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Evaluation of cross section for electron capture by positrons
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We present an improved method for the calculation of positronium-formation cross section from
one-electron atomic targets of arbitrary charge Zq. The calculation is complete through second
order in the collisional potentials. We use this technique to calculate the positronium-formation
cross sections for 1s-1s electron capture from atomic hydrogen.

I. INTRODUCTION

With positrons it is now possible to achieve an under-
standing of high-velocity rearrangernent collision that is
not possible with heavier projectiles. Because the posi-
tron is of identical mass and opposite charge to the elec-
tron, observable interference effects can occur with posi-
trons but not with protons. Moreover, positronium (Ps)
formation in a bound electron-antielectron state is an in-
teresting phenomenon in total positron-atom scattering
events, which sets it apart from electron-atom scattering
where capture is not possible. The conceptually impor-
tant Thomas peak is a prominent feature in the
differential cross section well established by various mea-
surements' and calculations ' for electron capture by
heavier projectiles. But for electron capture by positrons
the Thomas peak is expected to vanish due to the
dynamical interference first noted by Shakeshaft and
Wadehra" (hereafter called SW), who presented a
method for calculation of positronium-formation cross
section in the distorted-wave Born approximation.
However, SW used plane-wave intermediate states,
which are not always adequate to describe the angular
distribution near the Thomas peak as pointed out by
Briggs et aI. Since new experimental data' '' for the
Ps formation are now rapidly accumulating, the need for
a better theoretical method is now evident.

In Sec. II we present a method for the calculation of
Ps-formation cross section from a one-electron atom.
Our calculation is the first calculation correct through
all second-Born terms. The present method differs from
the strong potential Born (SPB) approximation in two
ways. First, our method includes the internuclear poten-
tial excluded in SPB. Second, we include a second-order
distortion term not present in SPB. Furthermore, we
have used the positronium intermediate states in our
dominant amplitude instead of the simpler plane-wave
intermediate states used by Shakeshaft and Wadehra. "

The present technique is based in part on the tech-
nique of Sil and McGuire' (hereafter called SM). Out
of the four second-order terms in our calculations we
evaluate the two dominant terms following SM, but us-

ing a different Green's function. SM used the target
Green's function which includes the electron-target po-
tential to all orders, whereas we use the projectile
Green's function that includes positron-electron interac-
tion to all orders. The two other second-order terms,
called second-order distortion terms, have not been pre-
viously considered. The total transition matrix element
is finally reduced to a one-dimensional integral which is
to be evaluated numerically. Our recent calculation' is
based on the leading-order terms of this calculation.

II. THEORY

Let a fast positron capture an electron from a target
atom of effective nuclear charge ZT. The coordinate
system is shown in Fig. 1 and atomic units will be used
throughout the calculation. The full Hamiltonian for
the positron-atom system (we consider here only the ac-
tive electron, target nucleus, and the positron in this sys-
tem) can be written as

H =H, +V, (la)

or as

H =Hf+Vf,
where

H. = ——V ——VR
2 i 2

l 2 r
ZT

(lb)

1 2 1 2 1
Hf ——— Vp — Vg ——,

2p ~ 2M p'

ZT 1V=
R p'

ZT
Vf ——

R
ZT p= —,', M=2 .

r

The transition matrix element for electron capture by
the positron from the target atom is then given by

T = (pf ~

Vf(1+G+ V;)
~ p; ),

where G+=(E H+ig) ' and 1l;—and gI are initial
target state and final positronium state, respectively. We
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1
H/P/ —— Ki + c,„gi E——gi,2M

(5b)

c.&, and c„' being the eigenenergies of the hydrogenic
ground state and the positronium nlm state, respectively.

The matrix element in Eq. (3) can be broken into three
parts as follows:

FIG. 1. Coordinates for a positron e+, colliding with a tar-

get of an electron e and a nucleus ZT.

ZT ZT
R r

ZT1+G+
R

iK, R
P, =N„(r)e (4)

take the active electron to be initially in the 1s state and
the positronium is in the nlm state. Then

ZT
R

ZT
R

ZT

ZT

1+G+
—1

and

(p)e
= T)+ T2 —T3

satisfy the equations

H;p; =( —,'K; +E), )0; =Ep;

and

The term T, —T3 consists' of two second-order distor-
tion terms which are new, and T2 contains two second-
order terms which carry Thomas-type singularities.

Evaluation Of T~. To evaluate T, we note that

ZT
1+G+

R ZT
E — ——Vg +c) +s R

ZT
R

+E'g
P

iK; R4„(r)e (7)

We now neglect the potential ( —1/p) from the Green's function. Equation (7) then takes the form

ZT
1+6+

R

ZT
R

e ' N„(r) =++(K;,R)&P„(r), (8)

where E'=E —e&,
———,'K, and gz+(K;, R) is the on-shell

Coulomb wave function given by

and the final positronium state which we take to be a
ground state

pc+(K;, R) =e ~ I (1+iP)e
3/2

(p)=%I, (p)= —e ' with P, = —,
'

7r
(1 lb)

F ( iP 1 i —(K R —K R))

with p=pZT/E;. Using the result in Eq. (8) we can
write

For the evaluation of T'&"' we now use the integral repre-
sentation'

TJ — f
ZT +Xc(K 'R(4&, (r)) with

g ~ (ia, l, x ) = . f P ' p(a, t)e 'dt
27TE

(1 lc)

T1 Tl (10)
p (a, r) = r' '(r —1)-

where I is a closed contour encircling the points 0 and 1

once counterclockwise. Using Eqs. (1 la), (1 lb), and
(1 lc) we arrive at

where T'& ' and T'&' are the matrix elements with in-

teractions ZT!R and ZT/r, respectively. We shall now
show the evaluation of T'&"' only, because the evaluation
of T&

' is very similar to that of T'~"'.

The initial hydrogenic state

(1 la)

—P lP —~A —kr

T = llm
E~O 21TE r r

~KI-S+i(1 —f)K, R
Xe

p ( —P, t)dr dR dt, (12)
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where a =iK; t + c, , and

c = e ~ I (1+ip)ZT(/3)ZT )

Performing the space integrations we get

T," = lim „' L(t)p( P,—t)dt,8c . B B 10+,1+)
27TE c~O BE B

where L (t) is the Lewis integral'

(14)

[(T—Kf/2) +p, ](T +A, )[[T—Kf+(1—t)K,. ] +a I (V —UW)'~ V —(V2 —UW)'~2

with

V= i(, [[K,(l t) —Kf/—2] +(I3)+a) ]

+a(A, 2+Kj /4+P) )

+p, I A,2+a'+ [Kf —(1 —t)K;]'I,
UW= j [K;(1—t) —Kf /2] +(13)+a) I

)& [Kf /4+(k+p) )']([Kf—(1—t)K;] +(A+a) I .

where G = Au +2Pu +E and H = —(Bv2+2gv+F).
Here we note that the t integrand vanishes at

j
t

~

~co
and the integrand has a pole at t =G/H which is out-
side the contour I . So we can write (see Fig. 2)

2mi—Res(t =G/H),p ( I3, t)dt—
G —Ht

and we finally arrive at

Here we note that the result in Eq. (15) depends on the
product UW not on U and W separately.

We now use the following integral representation' for

T'1' ——16m' c J lim X(G,H) du,
0 c~O BE B

where

(19)

j
0

(16)
X(G,H)=G 'I' '(G —H-)'t-'. (20)

U=A +Bt,
V =P+gt,
W =E+Ft,

(17)

where A, B, P, Q, E, and F are functions of K;, Kf, i(.,
P„and a. Substituting Eqs. (16) and (17) in Eq. (14), we

get

where we have split the product UW in such a way that
both U and W are linear functions of t. We choose
U =[K;(1—t) —Kf/2]'+(p)+a)
W = [Kf /4+(k. +13))'] j [Kf—(1—t)K, ]'+(A+a)'I .

To evaluate the contour integral over I we now write

Similarly, the matrix element T'1"' in Eq. (10) can be
evaluated and we obtain

T

T'1 ' ——16m c I lim X(G,H) du .
0 Bi(, B 1

c~O
(21)

It is to be noted that the parameter c. can be put equal to
zero in Eq. (19) after differentiating with respect to E,
whereas in Eq. (21) one can put E=O before preforming
the derivatives.

Reduction of the matrix eIement T2. From Eq. (6) we
have

T2 — fB B 1 ~ p( —I3 t)dt
T&' ——16m c dv lim . Pr

0 ",' 0 B. BP, 2vri G Ht— ZT
R

ZT 1+G+ 1

P

Now we have

(18)
I

1+G+
P

iK., -R
1+G+ —— @„(r)e

P

11+ E —H+ig

iK, R

f 4„(p)e'P'd p(2~)'"

1

P

11+ E (Hf+ Vf)+ig—
i K. -[S—( 1 /2)p]

( ) iP ((1/2)P Sjd+3.
&, pe p ~
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where we have changed coordinate R to S—
—,'p and r to —,'p+S. We now ignore Vf ——ZT/R —ZT/r from G and ob-

tain

1+G+ 1 1 i (K, +p).S 3
)s(p)+C, z', (1/2)(p —K, )(P)d /

p (2~)'" (23)

where we define

~C, E', (1/2)(p —K; )(P ) +
1 2 1V' —— +i g

2p p

i (]/2)(p —K; )

e (24)

as the off-shell Coulomb wave function with E'=E —(1/2M)(K;+p) . Here we note that on-shell condition is
satisfied approximately if

e'=E — (K;+p) = [—,'(p —K, )]
1 2 1

2M '
2p

or

E = —,'(K;+p)'+ —,'(p —K;)'= —,'(p'+&, ') .

Now for the on-shell E =—(K; +e), . The off-shell energy —,'(p +E; ) thus slightly deviates from the on-shell energy
when —,'p, which is small compared to —,'K;, i.e., when

(K ))IE„I
we have the near on-shell condition satisfied. Using Eq. (23) in Eq. (22) and writing d r d3R =d pd3S (since the
Jacobian is 1), we arrive at

1

I
s ——,'/

I

1 + i (p+K; ).s
&c'.', ()/2)(p —K )(p)e ' d pd SC ), (p)d p .

(p

f i(K, —Kf+p) S
e

The integral over S in Eq. (25) can be evaluated as

e i (1/2)(K; —Kf+p) p
d S=4~Is+ —,pI IK, —Kf+pI'

(25)

Substituting this result in Eq. (25) we get
' 1/2

—((/2)(K; —K/+p) p + 1s(P) /(p 3

C, E', (I/2)(p —K; ) /
IK, —K, +p

(27)

ave 1
T2 ———3/32irZTNf f d p C&(, (p)

sinh(~v)
I
J+p

I

'

Following McDowell and Coleman' the integration over p in Eq. (27) can be evaluated to obtain

—,'/'+
I

&).
I

(v —p)

( [
( [(2p) —iu) +J'+2p (J+v+2ip)v)]I "I [p, +(v —p) ]

'+"
1

( p2 +~ 2
)
— I)v

+I ) (28)

where we have considered that the final positronium
state is the 1s state, as in Eq. (11b), and

p3/2
1

V= p) —2, v= 2Kf, V=K;
Iv —p I

'

K= —,'Kf —K;) J=K; —Kf, J+K+ =0 .

Keeping the term
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ve
ho+h1x ho =

sinh(nv)

2V1
—2&v(

1 —e

h1 ——hp 1—
—277v

127TV]e
—2 llv )

1 —e

G 1

(v —p) [p, +(v —p) ] p +(v —p)

FIG. 2. Illustration of the contour I in Eq. (11c) with the
pole point t =G/H of the integrand in Eq. (18).

1(p2 —2) '1
G 1

G
&& 1+2x'(1 —iv, ) —ivlx ln +2

u (u +pl)

x'=p v/(p, +v ),
and

G = —,'[(2pl iu) +—J +2p (J+v+. 2ip, v)] (29)
G

(v —p)'(p', +K')

—lv
1

(p, +Ic )

in Eq. (28) unaltered, we then expand other p dependent
terms in powers of p/U, following closely the method of
Sil and Mcguire. ' The various expanded terms are

v= 1 =vl(1+x), vl ——1/u, x =p.v/u 2

V —p

;(1—2y), y = Jp/( J' +p'),
I
J+p

I

' J'+u'

1(p2+ It 2
)

1

—l vl Gx G '
1 —2iv, —ixv1ln

2(p2+It 2)
(30)

We now substitute all these expressions in Eq. (28) and
perform the derivative with respect to pl. Terms
through first order in p /U then give us

T'2" —— d p
'

p a'1oG '+a2oG ' +a3p p v G ' +a1 p.V

U2

+a 2x
p p —iv[ —1

G +a 3„
U J2+p 2

p J —iv, —1+a 3y (p.v)G ' +a'1,
J2+p 2

py —iv, , pV G
—jv) —1

+a,'. . . (pv)G ' +a', ,„G, (lnG)G '+a2, 1 G ", (»G)G
p+u U U

+a', ,„G (p v)(lnG)G
U

(31)

where
—l vl

+Ppf'(p) = —3/32vrZrNfvr@„(p)
2U

5/2 2 2 —2@l.(P) = uo V +up)

( J2+p 2) —1

(32)

a ', o
——2hoP, (i v, —1 )F, ,

a 2o
———i vlb p(2P1 —i v )F2,

a 30 1 0 2

a '1„——2pl(i vl —1 )[(pl+ v )
' F3 —(p +K )

' F4],

a2„—— iv(2pl iv—)[(pl+—v )
' F3 —(p, +K )

' F4],
a 3 —vl[(pl+V ) F3 —(pl +K )

' F4]

a '» —— 4h ppl (i—v 1
—1)F1,

a&~ 2i v, hp(2——P, —iv)F2,

a 3y
—2h pv1F2

i vl —2
a '1, 4plh p(i vl ———1)(2—i vl )(pl+ v )

2 ivi —1a2: 2hpl vl( 1 i v, )('2P, iv—)(P 1v+—)

tvl —1

a 3, ——2hpv, (1—i v, )(P, iu )—
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a', „,„G = —2i v, ho/3, (iv, —1)F,

a 2 '„G
———v, ho(2/3, —iu)F',

I 2
3x 1nG

—l V]h PF2

integral as follows:

8~ Zr(ZrP )'

7T I

(37)

F (P2+ —2)'1 (P2+K2)'"1

F (P2+ 2) 1 (P2+K2) 1

F3 ——iv'ho[lnu (u +P&) —2]+h &,

F4=iv, ho[lnv (/3~+K ) —2]+hi .

(33)

where

L(Ui, Vi, Wi)

V, +(V, —U, W, )'~
=(V, —U W) ' ln

Vi —(Vf —U, Wi)'i

(38)
The angular integration in Eq. (31) is then carried out

following the method of SM and we finally obtain
3

T2''= g g J dpp f'(p)ak~2n2q~,
/- =1 j =O, x,y, z, x ]nG

(34)

3'= —,'[(2P, iv) +—J ],
L'= —,'(J+ v+2i/3, v), (35)

where f'(p) and ak are defined in Eqs. (32) and (33). To
obtain J& terms we note that the summation in Eq. (34)
contains three new terms compared to Jk' terms in Eq.
(3.17) of SM. These new terms are 2'„, Jz, and 23, .
However, the expressions for these terms can be ob-
tained from the expressions of 2, , J2„, and J3, respec-
tively, replacing L.v by L' v and v by u +pi. For Ji~,
Sz', and 23' we use the corresponding expressions of
SM with K replaced by J and E by J +p . The ex-
pressions for other 2k are similar to those of J& in SM.
We further note that the parameters A and L appearing
in the expressions of 2k are to be replaced by A' and L'
and the T functions in 2k correspond to G functions in
the present calculation, where

6 = 3'+2L' p

with

with

U, =K; +Kf/4 K;.K—f+p, ,

V, =A(K;+Kf/4 —K;.Kf+p, )

+p'(A, +K;+Kf —2K; Kf),
W, =(Kf/4+A. +2', +p, )(K;+Kf —2K, .Kf+k, ),
and T3' is given by

(39)

32"(Z,P )'"
T(r)

z 2z» '4O'
[(K;—Kf/2) +pf] [(K;—Kf) +A, ']

III. RESULTS

Applying our technique described in Sec. II we have
calculated the Is-1s differential and total cross sections
at several energies for the e+ + H system. In Figs. 3
and 4 we present the differential cross sections at v =10
and 20 a.u. , respectively. DMS is the present result and
BK is the Brinkman-Kramer result. The structure near
45' in the DMS result for v =20 a.u. is more prominent
than the corresponding structure for v =10 a.u. We no-
ticed earlier' that this structure is due to the destructive

and

L'=(L'. L')'

To obtain the zeroth-order terms in T2 (i.e., T2 ), one
has to take j =0 terms only corresponding to the second
summation in (34). Here we would point out that T2I I

can be evaluated analytically following Deb et al. '

The evaluation T2I'' in Eq. (34) is thus complete
through first order in p/v. The numerical integration
over p is to be carried out in a similar way as was done
by SM where a term with one Thomas singularity is con-
sidered. Here the cancellation of the two Thomas singu-
larities occurs in the F, term of Eq. (33) at 45'.

Evaluation of T3 T3 is a first-Bor. n-type matrix ele-
ment with the interaction (Zr/R —Zr/r) ~e write.

IO'

CV ()

(A

IO I

b IO+a

e +H

v = lO a.u.

ZT
T, =

R
0.0 25.0 50.0

I
100.0

8 (deg}

I25.0 I50.0

—T3 T3(R) (r) (36)

T3 ' can be evaluated as a double derivative of a Lewis'

FIG. 3. Differential cross section in units of m.ao at U =10
a.u. DMS is our first-order result and BK is the Brinkman-
Kramer result.
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, BK
bl ()
U

V—
O

I
O-I I

(A

1O"* ~

b
10

e +H
v = 20 a.u.

10-l4 ~

0.0 25.0 50.0 75.0
I

100.0
I

125.0

8 (deg)

FIG. 4. Same as Fig. 3 at v =20 a.u.

150.0

tions in the present method and o.zz is the Brinkman-
Kramer result. We also present in Table I the total
cross sections for electron capture by protons, o' +'
from the hydrogen atom. Both our results and the BK
results differ with o' +' by at least an order of magni-
tude at the same velocity. So the ratio for electron cap-
ture by positron (op, ) to the electron capture by protons
(oH) might be informative. It may be worth trying to
see how this ratio (cr~, /aH) behaves as a function of en-

ergy as well as target charge.
It is clear from Table I that the first-order cross sec-

tion o'" gives a correction of 5%%uo over the zeroth-order
contribution o' '. This suggests that zeroth-order calcu-
lation is enough, but it may not be true for targets other
than hydrogen. Since the effective charge of the target
nucleus plays an important role in the kinematics of the
problem and hence through the expansion parameter
ZT/U, the first-order contribution may give a correction
of more than 5% over the zeroth-order term when ZT is
large.

interference between T [ and T2. For the proton-
hydrogen system one normally obtains two peaks: one
near 6T ——m /M~sin60 and other near 60 where m (M~ )

is the electron (projectile) mass. For the e+ + H system,
these two peaks approach 45', and due to the destructive
interference of the two amplitudes we get a residual
structure. In fact, it is the term (T& —T3) that prevents
the total cancellation in the differential cross section
with the term T2 that generally happens in first-order
theories where there is a dip in the differential cross sec-
tion near 45. It is also interesting to note that the BK
results are quite a few times larger than the DMS results
at forward angles, whereas in the backward angles (not
shown), they are several orders of magnitude less than
the DMS results. Since most of the contributions to the
total cross sections come from the forward angles, the
BK total cross section appears to be about three times
larger than our DMS result in the energy range con-
sidered here.

In Table I we present the total cross sections. o' '

and o'" are the zeroth- and first-order total cross sec-

IV. SUMMARY

T =T)+T2 —T3,
where

(41)

Ti = 16' C
0

lim X(G,H)a a
BA. B ) K~0

lim X (G,H) dv,a a
E~O BE B

(42)

In the present paper we present a method for calculat-
ing ls-1s cross sections for Ps formation. Our formula-
tion includes all second-Born terms, including Coulomb
distortion terms. Calculations' for the singular parts of
the amplitude, i.e., the Thomas amplitudes, include posi-
tronium intermediate states, whereas the Coulomb dis-
tortion term includes hydro genic intermediate states.
The total amplitude is expressed as

TABLE I. o' ', a ", and o.BK are the Ps-formation total
cross sections (in units of m.ao) for zeroth-order (cf. Ref. 14)
and first-order terms of present calculation and the Brinkman-
Kramer results. o'p+' is the corresponding result for electron
capture by protons from the hydrogen atom. The integers in
square brackets are the powers of 10 by which the respective
numbers are to multiplied.

with X ( G, H ) given in Eq. (20),

8' ZT(ZTp))
T3 —— L(Ui, Vi, Wi)

1

32~ (ZTp )

[(K;—Kf/2) +p)] [(K;—Kf ) +A, ]
(43)

v (a.u. )

4
6
8

10
14
20
30
50

100

1.94[—3]
2.52[—5]
1.00[—6]
7.83[—8]
1.60[—9]
2.47[—11]
2.08[—13]
4.88[—16]
1.26[—19]

1.98[—3]
2.57[—5]
1.02[—6]
7.98[—8]
1.62[—9]
2.50[—11]
2.10[—13]
4.92[—16]
1.27[—19]

o BK

6.46[—3]
9.17[—5]
3.66[—6]
2.81[—7]
5.46[—9]
7.97[—11]
6.32[—13]
1.40[—15]
3.43[—19]

6. 16[—5]
1.47[—6]
7.51[—8]
7.07[—9]
1.79[—10]
3.30[—12]
3.29[—14]
9.51[—17]
3.47[—20]

with L ( Ut, V&, W~ ), U, , V~, and W& given in Eqs. (38)
and (39). The dominant term (T2) in the amplitude is
first expanded in powers of p/U and then evaluated to
(through first order in p/v)

3
T~z" —g g J

™
dp p f'(p)&kj2rr&g, , (44)

k =1 j =O, x,y, z, x 1nG 0

where f'(p) and ak~ are given in Eqs. (32) and (33). The
terms Jkj are to be obtained from 9kj in the work of
SM, as discussed in the last part of Sec. II [i.e., just after
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Eq. (34)]. To use the expressions for Jt,. from SM one
has to note that 2, L, and T in SM should be replaced
by 2', L', and G, respectively in the present calculation
where A ', L ', and G are given in Eq. (35).
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