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An extension of the connected moments expansion to nonlinear Hamiltonians is presented. The
new method enables construction of rapidly convergent series for the ground-state energy which re-

quires a relatively small amount of numerical effort.

Nonlinear effective Hamiltonians are useful in several
branches of quantum physics and chemistry. In particu-
lar, the nonlinear Schrodinger equation

)=E
with the Hamiltonian of the form

systems described by the nonlinear Hamiltonians of the
form given by Eq. (2). Generalization to other forms is
straightforward and therefore will not be given here.

Let
~
Q) be a trial ket having a nonzero overlap with

the exact wave function of the ground state. The
wavefunction

H=HO+ ga;(A;)B;, (2) i Q, ) = (Q
i
exp( —tH)

i
Q) ' 'exp( tH /2)

i
Q)— (4)

where
converges to the ground-state eigenfunction as t ap-
proaches infinity. Similarly, the function

and a; are the respective coupling constants, describes the
molecule-solvent interactions' and therefore is of great
interest for physical chemistry.

Solution of the nonlinear problem (l) is usually accom-
plished by iteration of a linearized Hamiltonian eigenprob-
lem or by application of the perturbation theory. The
first approach suffers from its numerical rather than alge-
braic character, whereas the second one is plagued by the
usual shortcomings of the perturbation theory, namely,
complicated formulas and problems with convergence for
large perturbations. Size extensivity of the calculated en-

ergy is not guaranteed, as no analog of the linked-clusters
theorem is known for the nonlinear perturbation theory.

Very recently a new method for the solution of many-
body problems has been developed. The connected mo-
ments expansion (CMX) provides a rapidly convergent
series for the ground as well as the excitation ener-
gies. Within the CMX approach, a proper handling of
the size extensivity is extremely easy to achieve and the
calculation of the energy requires a rather modest amount
of numerical effort. Having all those advantages in mind,
we present here an extension of the CMX approach to the

F(A, t)=(Q,
~

A
~
Q, )

conforms to the limit

lim F(A, t) = (A )t~ oo

F(A, t)= g( t) I, +,(A)/j!, —
j=0

(7)

where the generalized connected moments Iq(A) are
defined recursively as

j—1

I~(A)=b, (A) —g k l Ig(A)(Q~H~ " Q), (Sb)
k=1

for any operator A having a finite expectation value ( A ).
Taking into account the Taylor expansion of the ex-

ponential operator in Eq. (4), we arrive at the series repre-
sentation for the function F(A, t):
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TABLE I. Exact [Eq. (15)] and approximate [Eqs. (19)—(22)] energies of the ground state of the non-
linear harmonic oscillator [Eq. (14)].

0.01
0.02
0.05
0.10
0.20
0.50
1.00

E„
0.502 482
0.504 927
0.512 060
0.523 340
0.544 017
0.595 744
0.662 359

E(].I)

0.502 500
0.505 000
0.512 500
0.525 000
0.550 000
0.625 000
0.750 000

+( l. 2)

0.502 488
0.504 951
0.512 199
0.523 836
0.545 636
0.601 884
0.675 391

+(2. 1)

0.502 493
0.504 975
0.512 348
0.524 405
0.547 727
0.612 500
0.708 333

0.502 485
0.504 939
0.512 126
0.523 565
0.544 681
0.597 573
0.664 004

and the generalized moments b~ read

(g~H AH~ " 'ig) . (9)

For the operator A being the Hamiltonian, the above for-

mulas reduce to those for connected moments of the
Hamiltonian. ' '

With the knowledge of a limited number of connected
moments it is possible to obtain approximations to the
limits (6). The nth order approximation to the observ-
ables associated with the Hamiltonian (2) reads

I3( A;) I„+)(A;) Ii(A;)

I„~((A;) Ii„((A;) I„(A;)

By analogy, the ground-state energy is approximated to nth order by

I3(H) I„+)(H) Ip(H)
E„=I ) (H ) —[I~(H ), . . . , I„(H ) ]

I„+,(H ) I~„)(H ) I„(H )

lim (A;)„=(A;), i=1, . . . , Xn~ oo
(12)

If all the (modified) connected moments are finite, then lations for the Hamiltonian describing a harmonic oscilla-
tor with the force constant depending on the mean square
of the amplitude of vibration:

and H=( ——,')d'/dx +(x /2)+a(x )x (14)

lim E„=E . (13) The exact values of E and the associated observable (x )
can be easily calculated from the relations

Equations (8)—(11) form a conceptual basis for the
CMX approach to the solution of nonlinear problem (1).
To calculate an approximate ground-state energy, one has
to compute a set of modified connected moments, Eqs. (8)
and (9), for the Hamiltonian and all the operators
A;, i =1, . . . , N. The next step is to approximate the
values of associated observables, ( A; ), Eq. (10). Because
the modified connected moments themselves depend on
( A; ), one has to solve a system of nonlinear equations to
calculate the observables. This can be done easily using
algebraic methods (for lower orders of CMX) or the
Newton algorithm. Finally, having computed ( A;), we
calculate an approximate ground-state energy from Eq.
(11). We denote the rank of approximation by CMX
(m, n, , n2, . . . ) where the energy was calculated up to mth
order, and (A)), (A2), . . . were calculated up to their
n, th, n2th, . . . orders.

To illustrate the above considerations we present calcu-

8E —2E —cx =0
and

(x ) =(4E)

whereas the approximate values are given by

(x ')(, )
—

—,
'

(x )(,)
——[ [(4+a) + 16a]'~ —(4+a) ] /(4a),

E() )) =(2+a)/4

E(q )) =(2+a)/4 —( —,')a /(2+a),

E( ) p)
———,

' + ( —,
'

) [ [(4+a ) + 16a ] ' —( 4+a )],

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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E(~ ~I
———,'+( —,')[[(4+a) +16a]' —(4+a)I

—( —,', )I [(4+a) +16a]'~

—(4+a)) I[[(4+a) +16+]' —aj,
(22)

for the wave function describing the ground state of an
unperturbed (a=0) oscillator chosen as the trial ket

~ Q ).
In Tables I and II we compare all those numbers with the
exact ones.

The example, although slightly artificial, illustrates con-
veniently the major features of the CMX approximation.
The CMX(1, 1) energy, equivalent to the one calculated
within first-order perturbation theory, diverges from the
exact energy even for small a. The CMX(1,2) result ac-
counts for the second order (x ), but the energy itself is
calculated only up to first order. On the other hand, the
CMX(2, 1) result includes second-order effects on the ener-

gy, calculated with an unperturbed value of (x ). Both
CMX(1,2) and CMX(2, 1) energies are superior to the
CMX(1, 1) result; however, the CMX(2, 2) energy com-
pares the most favorably with the exact one, since it in-
corporates the second-order eAect on the energy and the

TABLE II. Exact [Eq. (16)] and second order [Eq. (18)]
values of (x ).

0.01
0.02
0.05
0.10
0.20
0.50
1.00

0.497 531
0.495 121
0.488 224
0.477 701
0.459 545
0.419 643
0.377 439

0.497 518
0.495 074
0.487 948
0.476 719
0.456 356
0.407 537
0.350 781

value of (x').
It is possible to expand the exact energy, Eq. (15), as a

Taylor series around the point a=O which yields the
coeScients of the perturbation series. Inspection of those
results reveals that the perturbation theory gives in this
case very unsatisfactory results and probably diverges in
higher orders. Having in mind the above example as well
as all the advantages of the CMX approach, we hope that
the new method will find widespread applications in non-
linear problems of quantum theory.
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