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Delay-induced instability in a pendular Fabry-Perot cavity
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It is shown that if time delays are not neglected, a pendular Fabry-Perot cavity is no longer
stable in some cases of actual interest, including some configurations of each arm of the inter-
ferometers designed to detect gravitational radiation.

Over the past several years considerable attention has
been devoted to nonlinear effects in optics, including bi-
stability and chaos. ' In particular, the multistability of
Fabry-Perot cavities has been studied, both experimen-
tally and theoretically. ' These devices might have
practical interest in different applications and their use
is under consideration for constructing interferometers
to detect gravitational radiation.

One of us (L.B.) has shown by numerical integration
that the equilibrium points of a very small cavity which
appear to be stable if analyzed in the adiabatic approxi-
mation, are actually unstable in certain cases if the time
delays are considered. In the following we shall analyze
in what cases this instability appears due to the heredi-
tary nature of the cavity governing equations.

Let us consider the pendular Fabry-Perot cavity of
Fig. 1. We shall assume that the mirror M& has no
losses and that the reAection and transmission
coefficients are given by R = cosOe '" and
T =i sinOe ' . Similarly, we shall suppose that on mir-
ror M2 the refiection is metallic and without losses. Let
us assume that the incoming light field at 3 is

P~ (t) =i/P exp[ i (2~/X—)(et+a), P being the laser
power. In these conditions, the equations of motion for
the mirror M2 are given by the differential equation for
the x position,

x+ —x+0 x=
Q Mc

and the functional equation for the light field P at the

mirror,

D, +x
p(t)= Tp„ t— —RP(t) . (2)

If we use the magnitude

f= —i expi [2~/A(ct D, —x+a)+—o. ]P

instead of the light field P, the equation of motion be-
comes the following functional-differential system:

x+—x+0 x=z 2 If I

'
Q Mc

(4a)

4~f (t)=i/P sing —cos8exp i (D, +x)—p f(t) .

Taking x(t)=x(t)=x(t)= . and using the fact
that

I

cosO
I

& 1, the resulting equation of motion in the
adiabatic approximation is an ordinary differential equa-
tion:

x+ —x+0 xQ .

In Eq. (1) Q and 0 are, respectively, the quality factor
and the proper angular frequency of the mirror suspen-
sion, M is the mirror mass, and 2

I P I
/c is the force

due to the radiation pressure. The retarded time t is
defined by the following equation:

c(t t')=2D, +x(—t)+x(t) .

2P
Mc

sin 0

1+ cos 8+2cosOcos (D, +x)—p
2 4~

M) The stationary solutions of system (4) and Eq. (5) are
the same and given by x(t)=xo and f (t)=f0, where xo
is the solution of the transcendental equation

Ds

2PAxo ——
Mc

sin 0

1+ cos 0+2cosOcos (D, +xo) —p
2 4m

FIG. 1. Pendular Fabry-Perot cavity.
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and fo is defined by

0
&P sin8

4n1+ cos8exp i (D, +xo) —p

In many cases, Eq. (6) has many different solutions
and, thus, the system displays multistability. ' In fact,
to every peak of the radiation pressure there corresponds
two (or none) equilibrium points, as depicted in Fig. 2,
the second one being stable in the adiabatic approxi'ma-
tion. From now on we select one stationary solution of
this last type that it will be characterized by a parameter
e defined by

4m
(D, +xo) —p=(2N+1)n+e . (0&e&~) .

If we introduce the deviation from this equilibrium
point, y =x —xo, and the magmtude g =f /fo —1, the
equation of motion (4) reads

I I

(2N 1)rv (2N 3)rr
FIG. 2. The radiation pressure and the restoring force. In

each peak there are two equilibrium points, but only the one
on the right is stable in this adiabatic approximation. N is
(4~/X)(D, +x)—p.

y+ —y+0 y=S( ig i
+2Reg),

. 4~
g =g exp i y (g+1)—1

(9a)

(9b)

teristic equation

0, 2 8m
z + —z+0 = — Sb, cos8sine[1+D(r z)]

Q

where

(14)

where y =y(t ), g =g(t ), c(t t ) =2—(D, +xo)+y +y,
g= cos8 e",

and

2Ifo i'
Mc

csin 0,2P
Mc

(10)

'=1+ cos 0—2cosOcose .2

To analyze the linear stability of the equilibrium point
at y =0(x =xo), we must linearize the system (9) to ob-
tain

y+ —y+A2y =2S Reg, (12a)

. 4m
y+g (12b)

0 . 2 Szry+ —y+0 y= — S g Imp y(k) . (13)

Here we have used the notation y ' ' to indicate the
value y(t '"'), where we have defined t "'=t and

(k 1) (k)t =t, recursively.
If we put into Eq. (13) y eve", we obtain the charac-

By iterating the last equation and using the fact that
~ g ~

& 1, the functional-differential system (12) appears
as the following retarded-diQ'erential equation:

D(r, z)=6[(e'" 1)+(e '—"—1) cos 8],
and r =2(D, +xo)/c is the delay corresponding to the
equilibrium point. Any solution of (14) with Re z&0
corresponds to an unstable equilibrium point of the sys-
tem (9) [Eq. (14) is probably meaningless for Re z &0
and stable equilibrium points of (9) because on the
right-hand side of Eq. (13) would appear arbitrarily great
values e" that would not satisfy the linear approxirna-
tion hypothesis].

If the equilibrium point exactly corresponds to the
maximum of the radiation pressure, the parameter e and
the right-hand side of Eq. (14) are zero and, therefore
there is no solution of Eq. (14) with Rez &0. This par-
ticular case has been analyzed by Tourrenc and
Deruelle. We shall consider only the nonexceptional
cases e&0

If we neglect the delay, D(O, z) =0 and the characteris-
tic equation (14) becomes exactly the one corresponding
to the adiabatic approximation. In this case, also, the
equilibrium point that we have selected is stable. But if
we keep the delay, the transcendental equation (14)
might show among the new solutions one (or some) with
Rez &0. To examine further the last possibility, we can
study the bifurcation, that is when Rez =0 in Eq. (14).

If we assume that all the parameters are known ex-
cept, for instance, the power P, and we put z =ip we ob-
tain from (14) and (15)

P —Q ) sin 8sin(Pr)= —P[(1+ cos 8) cos(Pr) —2cos8cose], (16a)

0 McA. [(1+cos 8) cos(Pr ) —2 cos8cose] + sin 8 sin (Pr )

b, sin 8 cos8 sine sin(Pr )
(16b)
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By solving Eq. (16a) we can know the angular frequency
P at which the bifurcation occurs, and substituting this
value for P in (16b) we obtain the laser power at which
that happens, that is, the threshold power to make un-
stable the equilibrium point.

We have applied a method similar to the one just de-
scribed to a very small interferometer that had been
found to be unstable for certain values of the parame-
ters. It has been confirmed by numerical integration
that the bifurcation occurs very likely for the parameter
values predicted by the characteristic equation.

In the following we shall assume that 0&~1, as in the
case of each arm of the very long interferometers pro-
jected for detecting gravitational waves. " In this case
the width of each peak of the radiation pressure is
I9 A. /4m. We shall assume that the radiation pressure is
not negligible at the equilibrium point and that we are
not exactly in the maximum. So, we shall characterize
the e parameter by the value 5 defined by the equation

,' M, with 0—(5 ( 1.

If we take, for instance, D, =3 km, k/2~=10 m,8=10, 0=6 s ', M =100 kg, and Q =10, we obtain
from (14) and (15) a bifurcation which occurs for P= A
and P —1/5 && 10 ' W. Thus, this cavity in this
configuration with non-negligible radiation pressure will
be unstable except for laser powers much smaller than
the one desired ( —1 kW) or when the selected point is
extremely close to the maximum of the radiation pres-
sure. This instability, predicted by the characteristic
equation, has also been confirmed by numerical integra-
tion and would presumably coexist with the effects due
to thermal noise that we have neglected here.
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