„t)[(1 t'5ttt;„—t)sin (nP;„t)+25t)It;„tsin(2ng;„t)] n+nT —5—/2

0
(5.6)

One should notice that bi(n) differs from a, (n), given
by (4.10), by terms of order 5. Equation (5.4) differs
from Eq. (4.9) also because of the presence of a term
proportional to g(n), in (5.4). We will show in the fol-
lowing that this term is very important, being associated
with the decay of the ensemble average of the electric
field and with the maser linewidth.

B. Phase dift'usion and frequency pulling

Let g(n, r) be the solution of the equation

d- = a
g(n, r)= —5 [b, (n)g(n, r)]d~ Bn

$2 Q2
[a2(n)g(n, r)] .

Bn
(5.7)

This is a Fokker-Planck equation quite close to (4.9).
Its stationary solution should be very close to p (n).
Furthermore, we will also have here two time scales,
corresponding to the local and the global approach to
equilibrium. If the initial distribution is close to one of
the minima of the corresponding potential [which should
be very close to the minima of VF(n)], situated say at
n =nL, then, for times much smaller than the passage
time, one can approximate n by nL in p(n). In this case,
an approximate solution of (5.3) would be

g (n, r) =exp[ p(nL )—r]g(n, r) . (5.8)

1

4Nex t cav

1+2NT
(p;„t)'+ t7'+

4nL
(5.9)

while the frequency shift is given by

ti tt~ ncav ~~eiNex int ~~ cav (5.10)

We can see therefore that the decay time of the off-
diagonal matrix elements p»+ &

is of the order of
4N, „t„„(forP;„t nL —1). F—or sufficiently large N, „,

For t t„„,g(n, r) coincides with the local equilibri-
um distribution gL (n), and therefore p(nt ) plays the role
of a phase-diffusion constant, its real part being associat-
ed, as we can see from (5.1), to the exponential decay of
the field. Of course, in order for this treatment to be
consistent, it is necessary that the corresponding decay
time be much larger than t„„while at the same time
much smaller than the passage time. This will be shown
below to be indeed the case, for sufficiently large N,„.

Contrary to what happens in usual laser theory, ' p
has an imaginary part, which corresponds to a frequency
shift of the radiation in the cavity at resonance with the
atomic transition. In real time units, one gets for the de-
cay constant,
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(1+2Nr )/16N, „nl t„„=(1+2Nr )/SNL t„,
coincides precisely with the contribution from dissi a-
tion to the hase-di
els." T

p - usion rate in one-photon laser m d-
e ~

mo-
The rematntng contribution to (5.9) comes from

e pumping, and it is also present, although not in the
same form, in the usual laser models. '

The frequency shift, on the other hand, is quite
micromaser, and can bec aracteristic of the two-photon microm, d

interpreted as a self-induced frequency pullin, which
occurs in spite of the fact that the atoms are initia11 in

nates from a quadratic ac Stark shift between states e )

mediate state
j
i ). According to Refs. 15 and 17, this

shift is given by

02, (N +2) A2, (N +1)
(5.1 1)

so that the atom, after entering thg e cavity, is no longer
in resonance with the field. As in th fs in e requency-pulling

a omic me ium pro-c ect, the refractive index of the atomi d
uces then a shift in the frequency of the field inside the

cavity. For one-photon masers, this Stark shift is much
smaller (in fact, it is absent in two-level atom models), so
frequency pulling is usually negligible when the atoms
are resonant with the cavity. In th t - he wo-p oton maser,

O.l—

this time will be indeed much larger than the local equi-

g obal equilibrium time constant, which grows ex onen-
tially with N . This

, w ic grows exponen-

before the long-time steady-state is attained, thus justify-

linewidth, of the order of (4N t )
' bex cav, may be much

smaller than the linewidth of the em te emp y cavity.
In (5.9), the term

the shift Ace can be much larger th han t e cavity width
I/t„„when P;„,» I [see Eq. (5.10)].

'g. e time-dependent behavior ofWe display in Fi . 12 the
e (t &or N =29 as calculated numericall

from Eq. (2.16), with n set
e numerically

e take - =3~ ~~, and assume that the initial state is a
coherent one, with (N) =29. Both the d

n e requency of the oscillations agree precisely with
the values given by (5.9) and (5.10). Ont . . . ne should notice

a q. . yields p(t) in interaction representation
so that these oscillations actually represent the beatin
between the field an

e eating

(5.1)].
e e and the cavity frequencies [ f Ec .

We show in Appendix B that the 6-expansion method
offers a natural way to find th h -d'ffe p ase- i usion constant
in t e usual laser theory, and we apply it also to find the
phase-diffusion constant in the one-ph te-p o on micromaser.

VI. SUB-POISSONIAN STATISTICS

It has been shown that the field inside the cavity in a
one-photon micromaser present ds, un er certain condi-

n e ot er hand, ittions, a sub-Poissonian statistics. ' 0 th
as been pointed out that the field emitted by two-

p oton lasers might present interest' ting s atistica prop-

CC

erties, and that these devices co ld b du e use to generate
squeezed" states of light. ' One should therefore ex-

pect to find these properties for a two-photon micro-
maser.

The normalized variance of the field inside the cavity

as a function of ItI;„„ is shown in Fig. 13. A ain
was numerically calculated from the steady-

state distributions resulting from (4 1) d 4.
e is seen to exhibit a sub-Poissonian statistics from

As P,„,~oo, the variance tends to a lim't'imi ing va ue,
which coincides with the variance of the 1'

bution (4.20).
The lar ge peak in Fig. 13 corresponds to the situation
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depicted in Fig. 3(b), in which the minimum of the po-
tential outside the origin has about the same height as
the one at the origin. This implies that the photon-
number distribution displays two peaks of approximately
equal height, thus yielding a large variance. A similar
argument holds for the peak around P;„,=8m /2, in Fig.
13; the two minima displayed in Fig. 3(c) have compara-
ble heights, for this value of P;«.

In Appendix C we discuss the fluctuation properties of
the field. For values of N, „up to 75, only a very small
transient squeezing is found. In fact, squeezing is
strongly affected by phase diffusion, so we should expect
it to become more important for larger values of N, „,
when phase-diffusion times get longer. A more complete
treatment will be presented elsewhere.

VII. CONCLUSION

Quantum effects may have a substantial inAuence on
the behavior of the two-photon micromaser. They are
specially important when the pumping rate is not very
high (low X,„). They make unstable the %=0 photon
state, which according to semiclassical theory is always
stable, and they also change the effective threshold for
laser oscillation.

The formalism we have developed is particularly use-
ful for the calculation of these effects. It leads to a
Fokker-Planck equation for the photon-number distribu-
tion, and it allows the calculation of phase-diffusion
effects for the micromaser. It represents also a very nat-
ural approach to this problem in usual laser theory. For
the specific case of the two-photon micromaser, the
diffusion coefficient is found to be complex, its imaginary
part corresponding to a frequency shift of the field inside
the cavity.

One should stress that all the predictions in this paper
concern the field inside the cavity. The statistical prop-
erties of the field can be substantially altered by the
transmission to the region outside the cavity.

The question arises then as to how these properties of
the field could be experimentally tested. They could in
principle be probed by an extra atomic beam, sufficiently
weak so as to have a negligible effect on the field which
is being measured. The upper-state population of the
outgoing atoms is given by the atomic reduced density
matrix, which is obtained from (2.10),

(7.1)

where p„(t; +At ) is the upper-state population of the
atoms which have entered the cavity at time t; and in-
teracted with it during a time At. Study of p„(t, +b, t)
as a function of At yields therefore information on
pz~(t; ). On the other hand, the atomic coherence yields
information on pN N 2.

(7.2)

and therefore on the squeezing properties of the field.
The above results evidently concern quantum averages

over an ensemble of identically prepared systems. They
are not related, therefore, to the more current experi-
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APPENDIX A: DERIVATION
OF A SCULLY-LAMB EQUATION OF MOTION

FOR THE MICROMASER
We discuss in this appendix the assumptions which

lead to Eq. (2.13) for the reduced density matrix p of the
field inside the micromaser cavity.

As in the Scully-Lamb approach to laser theory, we
assume that dissipation can be neglected when calculat-
ing the change of p due to the interaction with a single
atom. This should be true if the interaction time t;„, of
each atom with the field inside the cavity is much small-
er than the cavity damping time t„,. In this approxima-
tion, the contribution from the single atom and the field
loss reservoir are considered to be independent. This is
actually quite apparent in Eq. (2.13).

We suppose yet that one atom at most interacts with
the cavity field at a time. Let t; be the time when the ith
atom enters the cavity. &e write then

Lht,
p(t;+, ) =e 'F(t,„,)p(t, ), (Al)

where the operator F(t;„,) describes the change of p(t; )

due to the interaction with a single atom and the ex-
ponential describes field relaxation during At; = t; + &

—t;.
We do not assume here that the operator F(t;«) is

close to unity [in this case, it is easy to show that (2.13)
follows from (Al) without any further assumption, by

Lht,
setting F = 1 + 6F, e ' = 1+L ht;, and neglecting the
product L5Fb, t, ]. This is not allowed in our case, since
each atom develops one or more Rabi oscillations while
transiting through the cavity.

We assume instead, as in Ref. 13, that the incoming
atoms obey a Poisson distribution, which implies an ex-
ponential distribution for the time intervals between two
successive atoms:

P(b, t, ) =Re (A2)

mental procedure of continuously monitoring the sys-
tem. In particular, the observation of multistability and
tunneling in a single realization of the experiment cannot
be discussed directly in terms of those ensemble aver-
ages; the dynamical behavior of a continuously moni-
tored system evolving from an equilibrium state to
another remains an open question, somewhat related to
the "quantum jump" problem. This subject is,
however, outside the scope of this paper, and will be ad-
dressed elsewhere.

Note added in proof. Successful operation of the two-
photon continuous-wave maser described here has been
achieved in our laboratory after this article was submit-
ted. The device oscillates on the 40S~39S two-photon
transition of Rb.
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R ' being the average time interval (t„). The density
operator is now a function of the random variables At;,
assumed to be statistically independent. The statistical
average is given by

p(t, +&) = f ddt;Re 'e 'F(t;„,)p(t; }
0 e=g(2N. .)

~ /r (B5)

the atom-field-coupling constant, and y
' is the atomic

lifetime. Evidently, r, corresponds to our pumping rate
R and y

' is related to t;„,. We have in particular
ra =+ex ~~cav.

We define now

1

L F(t;„)p(t;) .
1 ——

R

so that

a =e'/t„„B=2e'/N, „t,.„. (B6)

Since At; « t„„one can replace the left-hand side of
(A4) by p, and Lp(t, +&) by Lp (t;). This amounts to as-
suming that the statistically averaged p does not change
much between t; and t;+, [before this average is taken,
the operator p(t) may present large fluctuations, due to
the fact that F(t;„,) is not close to unity; this is made
evident for instance by Fig. 8 of Ref. 15]. One gets thus
the rate equation (2.13). For the sake of notational sim-
plicity we suppress in the text the bar over p.

We see therefore that, when F(t,„,) is not close to uni-

ty, a Poissonian atomic distribution is implicit when
writing (2.13). Indeed, using arguments similar to those
in Ref. 13, one can show that the diffusion coeKcient
az(n), given by (4.11), corresponds to a Poissonian distri-
bution of the incoming atoms.

APPENDIX B: PHASE DIFFUSION
IN THE SCULLY-LAMB MODEL
OF THE ONE-PHOTON LASER

We show here that the 5-expansion method provides a
very natural way of getting the phase-diffusion constant
in usual laser theory.

We start from the Scully-Lamb equation of motion for
the off-diagonal matrix elements of the laser field re-
duced density operator [Eq. (16) of Chap. 17 of Ref. 18]:

1 (2N+ 3)2 +B/4
2 1+B (2N+3)/2A +(B/4A)

A [N(N+1)]'"
1+B(2N + 1)/2A +(B/4A )

C——(2N + 1)px x+ i

where
+C&(N+1)(N+2)p~+, ~+2, (B1)

2 =2r, (g/y)

B =8r, (g/y)

C =co/Q =t,,„'

(B2)

(B3)

(B4)

r, is the atomic pumping rate into the excited state, g is

In (A3) we have decorrelated the average over the
Lb, t,product e ' F(t;„,)p(t; ), since p(t; ) does not depend on

b, t; (it depends only on the previous time intervals). '

We get then, from this expression,

R [p(t; +&) p(—t; )]=Lp(t; +~)+R [F(t;„,)p(t;) —p(t; )] .

(A4)
w=r, t .

Equation (Bl) becomes then

(B8)

d 1 6 (2n +35)+6 5 /2g(n, r)= —— g(n, r)dr ' 2 1+6 (2n +35)+8 5 /4

6 &n (n +5)+ g n —5, r)1+8 (2n +5)+8 5 /4

6
n +—g(n, r)

2

+&(n+5)(n +25)g(n+5, r) . (B9)

Developing now this expression in powers of 6, we get

d a
g (n, r) = —p(n)g (n, r) —5 [f&(n)g (n, r)]d7. i3n

where

$2 Q2
+ [f2(n)g(n, r)]+O(5 ),

Bn
(B10)

$2
p(n)= (1+8 ),

Sn
(B1 1)

62f, (n)=
1+262n

35/2n+ 1+26 n
—n ——,

2
' (B12)

6nf~(n)= +n .
1+26 n

(B13)

As in the two-photon maser case (see Sec. V), f, ( n )

and f2(n) are, within terms of the order of 5, identical
to the drift and diffusion coefticients of the Fokker-
Planck equation for the diagonal photon-number distri-
bution p(n, r). If p(n) were equal to zero, g (n, r) would
thus evolve rapidly into a steady state approximately
equal to the steady-state photon-number distribution
ps(n). There is only one potential minimum around

1 1ns= 62 (B14)

for the Scully-Lamb model discussed here and the steady

The threshold for oscillation is given by the condi-
tion' 3 =C, and therefore corresponds to 6=1.

We define also

n =N/N, „, 5=1/N, „, g(n, r)=pjv&+&(t), (B7)

where ~ is the dimensionless time
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state is reached within a time of order t„,. If the laser
is well above threshold, ps(n) is well peaked around ns.
Taking now into account the term proportional to p(n, ),
we can approximate the solution of (B10) by the adiabat-
ic expression 40

—p(nS )

g (n, ~) =Ps(n )e 0 (B15)

The field expectation value thus decays with a rate
which can be identified with the phase-diffusion
coefficient and which, in real time units, is

20—

p = ra p(ns ) =(1+6 ) /8Ns t cav (B16)

g(n, r) =g(n, ~)[cos(P&n+5)cos(P&n +25)—1]d~

where Nz ——n&N, „ is the average value of N in steady
state. The constant p, given by Eq. (B16), is indee
much smaller than t,„', which validates the adiabatic ap-
proximation made in writing Eq. (B15).

Expression (B15) corresponds precisely to the Scully-
Lamb ansatz, ' to which we arrive, in the present for-
malism, in a very natural way. The phase-diffusion con-
stant (B16) coincides with the one found by Scully and
Lamb, ' in spite of the fact that, in our treatment, no ex-
pansion of the equation (Bl) in powers of B/2 has been
made.

In the usual Scully-Lamb model, the atom-cavity in-
teraction time is averaged over an exponential distribu-
tion. ' It is possible to consider instead a fixed interac-
tion time t;„„as is usually done in the context of micro-
maser studies. ' ' ' In this case, multistable operation of
the system becomes possible, exactly as in the two-
photon maser situation discussed in this paper. The
method of this appendix can again be applied in order to
obtain the phase-diffusion coefficient in this case. We
s art t from the corresponding equation of motion for the

.13,31reduced density operator of the field:

0
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FIG. 14. Evolution of the quadrature components variances
of the field inside the cavity. The decay time is twice the
phase-diffusion time, while the oscillation frequency is twice
the frequency shift. (a) Same conditions as in Fig. 12
(N,„=30); (b) evidence of squeezing for N,„=75, other condi-
tions being the same as in (a). Squeezing is strongly affected by
phase diffusion for this value of X,„. Times are expressed in
units of t„„.

+g (n —5, r)sin(P&n )sin(P&n +5)
where we have used the definitions (B7) and (B8), and we
have further defined

,' (2n + 5)—g(n, r )

+&(n +5)(n+25)g (n +5,~), (B17)

P=(N, „) gt;„, .1/2

Developing (B17) in powers of 5, we get

(B18)

g n, r)= — (1+/ )g(n, w) —5 g(n, w) sin (P+n ) — —sin(2$&n ) n ———
Ig(n, ~)[sin (P&n )+n ]I +0(5 ) .5 3

Bn
(B19)

From this equation, we get the phase-diffusion con-
stant

p=(I+/ )/8NLt„„,

where Nl is the number of photons associated with the

local maximum of the steady-state distribution which is
closest to the initial average photon number (assuming
that the initial distribution is sufficiently sharp —cf. dis-
cussion in Sec. VB). This result makes it clear that the
frequency shift found in Sec. V B is indeed a peculiarity
of two-photon micromasers.
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APPENDIX C: FLUCTUATIONS
IN THE TWO-PHOTON MICROMASER

a, =a +a, az ——(a —a")/i . (Cl)

Let da i and da2 be the variances of a ] and az, respec-
tively. Squeezing will occur if either da& or da2 gets
smaller than 1. '

From

dal ——2Re(a )+ I+2(a a ) —4Re (a ),

In order to discuss the fluctuation properties of the
field, let us consider the quadrature components,

daz ———2Re(a )+ 1+2(a a ) —4Im (a ), (C3)

it is clear that these variances depend on pzz, pz&+&,
and pz,&+2. Since the oA-diagonal elements of the den-
sity matrix go to zero as t~ ~, it follows that in this
limit da 1 and da 2 go to 1+2 ( N ), and therefore the
steady state presents no squeezing.

Squeezing could occur, however, after the establish-
ment of local equilibrium, but before phase diffusion
takes place, that is, for times larger than t„, but smaller
than K ' given by (5.9).

A Fokker-Planck type equation for p,»-+z can be cal-
culated in the same way as above for pz z+ &. Let
h (n, r)=pz~. +~(t), with n defined by (4.3) and r=Rt
We find then, setting for simplicity nz- ——0 and o. =0,

h(n, r)= —h(n, r) 45 P;„,+—+2i5$,„, 1 — 1—
d w

' ' '"' 4n 2n

sin(2n P,„,)
2ng;„,

+5 (h(n, r)[cos(2ng;„, ) —55/;„,sin(2ng;„, ) —1+2n -+25 —2i5$;„,[c so(2ng;„, ) —55$;„,sin(2n(t;„, )][)a
Bn

02
+5 [h(n, r)[1 —c os(2ng;„, ) +n ]] +0( 5) .

Bn
(C4)

It follows from this expression that the decay time for

p&&+& is four times smaller than the decay time for

p»+, , while the oscillation freque~~y of p~ ~+2 is

twice the frequency of pz&+& ~ This implies that the
term Re(a ) in (C2) and (C3), which depends on

pz &+2, will decay two times faster than the terms
Re (a ) and Im (a ), which involve p~&+, . It is clear

also that da& and da2 will oscillate with a frequency
equal to twice the frequency shift found in Sec. V.
These predictions are precisely verified by the numerical
calculation, starting from the master equation (2.16), of
da& and da2. The result is exhibited in Fig. 14, which
also displays the occurrence of a very small transient
squeezing of the field.
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