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Energy-loss distributions of SO —250-keV protons traversing thin solid foils:
Determination of the skewness coefBcient and inhuence of foil roughness
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From new measurements of energy-loss distributions of proton beams in thin solid foils we
determine the second- and third-order moments of the energy spectra, and evaluate the skewness
coefficient y, which is of interest in studying the asymmetry of the energy-loss spectra. We present
calculations of y based on electron gas and Thomas-Fermi models; we compare these calculations
with the experimental results and with the values derived from Bohr's energy-loss treatment. We
present a theoretical analysis of the effects of surface roughness on the skewness of the energy-loss
distributions.

When a monoenergetic ion beam traverses a thin solid
foil, the ions are slowed down and dispersed in energy.
A well-studied quantity pertaining to this process is the
average energy loss, or stopping power. To obtain fur-
ther information about the energy-loss process it is of in-
terest to analyze not only the mean energy of the distri-
bution, but also its shape, ' which can be represented
through the higher-order moments of the distribution.
Studies of the energy spread (straggling) have already
given interesting information on energy-loss fluctuations.
Moreover, recent theoretical and experimental work
stimulated further interest in studies of higher-order mo-
ments. In particular, the difference between the mean
and the most probable energy loss is related to the
third-order moment of the distribution.

We present in this letter first experimental results of
the skewness coefficient of energy-loss distributions for
proton beams traversing thin solid foils, as well as
theoretical results based on existing models. We finally
analyze the influence of foil roughness on the value of
this coefficient.

According to the Landau-Vavilov theory' the shape
of the energy-loss spectrum for thin targets should be
asymmetric towards the side of higher energy losses.
For thicker targets, the shape should approach the
gaussian form as predicted by Bohr (however, if the
thickness is sufticiently large, so that the energy lost in
the medium is not a small fraction of the initial energy,
the shape of the distribution becomes again asym-
metric ). The case considered in this work corresponds
to the thin-target case, with low deviations from the
Gaussian form. The asymmetry of the distribution can
be well represented by the "skewness coefficient"

y=&&E')/(&E')' '
where ( hE ) and ( hE ) are the second and third mo-
ments of the energy-loss distribution, defined as
&~E")=&(&E)—E)").

The experimental setup has been described in a previ-
ous paper. An ion beam from a 300-kV Cockroft-
Walton accelerator is magnetically selected in mass and
collimated by two 1-mm-diam. diaphragms to +0.05'.
Immediately behind the target holder a pair of electro-
static deflection plates permits an angular analysis of the
beam. The particles are detected by a plastic scintillator
and a photomultiplier tube, the angular acceptance of
the detector being 0.05'. The energy analysis is per-
formed by a 90' cylinder-sector electrostatic analyzer.
The measured energy resolution of the whole system, in-
cluding the energy spread of the incoming beam, was
maximal 0.5%. The targets are self-supporting, 2-mm-
diam. thin films prepared in this laboratory by evapora-
tion, under clean vacuum conditions, on a plastic film
that is later dissolved. To avoid foil thickening effects
by ion bombardment, ' fresh foils and low ion doses
(10 ' C/mm ) were employed, and the target chamber
was trapped by liquid-nitrogen traps at its entrance and
exit. The foil thickness was estimated from the mea-
sured energy loss, using standard stopping-power
tables. "

To obtain the values of the second and third moments
of the distribution from the primary experimental data,
one must take into account the finite spread of the in-
cident beam. This was accomplished through the
analysis of the moments of the incident and emergent
energy distributions, F&(E) and F2(E), of the proton
beams. If we denote by Fo(E,E') the distribution corre-
sponding to the "ideal" experiment using a monoener-
getic incident beam of energy E', then F

&
and F2 are re-

lated by

F2(E)= J dE'F, (E')Fo(E,E') .

Using this relation we can deduce the moments of Fo,
after careful evaluations of the moments of F& and F2.
To evaluate the moments of F& and F2 from the experi-
mental distributions, the spectra were smoothed by a
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five-neighbor geometric weight function and noise was
subtracted. To correct for the fact that the moments
were determined from a finite-energy-range spectra (not
ranging from —cc to + ao), we analyzed the incidence of
this truncation using Edgeworth distributions of similar
parameters; the corrections to the moments obtained in
this way were applied to the experimental data. In all
the cases we found that the experimental spectra could
be well represented by the Edgeworth distributions cor-
responding to the corrected moments.

The theoretical analysis is based on the electron gas
formalism, in terms of Lindhard's dielectric function
e(q, cv). Using this approach, the energy-loss moments
Qi for a particle of charge Zie and velocity u can be
written as an integral over the wave vector q and the fre-
quency m, in the form'

(Zierv )

Q, =——,' L, , (n, u)
v

(b.Eii ) =iz~x =4rrZiZ2e ¹,
( bEii )—:Prix = 47TZ tZ2e,Vxmu

(7)

and hence the skewness coeScient in this approximation
becomes

mediate consequence that the skewness coefficient y, Eq.
(1), decreases with I/+x (the linearity with ¹ applies
only for the first three moments as already shown in Ref.
5).

We show in Fig. 1(a) the results for the energy strag-
gling for proton beams transmitted through a 180-A foil
of Cu (the values are represented here, for experimental
convenience, in terms of the width at half maximum W).
Figure 1(b) shows the results for the skewness coefficient
y as given by Eq. (1).

As a reference we write down the values of the second
and third moments according to Bohr's high-energy ap-
proximation

2Z2 2

ll
7TQU g 0

—1

e(q, rv)
(3) mv

(4~Z', Z, e'Xx)'"

f'+ 2
z + dz

[z +g fi(z)]
(4)

(where the integrals can be expanded analytically), as
well as for high velocities (u »uF ) (cf. also Refs. 6 and
12)

The calculation of these integrals, using suitable approxi-
mations for e(q, rv), ' permits us to obtain the following
analytical expressions for the cases of low velocities
(u «vF):

I., (n, u)= (4E, )'-'3
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We find from Fig. 1(a) a very good agreement between
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Here UF and co~ are the Fermi velocity and plasma fre-
quency.

The treatment of an atomic system with nonuniform
electron density n (r) follows the local-density approach
(LDA) first introduced by Lindhard and Scharff' for
stopping-power calculations and used later in various
energy-loss studies' ' (we remark, however, that the
use of the LDA in these cases should be considered as a
phenomenological approach). The local atomic average
of the electron gas moments are then given by

(Zte)
(Qi )=, f d r ruz(r)LI(n (r), u),

where co (r)= 47m� (r)e /m, —and n (r) was approximated
using the Thomas-Fermi model. Finally, the expected
values of the first three moments of the energy loss, for a
foil with atomic density N and thickness x, are given by
the relation (bE') =¹(Q~), l =1,2, 3. The linearity
of ( bE ) and ( b,E ) with the thickness x has the im-
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FIG. l. (a) Energy with 8 (8' =2.355 (b.E )) of the
energy-loss distribution for protons in Cu as a function of pro-
jectile energy. Present measurements, O. Calculations by Chu
(Ref. 16) for the cases of (1) uniform foil, ~; (2) Ref. 16, includ-
ing 10% foil roughness effect, 0; (3) Ref. 16, including 15%
foil roughness eff'ect, t. Prediction of the Bohr high-energy
approximation, . Present calculations, —- —-; and same
including 10% foil roughness effect, ———. (b) Skewness
coefficient y = ( b,E ) /( b,E ) ~ for the same case. Present
measurements, o. Calculations using Bohr's high-energy ap-
proximation, . Present calculations, ————;same, includ-
ing 10% foil roughness effect, ———.
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(bE'& = f f [(E(x ) & E]'f (E,x)—P(x)dE dx

=Px+ 3aS (5x &+S'(5x ' &, (8")

where x —= (x &
= fxP (x )dx, ( 5x '

& = f (x —x )'P (x )dx,
and we have used the relation ( E (x ) & = ( E (x ) & +S5x
to separate the terms of the integrals conveniently. The
terms Sx, ax, and Px are the expected values of (bE &,

(b,E &, and (bE & for a uniform foil of thickness x.
We consider now the case of low thickness fluctuations
and, from the previous relations, we expand the skew-
ness coefficient as follows:

(bE & 3aS
( bE2 &3/2 yo

P
3 S' (5x'&
2 cx

(9)

where yo ——pX/(ax) is the skewness expected for a
uniform foil, and we assume that the term in (5x & can
be neglected for the present discussion. Thus we find
that the skewness y could be larger or smaller than yo,
depending on the sign of the correction term. We can
characterize this result by the parameter

2(bE' &',

PS (bE &(bE' &o

(10)

where the second expression gives g in terms of the
values (bE'&v corresponding to a perfectly uniform foil.
The thickness fluctuations would then produce an in-
crease in the asymmetry if g& 1 and a decrease if g & 1.
It is interesting that this criterion is independent of both

the values of the energy width W obtained from the ex-
periment, from our calculations, and also from the cal-
culations by Chu. ' At these energies the straggling is
much smaller than in Bohr's approximation, Eq. (7),
which corresponds to a width Wz ——2. 55 keV.

Our calculations of both energy straggling and skew-
ness coefficient approach the Bohr values at very high
energies as should be expected, but in our energy range
the model yields a smaller straggling and larger asym-
metries (y & ya ) than obtained from Bohr's approxima-
tion. The experimental values for the skewness
coefficient y, Fig. 1(b), are also larger than ya. We also
observe that the experimental results for y fall between
the predictions of these models, as Fig. 1(b) illustrates.
This same behavior was found for the various foils used
in this experiment.

Let us now analyze the influence of foil thickness fluc-
tuations' ' on the values of (bE &, (bE &, and
(, b,E &. For a discussion of these effects we follow a
previous approach by Chen, Laubert, and Brandt. Let
f (E,x) be the energy distribution of emerging protons
for an ideal foil of uniform thickness x, and let P(x)dx
denote the actual fraction of particles traversing a thick-
ness between x and x+dx. Then we can calculate the
following combined averages:

(bE & = f f Ef (E,x)P(x)dE dx =Sx (8)

(bE &= f f [(E(x)& E] f (E,x)P—(x)dE dx

=ax+S'(5x'&,

the thickness x and its fluctuation ( 5x
Let us evaluate the parameter g with the Lindhard

model. For this purpose we write the values of S, o., and
/3 in the form

S =(aa/mu )G&(u) a=aaGq(v) P=aamv~G3(v)

with az ——4~Z]Z2e N. In terms of some appropriate
energy-loss functions Gi(v) we readily find the expression

2Gp(v)
71=

G&(u)G3(u)

(notice also that this is independent of the coefficient
4wZ, Z2e X). In particular, for the electron gas model
we write G~ L&(u——), Gz ——Lq(u)/mu, and
G3 L (iv)——/(mu ) in terms of the L functions of Eq. (3),
and we find again the simple relation g=2L&/L]L3. It
can be seen that this becomes a decreasing function of v.
In fact, for low velocities, using the corresponding ex-
pressions for Li(v), Eq. (4), we find that rI & 1 through
the range of valence electron densities of all the solid ele-
ments, whereas for high velocities the corresponding ap-
proximations yield values g &1. In particular, using the
Bohr results for aa and /3a, Eqs. (7) and (7') and

Sa 4vrZ, Z——2e N ln(2mu /I)

(with the quantum expression for the Bethe logarithm)
we find

isa =2/ ln(2mu /I) & 1 .

Notice in Fig. 1(b) that the transition rI &1 to il &1
(curve crossing) takes place in the energy range covered
by our measurements. As a consequence, the skewness
coefficient is not very sensitive to foil inhomogeneities in
this region.

In order to estimate the magnitude of the roughness of
our foils, we calculated the effects on the well-known
straggling values of Chu' and those arising from our
calculations following the above outlined procedure. In
Fig. 1(a) one can observe that a good agreement of our
W calculations with the experimental values is obtained
for zero roughness, whereas the values of Chu fit well
with (5x &'~ /x =0. 1, (i.e., 10% of foil roughness).
The same analysis performed with the other foils yield
also values between 10 and 15% of foil roughness.

In Fig. 1(b) we show our skewness coefficient calcula-
tions for foils with an estimated roughness of 10%%uo

(dashed line). One can observe that the inclusion of
roughness eSects improves the energy dependence as
compared with the experimental data. The remaining
discrepancy may indicate the limitation of this model,
which is based on currently used approximations.

In conclusion, we present in this work the first experi-
rnental determination of the skewness coefficient y, for
proton beams traversing solid foils. Calculations of this
coefficient in terms of higher-order moments for the elec-
tron gas, and Thomas-Fermi models, are in fair agree-
ment with the experiments. Both experimental and
theoretical results for the intermediate energy range (i.e.,
around the stopping-power maximum) covered in this
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work yield larger asymmetries than expected from
Bohr's approximations. We analyzed the eAect of sur-
face roughness on the determination of the skewness
coefficient and we find a parameter r)=2a /pS that de-
scribes the inAuence of roughness on this term. As a
general behavior we obtain a relative increase of y at
low energies (when rI & 1) and a decrease at higher ener-
gies (g & I ). We conclude that the analysis of the
energy-loss distributions, together with the roughness
erat'ect evaluation formulas, could provide a useful tool

for energy-loss data evaluations and for quantitative
studies of foil roughness e8'ects.
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