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The method of adiabatic switching (AS) is applied to the problem of a hydrogen atom in a
strong magnetic field, i.e., the quadratic Zeeman effect (QZE). The QZE is one of the simplest
realistic physical problems exhibiting classical chaos which presents conceptual and computational
obstacles to the implementation of many semiclassical quantization methods, while the highly
nonseparable nature of the problem makes exact quantum treatments problematic. The AS
method is straightforward, mainly involving integration of Hamilton’s equations of motion, and in
addition, unlike most other trajectory-based semiclassical methods, works even in mildly chaotic
volumes of classical phase space. In AS, a zeroth-order classical torus is quantized and then the
perturbation is switched on adiabatically using a time-dependent or time-independent switching
function which is incorporated into the Hamiltonian. A central problem in AS is the choice of the
most appropriate zeroth-order tori. Based on a comprehensive study of the classical dynamics of
the QZE it is shown that the best zeroth-order tori for AS are those obtained by quantizing the
zeroth-order Hamiltonian (i.e., the hydrogen atom) and simultaneously an adiabatic invariant
found by Solov’ev. AS is performed for a wide variety of magnetic fields and energies including
states lying in mildly chaotic regions of phase space where Solov’ev’s invariant is no longer con-
served. Results are generally in excellent agreement with exact quantum results, and additionally
the method is self-diagnostic, yielding large standard deviations in energies should it begin to fail.
However, AS is seen to break down in the strongly chaotic regions of phase space where the quan-
tum levels display multiple avoided crossings (strongly n-mixing regime). Application of AS to the
QZE leads to a number of new developments in the theory of AS, including AS in extended phase
space where the Hamiltonian is explicitly independent of time.
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I. INTRODUCTION

The Stark and Zeeman effects in hydrogen are often
chosen as the prototypical examples of the behavior of
atoms subject to strong electric and magnetic fields.'
Though the hydrogenic Stark effect is, perhaps, one of
the most straightforward realistic problems in atomic
physics! ~* this is by no means the case for the quadratic
(diamagnetic) Zeeman effect (QZE). Labeled the “trou-
ble with hydrogen™ the QZE remains one of the major
unsolved basic problems of atomic physics.*’ Despite
numerous investigations (including perturbation,®~16
semiclassical'”!® and exact quantum calculations'®~%?) it
is not yet possible to predict quantitatively the evolution
of arbitrary energy levels as a function of magnetic field
strength from the zero-field limit to the regime where
the magnetic and Coulomb fields are comparable,’ al-
though there has recently been substantial progress
made in the development of exact quantum
methods.?®~%° Since sufficiently high Rydberg states can
always be found for which the coupling of the electron
to the Coulomb and the magnetic fields is approximately
equal, the QZE is of much relevance to understanding
the properties of Rydberg atoms in external fields.!>~7%
The QZE is also important astrophysically where mag-
netic fields of the order of 108 G exist on white dwarf
stars and as high as 10'> G at the polar caps of neutron
stars.3! 73* It is also potentially of great importance in
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understanding impurity states of semiconductors in
external uniform magnetic fields.”> An excellent review
of the Zeeman effect up to 1977 has been given by Gar-
stamg,36 while a number of more specialized reviews have
appeared since.®730:37—40

A basic difference between the Stark and quadratic
Zeeman effects concerns the integrability of the respec-
tive Hamiltonians. Under a static electric field the
Runge-Lenz vector in modified form is preserved as a
constant of motion for the hydrogen atom.>* An impor-
tant consequence is that the Stark Hamiltonian is separ-
able (in parabolic coordinates) which makes numerical
solution of the problem quite straightforward.* In con-
trast, the quadratic Zeeman Hamiltonian is neither se-
parable nor integrable because the external magnetic
field destroys the supersymmetry of the purely Coulom-
bic problem.® This may be understood by considering
two opposite integrable limits of the Hamiltonian: in the
limit of zero applied field the problem exhibits spherical
symmetry while in the opposite Landau limit where the
magnetic field dominates, cylindrical symmetry is ob-
served. In the Landau region the problem approximates
a free electron in a uniform magnetic field and the ener-
gy spectrum consists of a series of equally spaced lines.®
The situation is much more complicated in the “mixing”
region where the Coulombic and magnetic forces are
comparable and both of the limiting symmetries are
effectively destroyed. Although this might give rise to
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the expectation of a complicated, unassignable atomic
spectrum, experiments on the QZE in Rydberg atoms re-
veal spectra which display remarkable regularities,
termed quasi-Landau resonances, near and above thresh-
old.*~* A major success of classical***> or approxi-
mate one dimensional semiclassical*®~>! methods is the
prediction of the 1.5%w quasi-Landau resonance spacings
observed through threshold, but these theories have been
much less useful in estimating absolute values of energy
eigenvalues. The observation of the quasi-Landau reso-
nances has prompted various experimental studies of the
QZE which in turn has led to numerous theoretical at-
tempts to find an approximate symmetry or constant of
motion as a way of understanding and interpreting the
regularities in the spectrum.!®343852=38 1y particular,
exact quantum variational calculations of oscillator
strengths for dipole transitions to high Rydberg states by
Clark and Taylor’*?} using a Sturmian basis revealed
that as a function of energy the oscillator strengths ap-
peared to be a superposition of several apparently in-
dependent series, each of which contained almost equally
spaced lines. In addition, many near coincidences of en-
ergy levels of lines from different series were observed,
supporting the existence of an approximate dynamical
symmetry. Clark and Taylor’> were also able to relate
the ‘“‘extra constant” to the important phenomenon of
motion along a potential ridge described by Fano.’*®
The strong nonseparability of the QZE and the necessity
of including the continuum makes exact quantum calcu-
lations difficult or intractable [depending on the state(s)
of interest and the magnetic field strength]. On the oth-
er hand, quantum perturbation theory is accurate only
for small magnetic fields; the perturbation overwhelms
the zeroth-order Hamiltonian for magnetic fields of in-
terest in the QZE and the method fails.'>'® Partly for
such computational reasons, much effort has been devot-
ed to classical and semiclassical studies since it is rela-
tively easy to compute the exact classical dynamics over
a wide range of energies and magnetic field
strengths.!®3461=65 1t is worth pointing out, however,
that even a purely classical study presents a number of
interesting technical problems which will be discussed in
more detail in Sec. II. Another important reason for
classical and semiclassical studies of the QZE concerns
the possible relevance of classical chaos to quantum
mechanics; the QZE is noteworthy in being the simplest
real system in atomic and molecular physics whose clas-
sical dynamics is chaotic.!®3%61-6466  Although the
phenomenon of classical chaos is well characterized in
nonintegrable systems, the quantum consequences (if
any) of chaos remain undetermined. In pursuit of this
question, a large number of classical and semiclassical
investigations have been made and a prodigious litera-
ture exists which has been reviewed extensively.®’ 7!
However, the majority of classical and semiclassical
studies have been directed towards essentially model
problems like the Henon-Heiles Hamiltonian. In addi-
tion, the theory of semiclassical quantization of integra-
ble but highly nonseparable systems is itself not com-
pletely developed as recent studies of coupled oscillator
problems with internal nonlinear resonance have re-
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vealed.”?~"* Thus, extensions to genuinely nonintegrable
systems are not trivial.

Rydberg atoms in external fields provide a unique
opportunity to study the issue of semiclassical quantiza-
tion and chaos as it is possible to compare the predic-
tions of classical and semiclassical methods to both exact
quantum calculations and experimental observations for
many combinations of principal quantum number and
magnetic field strength.”~737~%0 The discovery of the
quasi-Landau spacings experimentally by Garton and
Tomkins*! has led to numerous experimental studies of
the QZE, primarily in alkali-metal atoms using atomic
beams and pulsed dye lasers, and lately using cw dye
lasers it has been possible to produce and study high
Rydberg states of heavy alkali-metal atoms such as cesi-

m.’®74  Very recently, there have been studies of

quite high lying states of lithium®8! and also direct
studies of the QZE in hydrogen itself.** Excellent sur-
veys of the experimental situation have been given by
Gay® and by Delande et al.

For the reasons described, the QZE is rapidly becom-
ing a ‘“test bed” for the development of semiclassical
quantization schemes'®®?~5%82 and simultaneously for
the study of quantum chaos.?”®*% There have been
several purely classical studies of the QZE which,
through examination of classical trajectories and Poin-
caré surfaces of section, have revealed a strong transition
to chaotic motion as either the energy or the magnetic
field is increased.!®3*%2=% When the dynamics is main-
ly regular the surfaces of section consist of nested curves
indicating the existence of classical tori (equivalently, of
an approximate constant of motion).8”®® As the electron
begins to feel roughly equal coupling to the magnetic
and Coulomb fields the tori start to break down and the
surfaces of section no longer consist of closed curves, in-
dicating that the trajectories are not confined to the sur-
faces of invariant tori. Nonetheless, the existence of tori
suggests that semiclassical quantization methods might
be feasible, at least in the regular regime, and there have,
in fact, been some previous semiclassical studies of the
QZE.'%62-6482 Using classical trajectories and Poincaré
surfaces of section, Delos et al.®>%3 quantized low-lying
states of the QZE existing exclusively in regular regions
of classical phase space, but restricted their calculations
to states with |m | >0 (m is the magnetic quantum
number) possibly to avoid problems associated with the
Coulomb singularity in the Hamiltonian which is impor-
tant when m =0. Although the method is extendable (in
a nontrivial way, see Sec. Il A) to m =0 states, a more
serious drawback to their way and most other
trajectory-based ways of imposing Einstein-Brillouin-
Keller®” —7° (EBK) quantization is their failure when the
dynamics becomes chaotic. An alternative approach
which is most useful for resonance (quasi-Landau) states
has been developed by Noid et al.® who used a classical
analog of the Born-Oppenheimer approximation to treat
states above the classical ionization threshold where two
widely disparate frequencies characterize the problem:
the frequency in the field direction and the frequency in
the direction transverse to it. For most bound states,
particularly those in the mixing regime,® this kind of
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treatment is not possible because there are numerous
overlapping nonlinear resonances which precludes a
dynamical separation relying on clearly different fre-
quencies. A different type of semiclassical method based
on classical perturbation theory overcomes most of the
shortcomings of trajectory-based EBK quantization by
constructing and quantizing the tori directly,'® i.e., expli-
cit expressions (divergent series expansions®®’%) for ap-
proximate constants of motion are obtained. For the
QZE Solov’ev>>** derived an analytical expression, valid
in the weak-field limit, for the approximate classical con-
stant of motion using first-order classical perturbation
theory which he proceeded to quantize. The quantum-
mechanical operator corresponding to Solov’ev’s invari-
ant was obtained independently by Herrick®® using
group theory (see also Refs. 57 and 58). For the special
case that m =0 Birkhoff-Gustavson normal-form
(BGNF) theory has been used!® to obtain a much-
higher-order representation of the approximate constant
than obtained by Solov’ev; this approximate constant
was used as the basis for quantizing the QZE in both
regular and chaotic volumes of classical phase space
where only remnants of tori exist (“vague” tori®®).!® Al-
though good agreement with exact quantum calculations
was obtained for some states, it seems likely that a
much-higher-order representation of the constant of
motion® in conjunction with the recently developed Lie
algebraic approach to semiclassical quantization’® might
be necessary.

Recently a simple and straightforward approach to
the problem of semiclassical quantization has been
developed known as adiabatic switching (AS). This ap-
proach is computationally and conceptually quite
straightforward and, unlike most other trajectory-based
methods, works even in mildly chaotic regions of phase
space. The AS method was originally developed by
Solov’ev®’ for the calculation of vibrational energy eigen-
values in a model coupled-oscillator problem and was
subsequently applied by him and Grozdanov®® to the hy-
drogen atom in crossed electric and magnetic fields, but
note that their calculation was limited to the ground
state plus two other very-low-lying states. AS has re-
cently been rediscovered by Johnson®"*® which has since
generated renewed interest in the method, particularly in
applications to model molecular Hamiltonians,”' ~*° and
has also been applied in optics.”® In AS a suitable
zeroth-order reference Hamiltonian is first quantized
which serves to specify a zeroth-order classical torus
corresponding to a quantum state. The perturbation is
then switched on adiabatically as the classical trajectory
evolves in time, usually by explicitly incorporating a
time-dependent switching function into the Hamiltonian
[exceptions to the use of a time-dependent Hamiltonian
to perform AS are provided by the work of Jaffé’’ and
by the present study (see Sec. III C) which differs from
Jaffé’s method]. If adiabatic invariance holds, preserva-
tion of the invariant ensures that the original zeroth-
order torus evolves into a quantized, usually much dis-
torted, torus of the full problem. Adiabatic invariance is
not exactly preserved for nonintegrable systems, and, be-
cause there are no rigorous theorems regarding AS in
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other than one dimension,’®®® the method is based large-

ly on empirical studies. Nevertheless, AS appears to
work reasonably well provided the dynamics is not too
strongly chaotic, and has the additional important ad-
vantage of being self-diagnostic (by yielding large stan-
dard deviations in energy eigenvalues) should it begin to
fail. Note that in the absence of uniform semiclassical
corrections AS is unable to account for intermanifold
avoided crossings of energy levels, which is significant
since it has been proposed that chaos might be connect-
ed with the occurrence of mutiple avoided crossings of
energy levels.’

The present study of the QZE represents the first
comprehensive application of AS to a realistic physical
problem; a wide range of magnetic field strengths are
considered for a variety of Rydberg states, including
states lying in chaotic volumes of classical phase space.
Application of AS to the QZE also leads to a number of
new developments in the theory of AS itself, including
time-independent AS in extended phase space. These de-
velopments are discussed in Sec. III.

The paper is organized as follows. In Sec. II the
quadratic Zeeman Hamiltonian is introduced and a de-
tailed examination of its classical dynamics made. Also
considered in Sec. II is the choice of coordinate system
in which to effect quantization. The Coulomb singulari-
ty in the Hamiltonian requires that the cases |m | >0
and m =0 be treated separately. In particular, the
m =0 QZE Hamiltonian must be regularized and this is
described in Sec. II A. An unusual feature of the present
application is that in cylindrical coordinates the zeroth-
order problem is nonseparable whereas in AS a separable
zeroth-order reference Hamiltonian is normally
used.®’~% This makes the problem of finding initial
conditions on the surface of the zeroth-order torus non-
trivial; this is dealt with in Sec. III A. In Sec. III B the
time-dependent AS method for states with |m | >0 is
discussed, and results are presented for several magnetic
fields. In Sec. III C the time-independent AS method for
m =0 states is described together with results of numeri-
cal calculations for a range of magnetic field strengths.
Time-independent AS is a new development in the
theory of AS which may prove useful for perturbed
Kepler-like problems and other problems where the
Hamiltonian is time dependent (e.g., the hydrogen atom
in a microwave field,'® or atoms and molecules interact-
ing with laser fields). Conclusions are in Sec. IV.

II. CLASSICAL DYNAMICS

Assuming an infinite nuclear mass with the magnetic
field directed along the z axis, the classical Hamiltonian
for the QZE in cylindrical coordinates and atomic units
(i.e., m,=e =#=1), is given by3®

H=1(P;+P)+V(p,2), 2.1
where
P2
¢ 1 5, z
Z)=—% 4 = — 2.2
Vip.2) 2p2+ g’ P (p*+zH)'? 2.2

and
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pr=x2yyp?,

where y =B /B, is the reduced uniform magnetic field
strength, and By =2.35X 10° T is the field for which the
Landau energy equals the Rydberg constant. The
paramagnetic contribution to the energy has been re-
moved by transforming to a uniformly rotating frame.
A comprehensive description of the construction of the
Zeeman Hamiltonian may be found in the review by
Garstang.*® In the limit that ¥ =0 the Hamiltonian is
simply that of the hydrogen atom while in the opposite
limit that the nuclear charge Z =0, the Hamiltonian
reduces to the Landau problem (i.e., the motion of a
charged particle in a uniform magnetic field). Since the
angle ¢ does not appear in the Hamiltonian its conjugate
momentum P, is a constant of the motion, and this is
the reason the problem can be reduced to two dimen-
sions. P4 corresponds to the z component of angular
momentum and is quantized according to the usual
prescription,

with the paramagnetic energy being given by
E,=y(m+2s,)/2, (2.3b)

where s, is the spin quantum number.

Classical trajectories obtained by numerically integrat-
ing Hamilton’s equations of motion for the Hamiltonian
(2.1) evolve in a four-dimensional phase space (p,P,,z, P,)
according to the potential energy surface given by Eq.
(2.2) (see Fig. 1). The Coulomb singularity presents nu-
merical problems when m =0 in which case the classical
trajectories can penetrate into the nucleus and an
infinitely small step size would be required in the in-
tegration of the equations of motion. This possibility
does not arise when |m | >0 because the centrifugal
term dominates the Coulombic term close to the origin.
Unlike the Stark effect the system is bound for energies
less than the classical escape energy (E .=y /2|m |);
for energies greater than E. ionization is possible in the
z direction but the motion is bounded in the p direction
which accounts for the presence of resonances above the
ionization energy.®* Note that the quantum ionization
energy is higher than the classical escape energy by the
zero-point energy, /2.3

Apart from parity, energy is the only exact constant of
motion for the Hamiltonian in Eq. (2.1) [P, appears only
as a parameter in Eq. (2.1)] and consequently the Hamil-
tonian is nonintegrable and the classical trajectories are,
in principle, free to explore the entire three-dimensional
energy shell. Examination of classical trajectories (Figs.
2 and 3) and Poincaré surfaces of section (Fig. 2) reveals
that for low energies and low fields or both, the dynam-
ics is regular and the trajectories are in fact confined to a
surface of lower dimensionality than the energy shell.
The surfaces of section'®!%! (Fig. 2) suggest that the tra-
jectories evolve on two-dimensional tori embedded in the
four-dimensional phase space (each torus is uniquely
defined by the particular set of initial conditions used in
starting out the trajectory). This points to the existence
of an adiabatic invariant in addition to the energy for
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which Solov’ev has obtained the following expression
valid in the weak-field limit using first-order classical

perturbation theory>33*
A=44%-54}, (2.4)
where A is the Runge-Lenz vector,’
A=y [LxpmpxLI2 T | 2.5)
(—2H,) .

L is angular momentum, and
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FIG. 1. Isometric and contour plots of the QZE potential
Eq. (2.2) in cylindrical coordinates with m=1. In (b) the con-
tours are evenly spaced by 0.2 with the lowest contour being
—0.3.
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Ho=—1/(2n%, n=123,....

When the magnetic field is applied the supersymmetry
of the pure Coulomb problem is destroyed and the zero-
field periodic motion (closed Kepler ellipses) is distorted
into quasiperiodic motion. If the field is turned on
sufficiently slowly, A is conserved through fourth order
in y. Delande and Gay have summarized the conditions
under which A is expected to be an invariant in the in-
equality,$
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Evidence that A is an approximate constant of motion
has also been provided by Hasegawa et al.,'”> who com-
pared calculated surfaces of section for m =0 trajec-
tories with level curves of the adiabatic invariant A, ob-
taining excellent agreement in the quasiperiodic regime
(see also Ref. 18). An alternative quantum derivation of
A by Herrick®® exploited the separability of the problem
within given n manifolds on the Fock hypersphere (this

A>0

0.8+ (b)

0 200 400 600 800 1000

c 200 400 600 800 1000

FIG. 2. Representative rotational and vibrational classical trajectories for the case m =1 together with their Poincaré surfaces
of section. Frames (a) and (b) correspond to A >0 and the trajectory is rotational while frames (c) and (d) correspond to A <0 and
the trajectory is vibrational; note that the second trajectory has a symmetry-related counterpart, obtained by reflection through the

p axis. Both trajectories are at an energy E = —9.327x 10~%,
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is not an exact separation since n is not an exact quan-
tum number).!91%* Solov’ev’s invariant A is the leading
order term in the BGNF expression for the adiabatic in-
variant® (obtained in Ref. 18 for the special case that
m =0). In Ref. 105 it was demonstrated that Padé
resummation can be used to improve the convergence of
the BGNF for coupled oscillator problems and work is
currently underway to investigate the utility of this ap-
proach for the QZE. It is important to note that A is an
exact constant of motion for the hydrogen atom and that
a perfectly valid but nonstandard way of defining a
“zeroth-order” quantum state is to diagonalize H,, L,,
and A simultaneously. This will be exploited in the
adiabatic-switching procedure discussed in Sec. III.
From the standpoint of semiclassical quantization it is

A>0 (q)
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3 ny
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N
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_40_
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FIG. 3. Two trajectories, representative of the two families
of trajectory with opposite values of A for the case m =0 in
regularized coordinates, at E = —9.439X 107*.
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clear from recent studies’>’* that it is important to

quantize the actions or combinations of actions which
are the most appropriate to the various topologies exhib-
ited by the classical trajectories. There are two distinct
types of classical trajectory when |m | =1 (illustrated in
Fig. 2) whose topology is determined by the sign of the
approximate constant of motion A (see Ref. 6 for an ex-
cellent discussion of the classical mechanics of A). Note
that A lies in the range A in<A<A=—1<A<4.
Trajectories with A >0 are rotational, those with A <O
are vibrational while those with A=O0 correspond to
separatrix motion,%37:4%53.54.56=58,102  [nterestingly, the
consequences of the two types of dynamics have been
observed in experimental studies of the QZE in lithium
by Cacciani et al.’® They studied a diamagnetic multi-
plet of odd Rydberg states and observed a transition
from rigid-rotor-like spectra (A >0) to anharmonically-
coupled-oscillator-like behavior (A <0). It is most
noteworthy that they were able to correlate the change
in behavior to the change in the sign of A whose value
they obtained experimentally. Since A is not an exact
constant of motion it is not strictly possible to define a
trajectory with A=0 because any trajectory starting out
with initial conditions chosen so that A=0 (separatrix
motion) will eventually evolve into one or the other of
the two families of trajectory, i.e., it may show either
type of behavior, depending sensitively and unpredict-
ably on the particular set of initial conditions. In the
regular regime the classical mechanics of the QZE is
qualitatively similar to that observed in resonant coupled
oscillator systems where an exact constant of motion of
H, (specifically, a generator of the appropriate Lie
group’®) may be approximately preserved in the coupled
system, and serve to distinguish between the various
families of classical trajectories. This can be understood
by recognizing that the Kepler problem (or the hydrogen
atom) is equivalent to a four-dimensional isotropic har-
monic oscillator both classically!®~1% and quantum
mechanically.!® ''® The QZE can therefore be formulat-
ed as four anharmonically coupled oscillators, with the
special case of m =0 being reducible to a two-
dimensional isotropic oscillator coupled by a polynomial
perturbation as will be discussed in Sec. II A.18,61,66
Based on the study of the classical trajectories in the
QZE it seems reasonable by analogy that A would be the
most appropriate variable to quantize in the QZE. This
will be considered further in Sec. III.

The trajectories in Fig. 2 are typical of trajectories
with |m | >0, but the m =0 case is more complicated
since the centrifugal term is absent and therefore does
not dominate the Coulomb term close to the origin; the
Coulomb singularity makes it impractical to integrate
the equations of motion in cylindrical coordinates. To
deal with this problem the method of classical regulari-
zation*%1% is used to remove the singularity via a trans-
formation to squared parabolic coordinates,* as is now
described.

A. Regularization of the QZE Hamiltonian when m =0

Unlike the case where |m | >0, if m =0 the centifu-
gal term is absent in the classical Hamiltonian (2.1) and
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the Coulomb singularity presents numerical problems
when integrating Hamilton’s equations. It is usual to
circumvent this difficulty by employing the classical
mechanical technique of regularization which involves
both a coordinate and a time transformation.'”® When
m =0 this can be accomplished by Levi-Civita’s regular-
ization in the plane*®!% while the full problem (arbitrary
m) is regularized using the method developed by Kus-
taanheimo and Steifel'® which involves increasing the
dimensionality of the problem from three to four in
configuration space. In the present study, regularization
is necessary only when m =0 and there is no need to
perform the full Kustaanheimo-Steifel regularization.!%®
The simpler Levi-Civita regularization is effected by first

making a transformation to ‘“‘squared” parabolic coordi-
nates, 4 18,46,61,66,106
b

p=uv, z=(u*-v?/2, (2.7)

in terms of which the Hamiltonian (2.1) becomes (setting
m =0)

1 y? 22
————— (P} + P} —4)+ —un?, (2.8)
2u*+v?) 8

giving on regularization

H=

46,100

2
K=2=§(P,3+P,)2)—E(u2+v2)+J;—uzvz(u2+v2) .

(2.9

In the Hamiltonian K, the true energy of the QZE
(i.e., E) occurs as a parameter while the physical trajec-
tories evolve on an effective potential whose pseudoener-
gy is always equal to 2. This is equivalent to the ap-
proach used by Edmonds and Pullen*® (see also Refs. 18
and 66). Note that the problem has been reduced to two
isotropic (resonant) harmonic oscillators coupled by a
polynomial perturbation. For this reason the classical
trajectories resemble those of coupled oscillator prob-
lems of which there are numerous examples in the litera-
ture.®”~7! Again there are two distinct classes of trajec-
tory according to the sign of the adiabatic invariant A,
as illustrated in Fig. 3 (surfaces of section are displayed
in Refs. 18 and 46). Trajectories with A <O are localized
along the u or the v axes and correspond to motion
along the z axis in cylindrical coordinates. This family
of trajectories ionizes if the energy is greater than E.,
along either of the two equivalent valleys on the poten-
tial energy surface shown in Ref. 18. The second family
of trajectories corresponds to motion along the potential
ridge discussed by Fano®>® and by Clark and Taylor
(who illustrate the ridge in polar coordinates®?). These
trajectories are concentrated along the lines u =v which
is equivalent to motion chiefly along the p axis in cylin-
drical coordinates. [Note that the choice of coordinates
in Eq. (2.7) differs from those used in Refs. 18 and 46.
The potential energy surface in the present coordinates
is related to that in Refs. 18 and 46 by a rotation
through 45° The coordinates in Eq. (2.7) correspond to
the more usual definition of squared parabolic coordi-
nates.*] The quasi-Landau spacings may be obtained by
quantizing trajectories lying exclusively along the poten-

tial ridge*®—>! (i.e., along the p axis), and consequently
trajectories with A=A, are relevant to understanding
the quasi-Landau resonances. Examination of classical
trajectories (Fig. 3) and surfaces of section for the m=0
case in Ref. 18 revealed that the volumes of phase space
corresponding to A <0 are more prone to chaos than are
those volumes where A>0. Contour plots of A for
m =0 are compared with numerically determined Poin-
caré surfaces of section in Ref. 18 (in squared parabolic
coordinates) and it is unnecessary to reproduce them
here. It is important to note that the transformation to
regularized coordinates is primarily for computational
reasons and that the sign of A still governs the topology
of the trajectories whatever the value of m. For this
reason, in the AS procedure for the QZE, a zeroth-order
torus is determined by diagonalizing the quantum opera-
tors corresponding to Hy and A simultaneously, as will
now be discussed.

III. ADIABATIC SWITCHING

The basic idea of AS is due to Ehrenfest'!' but the
method was first developed and applied by Solov’ev®’
with the first practical application to a realistic problem
by Grozdanov and Solov’ev®® who treated the hydrogen
atom in crossed electric and magnetic fields. Although
highly significant, this latter application was rather lim-
ited in scope, dealing only with three very-low-lying
states whose energies corresponded to highly regular
classical dynamics. Recently there has been renewed in-
terest in AS for model molecular Hamiltonians®®~%° but
the present study of the QZE represents the first
comprehensive application of the method to a realistic
physical system. After giving a brief outline of the
time-dependent AS method, specific application to the
QZE is made.

In time-dependent AS the nonintegrable Hamiltonian
is first written in the form

H(t)=H,+€(t)H, , (3.1

where Hj is an integrable (usually but not necessarily se-
parable) zeroth-order approximation to the full Hamil-
tonian and H, is a perturbation which need not be small.
The function €(t) is a time-dependent switching function
which is chosen to vary slowly and smoothly from O to 1
over the course of the switching time 7, so that at time
t =T, e(t)=1 and the perturbation is fully turned on. A
comprehensive study of the best choice of switching
function has been made by Johnson.”

A zeroth-order classical torus may be defined by speci-
fying a set of actions for H, and these values can then be
used to generate the initial conditions needed to in-
tegrate the equations of motion for H(¢). Along a tra-
jectory, if adiabatic invariance holds, the adiabatic in-
variant will be preserved provided the perturbation is
turned on sufficiently slowly but because the energy is
not itself an adiabatic invariant its value will change as a
function of time. If the zeroth-order torus is chosen to
correspond to a quantum state of H, at the end of the
switching (i.e., at t =7) the zeroth-order torus will have
distorted into a quantized torus of the full Hamiltonian
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with the appropriate quantized energy. In essence the
method follows the highly nonlinear evolution of a torus
of H, into a torus of the full Hamiltonian. Clearly not
all quantized choices of zeroth-order tori will necessarily
evolve into quantized tori of the full Hamiltonian be-
cause not all actions or combinations of actions are adia-
batic invariants. The method thus requires some insight
into which quantities are approximately conserved in the
full Hamiltonian. A zeroth-order torus can then be
specified by quantizing the energy and the other con-
served or approximately conserved quantities. The most
appropriate zeroth-order torus is therefore determined by
the topologies of the classical trajectories of the full
Hamiltonian. If H, is resonant (degenerate) there is
some ambiguity in defining a zeroth-order torus just as
in the corresponding degenerate quantum system more
than one eigenfunction corresponds to a particular ei-
genvalue. The hydrogen atom is highly degenerate: its
spherical symmetry is responsible for the degeneracy
with respect to m, while the existence of the Runge-Lenz
vector as an ‘“‘extra’ constant of motion, due to the par-
ticular form of the Coulomb potential, gives rise to the
orbital degeneracy.!'? Based on the classical study
presented in Sec. II it is clear that the best zeroth-order
tori from the point of view of AS will be those defined
by simultaneously diagonalizing the quantum operator
corresponding to Hy and A. The quantization of A has
been the subject of recent semiclassical®* and quantum
studies.!®® Because it is easier to perform a quantum-
mechanical diagonalization of A than to effect a semi-
classical quantization, quantum values of A are used to
define the zeroth-order tori (details are given in the Ap-
pendix). Once a zeroth-order torus has been specified,
initial conditions for integrating the equations of motion
for H (¢) must then be generated as is now described.

A. Calculation of initial conditions

For fixed values of m, phase space is four dimensional
and quantizing E and A restricts the dynamics of Hj to
the surface of a two-dimensional torus embedded in this
phase space. Points on the torus correspond to initial
conditions for classical trajectories all having the same
values of £ and A. In principle, as the switching time
T — o the energy of any trajectory starting out on the
initial torus should converge to the correct final quan-
tized value. It is obviously not possible to integrate tra-
jectories for infinite times so, in practice, an ensemble of
trajectories starting out on the same initial torus is pro-
pagated forward in time, with initial conditions chosen
uniformly and randomly on the surface of the torus. In
effect, this approach propagates the entire torus forward
in time. As pointed out by Solov’ev®’ and oth-
ers®®91:93:94 this tactic, combined with averaging over the
final energies, not only accelerates the convergence but
can also compensate for nonadiabatic effects. After
averaging, the standard deviation of the energies is used
as an indicator of the accuracy of the method and in this
sense the method is self-diagnostic.

To generate initial conditions, the energy and the clas-
sical adiabatic invariant A are first expressed in cylindri-
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cal coordinates,
E=E(p,P,,z,P;), (3.2)
A=A(p,P,,z,P;) . (3.3)

For quantized E and A these equations are used to gen-
erate initial conditions p°, Pp, z° and P). In general, an
analytical solution is not possible so the following stra-
tegy is employed.

(1) Set z=P,=P,=0; Eq. (3.2) is then solved numeri-
cally for p. Two values, p™" and p™®* are obtained and
the initial condition p° is selected uniformly and ran-
domly between these values.

(2) Setting p=p° and P, =P, =0, Eq. (3.2) is solved for
z, again giving maximum and minimum values z™" and
z™ in which range z° is selected uniformly and ran-
domly. The values p™", p™*, z™" and z™* correspond
to points on the equipotential in configuration space.
Note that z™" and z™* are both functions of p°.

(3) Using p° and z° Egs. (3.2) and (3.3) are solved
simultaneously for P? and Pg. Although the points p°
and z° lie on the energy shell, they do not necessarily lie
on the surface defined by the intersection of the energy
shell and the surface of constant A in which case the
values of Pg and/or P? obtained will be complex; in this
event the entire procedure is repeated until physically
acceptable initial conditions are obtained. Since the
equations can be reduced to polynomials in coordinates
and momenta, efficient numerical routines for solving
polynomials may be used to advantage.

The application of AS to the m =0 and |m | >0
cases is fundamentally different and so the two cases are
discussed separately; since the |m | >0 case is the more
straightforward it is described first.

B. Time-dependent adiabatic switching when |m | >0

The Hamiltonian (2.1) is split up in the following way:

H(t)=Hy+e€(t)H, , (3.4)
where,

Ho=1(P24pPh+ 7o L (3.5)

0=7Lp+1; +2p2_(p2+22)1/2 :
and
2

lelé—,ﬂ (3.6)
with the switching function being given by

)=+ STt/ oy o7 (3.7)

T 27 ’

This particular form of switching function has been used
extensively in previous AS calculations.’ %

In Table I are presented semiclassical eigenvalues cal-
culated using AS for states in the manifold n =23 at a
magnetic field strength of 4.7 T corresponding to
y=2.0Xx1073. Also given in Table I are quantum varia-
tional results calculated by Clark and Taylor who diago-
nalized the Hamiltonian using a Sturmian basis,2"?%%2
together with the second-order quantum-perturbation re-
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TABLE I. Energy eigenvalues for states in the n =23 manifold, with m =1, for y =2Xx10~° and
T =1.0X10° The paramagnetic energy Eq. (2.3b) has been included (s,=0). A is the quantized
value of the classical adiabatic invariant, E? the exact quantum variational results (Ref. 22), EFT the
second-order quantum-perturbation-theory results (Ref. 16), EAS the adiabatic switching results (aver-
age of 25 different trajectories), and AE AS the standard deviations of the adiabatic switching results.

r A —EMx10* —EFTx10* —EASx 10 AEAS
0 —0.642083 6 9.326 596 9.326 608 9.326972 3.10x 1073
1 —0.6420833 9.326 596 9.326 608 9.326974 3.30x107?
2 —0.3276737 9.304 868 9.304 888 9.305 336 1.39x10~*
3 —0.3274633 9.304 857 9.304 877 9.305279 1.59x10~*
4 —0.0861346 9.287976 9.287 986 9.288 688 2.68x107*
5 —0.0694975 9.287 006 9.287035 9.287517 3.20x107*
6 0.067 589 3 9.277 405 9.277 446 9.278 114 3.57x107*
7 0.1718282 9.270574 9.270 631 9.271084 2.54x107*
8 0.3136514 9.260995 9.261 069 9.261 469 1.76 x10~*
9 0.474 2676 9.250151 9.250244 9.250 559 1.6310°*
10 0.6543294 9.237 967 9.238 081 9.238286 1.85x107*
11 0.8528133 9.224 520 9.224 659 9.224 768 2.69%x107*
12 1.069 270 9.209 840 9.210007 9.209 936 3.14x107*
13 1.303 409 9.193 947 9.194 146 9.194015 3.70x 10~*
14 1.555037 9.176 853 9.177 088 9.176 868 4.40x10~*
15 1.824 021 9.158 565 9.158 839 9.158 590 5.12x107*
16 2.110266 9.139087 9.139 406 9.139074 4.63x107*
17 2.413702 9.118421 9.118 790 9.118 240 3.81x107*
18 2.734279 9.096 569 9.096 994 9.096 488 3.82x107*
19 3.071957 9.073 531 9.074016 9.073 508 2.49x107*
20 3.426 705 9.049 305 9.049 858 9.049 485 1.80x10~*
21 3.798 501 9.023 891 9.024 571 9.024 215 1.38x10~*

sults of Grozdanov and Taylor.'® Each AS eigenvalue is
the result of averaging 25 final energies obtained by in-
tegrating the equations of motion for H (z) using the
switching function in Eq. (3.7) with T =1.0x10%. Also
listed are the calculated standard deviations.

In Table I each state is labeled by three quantum
numbers, n, m, and r, where r is an ordinal diagonaliza-
tion index (described in the Appendix) and which can be
interpreted as the number of nodes of the wave function
corresponding to the state | nrm ) along one of the ellip-
tical cylindrical coordinate axes on the Fock hyper-
sphere in momentum space.'®>® The results in Table I
correspond to the “weak field” limit where yn> << 1 and
inter-n mixing can be neglected, i.e., n is still a good
quantum number, although note that the only exact
quantum number is m. It is apparent on examination of
Table I that the AS results are in excellent agreement
with the quantum-variational results for all of the states
in the manifold. For the lowest states the perturbation
results are in slightly better agreement with exact quan-
tum results than are the AS eigenvalues. However, the
standard deviations for the AS results are consistently
small for the entire manifold, and, in contrast to pertur-
bation theory, the AS eigenvalues actually improve as a
function of increasing energy. This observation may be
explained by considering the change in the localization
of the classical trajectories as energy increases within the
manifold. Specifically, states with values of r such that
A <O (i.e., O0<r <5) are vibrational while those with
values of r such that A>0 (i.e., 6 <r <21) are rotational,
with the low-lying states in the manifold being strongly

localized along the z axis while the high-lying states are
strongly localized along the p axis (see Fig. 4). At this
point it is also relevant to note that in the regime where
y?n7 <<1 (the inter-I mixing regime) Delande and Gay®
using first-order degenerate quantum-perturbation
theory have shown that the wave functions {r|n,r,m )
have different localization properties determined by the
quantum number r, which is consistent with Fig. 4.
Richards®® parameterized the problem as a double-well
potential using first-order classical perturbation theory;
in this picture the vibrational states occur as almost de-
generate pairs below the barrier top while the rotational
states lie above the barrier top (the barrier top itself cor-
responds to the separatrix). The eigenvalues in Table I
clearly fit this picture. As noted, the AS procedure is
consistently able to quantize the higher rotational states
slightly better than the vibrational states. The vibration-
al states are on average closer in energy to the separatrix
than are the higher rotational states and consequently vi-
brational trajectories are more likely to encounter high-
order resonances. The study of classical trajectories and
Poincaré surfaces of section in Ref. 18 revealed that A is
a better approximate constant of motion for rotational
states than for vibrational states, or, stated differently,
the vibrational volumes of phase space are more prone
to chaos than are the rotational parts of phase space.
The highly localized rotational states are farthest from
the separatrix and this is reflected in the better accuracy
of the AS eigenvalues for these states; this is a relatively
small effect in the n =23 manifold for this field strength.
This could have an important consequence; even in the
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FIG. 4. Typical quantized trajectories obtained using AS corresponding to the states in Table I (i.e., the n =23 manifold with

m =1). The value of the quantum number r is displayed in each frame. Note that the trajectories with » =5 and 6 are on opposite
sides of the separatrix. The rotational state with r=21 is strongly localized along the p axis.
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strongly chaotic volumes of phase space, these ridge
states probably persist and their identification semiclassi-
cally could facilitate the assignment of the quantum
spectrum.

It is useful to examine the final quantized trajectories
obtained by AS for a few of the states in Table I. These
trajectories are obtained in the following manner: after
adiabatic switching is complete (i.e., the perturbation is
fully turned on), the equations of motion continue to be
integrated with e(¢z)=1 for all subsequent times ¢ >T.
This is equivalent to integrating Hamilton’s equations
for the full Hamiltonian using as initial conditions the
values of coordinates and momenta obtained at the con-
clusion of adiabatic switching. Figure 4 illustrates the
transition from vibrational to rotational motion as a
function of the quantum number r. The trajectory with
r =0 is strongly localized along the z axis which would
indicate that the wave function should also be strongly
localized along the z axis (see the discussion of Hose
et al.'’ using the Hellmann-Feynman theorem and also
the arguments made by Richards®®). The trajectories
which are chosen to illustrate states with » =5 and 6
(where the transition in the sign of A occurs) are both
close to but on opposite sides of the separatrix and this
is reflected in the local maximum observed in the stan-
dard deviations around this point. The consequent de-
formations in the topologies of the trajectories is clearly
seen in Figs. 4(b) and 4(c). The high lying rotational tra-
jectories with 17 <r <21 are localized along the p axis
and correspond to states lying along the potential
“ridge” discussed by Fano®>® (the ridge is apparent if
the potential is plotted in spherical coordinates and is il-
lustrated by Clark and Taylor in Ref. 52). In order to
emphasize the importance of choosing a zeroth-order
torus specified by quantizing E and A, results obtained
by using initial conditions lying on a surface of a torus
defined by quantizing A, rather than A were also per-
formed. For low-lying vibrational states 4,~ —A and
the two sets of AS results were in good agreement, as ex-
pected, since A, is a good approximate constant of
motion for vibrational trajectories corresponding to low
values of r.%%¢ However, the two sets of AS results
diverged noticeably for the rotational states, which un-
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derscores the necessity of quantizing actions or operators
appropriate to both of the observed topologies of the
classical trajectories.”?~74

In Table II AS results are compared with exact
quantum-variational calculations and second-order
quantum-perturbation results for states in the manifolds
n =2, 3, and 4 for a considerably higher field than in
Table I, i.e., y=0.01 (corresponding to a field of
2.35x10° T) which combination is still, however, in the
regime yn® << 1. For this value of n there are no vibra-
tional states, in agreement with the condition obtained
by Solov’ev,”** Richards,% and also by Coffey et al.®
who showed that vibrational states exist (based on first-
order classical perturbation theory) only if m <n/V'5.
Some of the trends observed in Table I are also apparent
in Table II. States close to the separatrix display larger-
than-normal standard deviations, but the standard devia-
tions are certainly acceptable and the AS results are in
excellent agreement with exact quantum results.
Representative quantized trajectories for most of the
states are shown in Fig. 5.

In order to test the usefulness of the criterion yn? << 1
as a way of estimating when AS will be useful, in Table
III results are presented for selected states in the n =2,
3, and 4 manifolds for the higher magnetic field of
2.35%10* T for which ¥ =0.1. It is reasonable to expect
that in practice AS may perform well even when the cri-
terion in Eq. (2.6) is not obeyed since A is only a first-
order approximation to the adiabatic invariant of the full
QZE. The advantage of AS is that a high-order repre-
sentation for the adiabatic invariant is not needed explic-
itly, i.e., the method ‘‘senses” the existence of such an
invariant. Examination of the standard deviations indi-
cates that while adiabatic invariance is being violated,
the results themselves are in acceptable but not out-
standing agreement with quantum-variational calcula-
tions. While this is consistent with the findings of other
studies that AS can be extended into mildly chaotic
volumes of classical phase space, the results seem to in-
dicate that in the QZE invariance of A itself is a prere-
quisite for AS to work. Note that all but the lowest
state in Table III [i.e., (n,m,r)=(2, —1,0)] are in chaotic
volumes of classical phase space as is clearly seen on ex-

TABLE II. Energy eigenvalues for ¥y =0.01 and a switching time T =6.0 10* except n =2, m = —1 for which T =1.0x10%
Note that the paramagnetic energy has been included (s, = —%). A is the quantized value of the classical adiabatic invariant, E M

the exact quantum-variational results (Ref. 24), EFT the second-order quantum-perturbation-theory results (Ref. 16), EAS the adia-
batic switching results (average of 25 different trajectories), and AES the standard deviations of the adiabatic switching results.

n m r A —EMx10* —EFfTx 10 —EASx 10 AEAS

2 —1 0 1.000 000 00 0.1347010 0.1347010 0.1347760 3.7x 1078
3 -2 0 0.888 888 89 0.069 2472 0.0692518 0.069 402 2 1.7%x 1077
3 —1 0 0.33333333 0.064 678 1 0.064 6802 0.064 8382 5.0x 108
3 —1 1 211111111 0.063 820 1 0.063 8275 0.0639719 3.5x 1077
4 -3 0 0.750 000 00 0.0477076 0.0479199 0.0479263 8.2x 1077
4 -2 0 0.437 500 00 0.0435527 0.043 6724 0.0437913 1.0x 10-°
4 -2 1 1.937 500 00 0.0415710 0.0419226 0.0417783 1.9 10°°
4 -1 0 0.094 131 15 0.0392755 0.0393337 0.0395220 3.2x10°°
4 —1 1 1.000 000 00 0.0381322 0.0383322 0.0383459 2.7x10°°
4 -1 2 2.655 868 80 0.0358715 0.0363010 0.036 0731 3.3x10°°
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FIG. 5. Representative quantized trajectories obtained using AS for some of the states in Table II. The trajectories are reminis-
cent of those for anharmonically coupled oscillator problems. The trajectory in frame (c) has evidently finished up in a low-order
resonance zone. The states are labeled (n,m,r) as follows: (a) (3, —1,0), (b) (4, —3,0), (c) (4,—2,0), (d) (4,—2,1), (e) (4,—1,0), (D
(4,—1,0).
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TABLE III. Energy eigenvalues for y =0.1 and the switching T =1.0 10*. The paramagnetic en-

1

ergy has been included (s, = —1). E? are the quantum variational results (Ref. 24), EAS the adiabat-
ic switching results (average of 25 trajectories), and AEAS the standard deviations for the adiabatic

switching results.

n m r —EM —EAS AEAS

2 —1 0 0.200 8406 0.2059832 1.3x10°°
3 -2 0 0.137 8395 0.1454724 8.7x107*
4 -3 0 0.111 8602 0.120086 5 1.3x1073
3 —1 1 0.107 8121 0.1129197 9.0x10~*
3 —1 0 0.0821108 0.0946189 22%x1073
4 -2 1 0.0811712 0.090979 8 1.8 1073
4 —2 0 0.0633176 0.0737675 3.1x1073
4 —1 0 0.0532456 0.064 293 6 2.5x1073

amination of final quantized trajectories (illustrated in
Fig. 6). It is interesting to observe the tendency of the
trajectories with larger values of r to spiral along the z
axis [Figs. 6(e) and particularly 6(f)]. These trajectories,
whose topology is evidently different from the rotational
and vibrational trajectories observed previously would
eventually ionize in the z direction if the energy were
higher than E.. For these states there is a clear separa-
tion of frequencies between that in the z direction and
that in the p direction and it seems likely that the
method applied by Noid et al.% based on the classical
Born-Oppenheimer approximation would be appropriate
for these states.

C. Time-independent adiabatic switching when m =0

In this section a new development in the theory of AS
is described, namely, time-independent AS in extended
classical phase space. As noted, the Coulomb singularity
when m =0 makes it impractical to integrate the equa-
tions of motion in cylindrical coordinates. While para-
bolic coordinates are convenient for integrating
Hamilton’s equations they do not lend themselves direct-
ly to the AS method. Referring to Eq. (2.9), note that
the true energy E occurs as a parameter in the Hamil-
tonian K and that the dynamics for all values of the per-
turbation must lie on the pseudoenergy shell K =2 if the
trajectories of the regularized Hamiltonian are to corre-
spond to physical trajectories of the QZE. Introduction
of any time dependence into the Hamiltonian K via a
switching function would immediately move the system
off of the pseudoenergy shell. In order to constrain the
dynamics to the surface K =2, an explicit time depen-
dence would have to be introduced into E to compensate
for the time dependence in the switching function. This
is not feasible since, in essence, it is precisely the
response of the eigenvalue E to the change in the switch-
ing function which is being elicited. This problem is
solved by working in extended phase space!®? which
leads to the development of time independent AS.

Introducing the switching function €(¢) into the Ham-
iltonian (2.8) gives

1
2u’+v?)

This Hamiltonian still contains a singularity when

2
H= (P,,2+P,,2—4)+6(t)1;—u2v2 . (3.8

u =v =0 and so AS cannot be performed directly using
Eq. (3.8). However, a Hamiltonian suitable for AS can
be obtained by first eliminating the time dependence in
Eq. (3.8) by a transformation to extended phase space,
followed by a regularization.!° The canonical transfor-
mation to extended phase space is given by!!

Py=— 0=t

(=—H), (3.9)

with the new Hamiltonian H being related to the old by

H=H +P,=0, (3.10)
or, explicitly,
_ 1 2
H=0=————(P2+P2—4)+e(0) L-un2+P, .
2(u’+0v?) 8 e
(3.11
The old time and the old energy (i.e., —E) are now

treated like any other pair of canonical coordinates and
momenta in the extended six-dimensional phase space.
The new Hamiltonian given by Eq. (3.11) does not ex-
plicitly depend on time; flow in the extended phase space
is parameterized by a new “time” § which does not ap-
pear in the Hamiltonian. The Hamiltonian (3.11) can
now be regularized to give
K(0)=2=LPl+P2)+Py(u’+0v?)

-2

2
—}—6(0)18‘u2v2(u2+v2) , (3.12)

where the switching function €(0) is given by
e()=2 _sin2m0/0) 4 _4_g (3.13)

(0] 27 ’

The equations of motion for Eq. (3.12) are simply
Hamilton’s equations of motion in the six-dimensional
extended phase space. The initial conditions are gen-
erated in exactly the same way as for |m | >0, in cylin-
drical coordinates, and are then transformed into para-
bolic coordinates in extended phase space using Eq. (2.7)
with the additional initial conditions

6°=0and PY=—1/(2n), n=1,2,3.... (3.14)

Along a trajectory in the six-dimensional phase space,



36 HYDROGEN ATOM IN A STRONG MAGNETIC FIELD: ...
9.0
6.0 (a)
8.01
5.0 S
«1 // .\7/% Y ',,\\ 7.0
404 ‘g‘/'/\/. \\"/l‘\\\///\\//‘
13 i !’l . ,/\\\//‘ /\\ A 6.0
\W th‘/wv/\/ 4y :
SN
\‘Q \.’I.\\/‘\// A 5.0
20
] 4.0
101
3.0]
0.0
5 -2 | 4 201
-0
10.01 9.04
% (d)
9.0 . \
704 7N
| /Q M'
6.04 1‘ "
7.04 \ " , W
' 501 \ 0 "
I ' ‘l
6.0 401 ‘ .y’lv. /‘Il )"‘ ‘ ‘
304 \ "‘W' i' \
5.0 “ \ ’
2.0] , AN
Ui i
4.0 1.04 ‘_‘ }
00 -175 -100 -25 , 5.0 125
11.0- 11.04
10.0 10.0-
9.0- 9.0+
8.0- 8.0
7.0 7.0
6.01 6.0
P P
5.0 5.0
4.0 4.0
3.01 3.0
2,0- 20_
1.0 1.0
0‘0_—40 20 o 20 | &0 005 -40 , © 40

3569

FIG. 6. Representative quantized trajectories obtained using AS for some of the states in Table III. The states are labeled
(n,m,r) as follows: (a) (2,—1,0), (b) (3,—2,0), (c) (4,—3,0), (d) (3,—1,1), (e) (4,—2,0), () (4,—1,0).
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TABLE 1V. Energy eigenvalues for states in the n =23 manifold with m =0, y=2.0x10~?, and
T=1.0x10°% A is the quantized value of the classical adiabatic invariant, E?™ the exact quantum
variational results (Ref. 21), EFT the second-order quantum-perturbation-theory (Ref. 16), E*S the adi-
abatic switching results, and AE*S the standard deviations for the adiabatic switching results.

r A —EMy10* —EPTx10* —EASx10* AEAS
0 —0.815178 9.438 674 9.438 681 9.439057 1.7x10°°
1 —0.815178 9.438 674 9.438 681 9.439057 1.6x10°
2 —0.474 465 9.415159 9.415176 9.415557 3.3x10°°
3 —0.474 452 9.415158 9.415176 9.415556 3.3x10°°
4 —0.191242 9.395521 9.395539 9.395977 9.9 103
5 —0.188 600 9.395 375 9.395 399 9.395779 9.7x10°°
6 —0.006 502 9.382497 9.382515 9.383111 2.4x107*
7 0.050 734 9.378911 9.378952 9.379238 1.6x10°*
8 0.179 022 9.370 168 9.370228 9.370617 9.3x 1073
9 0.317 834 9.360 855 9.360929 9.361249 4.5%10°°
10 0.479 349 9.349 941 9.350035 9.350318 3.7x10°°
11 0.659 818 9.337729 9.337 844 9.338 088 43x10°°
12 0.858 665 9.324257 9.324 397 9.324 605 6.6x107°
13 1.075 54 9.309 556 9.309 724 9.309 882 8.8x10°°
14 1.309 82 9.293 645 9.293 845 9.293954 1.1x10°*
15 1.561 67 9.276 536 9.276 771 9.276 852 1.2x 104
16 1.83084 9.258234 9.258 509 9.258555 1.3x10°*
17 2.11724 9.238 744 9.239 064 9.239022 9.7x 103
18 2.42082 9.218 068 9.218438 9.218 394 1.2x10°*
19 2.74115 9.196 207 9.196 632 9.196 542 1.1x10°*
20 3.079 30 9.173 161 9.173 647 9.173 465 6.4 1073
21 3.434 14 9.148928 9.149 482 9.149278 5.6x107°
22 3.806 02 9.123 507 9.124 135 9.123 861 1.9%x 103

Py (=—E) and 0 (=t) evolve like any other pair of con-
jugate coordinates and momenta. At the end of the in-
tegration when =0 (the precise end point is obtained
using interpolation) the quantized value of the energy is

given by E = —P,. The equation of motion for 0 is
d6 3K
0="F =" — 2 2 .
_dg‘_an_(u +v°) (3.15)

with 6 clearly a monotonically increasing function of §.
Although the dimensionality of the system has been in-
creased, the chances of encountering a classical reso-
nance zone have not been increased as compared to the

explicitly time-dependent Hamiltonian H () in Eq. (3.4)
because the two problems are exactly equivalent to each
other, differing only by a canonical transformation. It
should be noted that the numerical effort involved in in-
tegrating the equations of motion in extended phase
space has increased.

Tables IV and V are for the same field strengths as
Tables I and II but for m=0. Most of the trends ob-
served in Tables I and II can also be seen for m =0
states. As noted in Sec. IT A there are two families of
trajectory when m =0 depending on the sign of A. Tra-
jectories with A <O [see Figs. 7(a) and 7(b)] lie predom-
inately along either the u or the v axes and are typical of

TABLE V. Energy eigenvalues for m =0 states with y=0.01 and ®=1.0x 10*. The paramagnetic energy (s, = ~%) has been
included. A is the quantized value of the classical adiabatic invariant, E?™ the exact quantum-variational results (Ref. 24), E*T the
second-order quantum-perturbation theory (Ref. 16), EAS the adiabatic switching results (average of 25 trajectories), and AE*S the

standard deviations of the adiabatic switching results.

n m r A EM EPT EAS AEAS

1 0 0 0.000 000 00 0.5049750 0.5049750 0.504 994 7.0x 10~
2 0 0 —0.250 00000 0.1298500 0.1298500 0.129 925 3.0x10°8
2 0 1 1.750 000 00 0.1296520 0.1296520 0.129726 6.0x 108
3 0 0 —0.311 805 39 0.060047 9 0.060 048 6 0.060213 3.0x 1077
3 0 1 0.444 444 44 0.059 687 8 0.059 6909 0.059 841 1.0x 107
3 0 2 2.534 002 80 0.058 669 3 0.058 6776 0.058 820 4.0x1077
4 0 0 —0.353069 42 0.0350063 0.0350306 0.035298 2.3x10°°
4 0 1 —0.02023797 0.034 6287 0.034 668 7 0.034 785 1.0x 1073
4 0 2 1.228 069 40 0.0329179 0.0330159 0.033 143 4.0x10°¢
4 0 3 2.89523790 0.0306374 0.0310921 0.030836 40x10-°
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vibrational states with » <6 in Table IV. These trajec-
tories are associated with motion in the valleys of the
potential energy surface in parabolic coordinates; in cy-
lindrical coordinates the motion is primarily along the z
axis. The second type of trajectory, shown in Figs. 7(c)
and 7(d), and representative of the rotational states has
A>0 (r>7) and these trajectories are directed along
axes at 45° to the u and v axes, corresponding to motion
along the potential ridge,’>%>5? i.e., along the p axis in
cylindrical coordinates. The very-high-lying states (high
r) are strongly localized along the potential ridge and
their remarkable stability can be understood by
parameterizing the problem in one dimension as a
Whittaker-Hill equation.® It is these states which are
quantized in approximate one-dimensional semiclassical

treatments**~>' and which give rise to the strong

1. 5%iw-spaced quasi-Landau resonances observed in the
spectrum close to and above threshold. The transition
between the two families of trajectory can be seen by ex-
amining typical quantized trajectories for states with
r =6 and 7. These trajectories, shown in Figs. 7(b) and
7(c), are both near the separatrix, but on opposite sides
of it, and as in Table I a local maximum is observed in
the standard deviations of the AS eigenvalues for this
pair of states. For completeness the AS results compara-
ble to Table II but for m =0 are compared with exact
quantum and quantum perturbation results in Table V.
The quantum-perturbation results are generally in slight-
ly better agreement with the exact results than are the
AS eigenvalues for these states (note that the energies all

IS
o
1
n
o
o
n
o
D
o

FIG. 7. Representative quantized trajectories obtained using AS for some of the states in Table IV. The trajectories with r =6

and 7 are close to, but on opposite sides of, the separatrix.
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correspond to regular classical dynamics—see Fig. 7), but
the AS results are still in acceptable agreement with
quantum results.

IV. CONCLUSIONS

A comprehensive application of the AS procedure has
been made to the problem of a hydrogen atom in a
strong magnetic field, i.e., the quadratic Zeeman effect.
The QZE, a strongly chaotic system, is an important
problem both in atomic physics and in the development
of semiclassical quantization procedures for nonsepar-
able, nonintegrable problems. The cases with m=0 and
|m | >0 were treated separately because when m=0
the Coulomb singularity makes integration of
Hamilton’s equations of motion numerically impractical
in cylindrical coordinates. The Coulomb singularity was
removed using the technique of classical regularization
which resulted in a coupled-oscillator-like Hamiltonian
for the case m=0. A detailed examination of the classi-
cal dynamics of the QZE effect was presented for a wide
variety of energies and magnetic field strengths for both
the case m=0 and |m | >0. In particular, the topolo-
gies of the classical trajectories were related to the sign
of the classical adiabatic invariant A obtained by
Solov’ev using classical perturbation theory. In order to
deal with the Coulomb singularity when m =0 a new
time-independent approach to AS was developed.

Overall, the time-dependent and time-independent AS
methods provided excellent agreement with quantum re-
sults when the dynamics was regular. Although the AS
procedure was extended into mildly chaotic volumes of
classical phase space and gave acceptable agreement
with quantum results, as the chaos became stronger the
method started to fail. In particular, in regions where
the quantum levels exhibited multiple avoided crossings
the AS procedure was observed to break down. Al-
though in previous applications AS has been applied suc-
cessfully to model coupled oscillator problems even in
chaotic volumes of phase space (e.g., the Henon-Heiles
Hamiltonian®!), these problems generally exhibited weak-
er chaos than the QZE and, in addition (or, perhaps,
consequently®’), there were far fewer avoided crossings
of levels. The semiclassical quantization of the QZE in
strongly chaotic volumes of phase space thus remains an
open problem.
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APPENDIX: QUANTIZATION OF A

The zeroth-order problem is taken to be the hydrogen
atom, and the quantum-mechanical operator correspond-

SUBHASH SAINI AND DAVID FARRELLY 36

ing to A is defined using Egs. (2.4) and (2.5). The prob-
lem is to construct a representation |nrm ) in which
H,, A, and L, are diagonal. The eigenvalues of A can
be found either semiclassically or quantum mechanically.
Solov’ev** proposed a semiclassical quantization scheme
which indirectly quantizes the classical quantity A. Al-
ternatively, the Schrodinger equation separates in ellipti-
cal cylindrical coordinates on the Fock hypersphere, and
the eigenvalues may be obtained by solving the resulting
associated Lamé equations.’®!% The most straightfor-
ward approach is quantum mechanical and involves con-
structing the |nrm ) representation directly from para-
bolic basis functions, as described by Grozdanov and
Taylor.!6

Following Grozdanov and Taylor,'® the parabolic
basis functions | nsm ) are used where

s=0,1,...,k, k=n—|m| -1 (A1)

and the relation to the parabolic quantum numbers »n,
and n, is given by n;=s and n, =k —s. In the parabolic
basis, A4, is diagonal with eigenvalues 2s —k.?> The
zeroth-order basis states |nrm ) may be expanded in
terms of the parabolic basis states,

k
lnrm )= CI"|nsm) , (A2)
5=0
where r=0,1,...,k, and because the states are of
well-defined parity
nm = (—1)k-renm (A3)
Using the well-known relations for angular-
momentum operators in a parabolic basis,” it can be

demonstrated that in the |nsm ) basis, the only non-
zero matrix elements of A are the following:

{(nsm | A|nsm)=2(n>—m?—1)—3(2s —k)?, (A4)
(n(s+1)m |A|nsm)
={(nsm |A|n(s+1)m)
=4[(k —s)(n —k +s)n —s — (s + D%, (A5
and the secular determinant is tridiagonal. The
coefficients in the expansion (A2) are given by
(n —s — 1)k —s)!
Cnm: _1 4 S 'm |
r=(=174) (n —mlk!s!( |m | +5)
XD Cr" (A6)

where D(A) is a secular determinant, and the eigenval-
ues of A are given as roots of the secular equation

D% (A)=0, (A7)

and for fixed n and m there are n — | m | such eigenval-
ues of A. More details are given in Ref. 16. For n<4
Eq. (A7) can be solved analytically. In other cases it is
easy to solve the secular equation (A7) using standard
routines to obtain quantized values of A for any desired
state. Once quantized values of Hy and A have been ob-
tained, appropriate initial conditions on the surface of
the zeroth-order torus are generated as described in Sec.
IIIA.
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