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Proof is given that 1/N expansions for energy levels can be interpreted in terms of the quasiclas-
sical minimizations of corresponding Hamiltonian forms like VX(r,p =Ado/r) and vice versa. This
mutual connection enables us to show that the fixing condition for the expansion parameter
(k =N+2l —a) proposed previously is implied to first order only. In general, the a parameter
should be chosen, order by order, so that the sum of corrections to the zeroth-order result van-
ishes. This requirement leads to algebraic equations which produce self-consistent do ——k /2 evalu-
ations. (do denotes the underlying phase-space quantum. ) Particular fixing conditions can also be
proposed. First-order dp estimates are discussed in more detail by using as an example the linear-
plus-Coulomb potential. We also find the covariance behavior of do under quasiclassical symme-
try transformations.

I. INTRODUCTION

Systematic expansions for the energy levels of the
spherically symmetrical Schrodinger equation have been
proposed. ' As a first step, it has been assumed that the
expansion parameter is I/ko ——1/(N+2l), where N
denotes the inflating number of space dimensions,
whereas I is the angular momentum. More efticient ex-
pansions in inverse powers of k, where this time
k =N+2I —a, have also been given. Here a is a suit-
able shift, which has the meaning of an additional degree
of freedom. This improved approach has been called the
shifted-1/N or -1/k method. In general, both methods
can be viewed as realizations of inherent quantum fluc-
tuations in terms of certain corrections to the underlying
potential. These corrections lead to efFective potentials
exhibiting the minima needed. Then 1/ko or 1/k ex-
pansions work in conjunction with Taylor-series expan-
sions of the efFective potentials around the locations of
such minima. Other useful points stem from the loga-
rithmic perturbation theory. Of course, the main prob-
lem is the suitable definition of a. So far, a choice which
has proved to be quite useful in practice is that of invok-
ing the agreement with the exact energy levels of the
harmonic oscillator and of the Coulomb potential. Ac-
cordingly, the a parameter has been chosen so as to
make the first-order energy correction vanish. One
would then obtain Eq. (15) of Ref. 2, which extrapolates
the particular agreements mentioned above towards oth-
er potentials. However, a deeper point of view, relying
on the full structure of the theory, would be desirable.
This situation motivates one to look for a suitable ap-
proach in which the fixing condition for the a parameter
could be justified theoretically. For this purpose we
shall analyze the k-fixing problem via the mutual con-
nection between the 1/N method and the quasiclassical
minimization of the Hamiltonian form 5&(r)
=&(r,%do/r) discussed previously. It turns out that
such interconnections enable us to define the k parame-
ter in a self-consistent manner. Proceeding order by or-

der, the k parameter should be chosen so as to obtain
the corresponding 1/N energy evaluation in terms of the
zeroth-order result. These latter evaluations can then be
improved successively. This criterion leads to order-
dependent algebraic equations for k, or equivalently, for
a. Now it becomes clear that Eq. (15) of Ref. 2 is repro-
duced to first order only. Of course, other particular
fixing conditions can also be proposed. We shall then
use this opportunity to perform comparisons between
such concrete fixings and the self-consistent k evaluation
mentioned above. Systematic higher-order expansions
go, however, beyond the scope of this paper, so that sub-
sequent contingent problems will be analyzed by using
first-order calculations. The reason is that first-order re-
sults provide, up to certain degrees of accuracy, a gen-
eral and comprehensive description of energy levels.

Above, the underlying phase-space quantum has been
denoted by do. The standard Hamiltonian reads
&(r,p) =p /2mo+ V(r), where r =

~

x
~

and p =
~ p ~

.

The point of interest is that quasiclassical minimizations
exhibit typical analytical forms and symmetry properties
which are able to be interpreted in terms of 1/N results.
These minima refer to ground-state energies (GSE's), but
generalizations towards energy levels can also be done.
Scaling properties of d o have also been established.
General classical attributes of 1/N expansions are also
worthy of being mentioned.

This paper is organized as follows. The quasiclassical
approach to the fixing parameter of the 1/N method is
presented in Sec. II. Next-order estimates for power po-
tentials serve as illustrative examples. Particular fixing
conditions have also been proposed. Considering as a
further example the linear-plus-Coulomb potential, we
have discussed first-order dp estimates in Sec. III. Com-
parisons between several possible choices have been
done. Using the quasiclassical equivalence between the
linear-plus-Coulomb potential and the quartic anhar-
monic oscillator, the covariance behavior of do under
quasiclassical symmetry transformations has also been
established. Numerical data concerning the GSE's have
been invoked. Conclusions are presented in Sec. IV.

36 3550 1987 The American Physical Society



QUASICLASSICAL APPROACH TO THE SHIFTING. . . 3551

II. THE SELF-CONSISTENT FIXING
OF THE SHIFTING PARAMETER e,' '(I, n„)=e(xp)+ g e ' (xp) . (2. 1 1)

Defining the dimensionless coordinate as x =mpr/A,
the quasiclassical minimization of the Hamiltonian form

The first-order correction takes the simple form

5&(x)= 1 05&(r) = + V(x),
2xmp

~(y) = V(y)+ —,'y V'(y),

provided that

g (y) = —V'(y)+ V"(y)» .=3

where V(x) = V (r)/m p gives the energy

(2.1)

(2.2)

(2.3)

e"'(x ) =k + [g (x )]'
4x p~ 2k

(2.12)

y =xp+ —I3(k)
1

k
(2.13)

gives a suitable realization of the mutual interconnection
between the quasiclassical and 1/N methods emphasized
above. Accordingly, Eq. (2.5) reproduces Eq. (2.11) if

but the e"(xp)'s become progressively much more ela-
borate at higher orders. Hereafter we put N =3, so that
a —2=1—k +2I. Next we see that the parametrization

This inequality expresses the concavity behavior needed.
The above minimum is located at x =y, which comes
from the quasiclassical virial equation

2k '
(;)P(k) =P, (k) = g e'I(xp),

xpg (xp )
(2.14)

dp f (y) =y'V——'(y) & 0 . (2.4)

e'(y ) = e'(xp ) + (y —xp )e'(x p ) + (2.5)

and

The primes denote differentiations with respect to the ra-
dial coordinate. Next let us assume that y subjects itself
to vanishingly small variations around a certain point
x =xp, which will be specified later. Then Eqs. (2.2) and
(2.4) yield the expansions

where P(k)=O(1), which proceeds to s order. Now we
would like to stress that we are looking for a mutual in-
terconnection between the 1/2V and quasiclassical
methods which acts irrespective of the concrete form of
V(x), thereby preserving the same results. Under such
conditions Eq. (2.3) is implied by Eq. (2.9), and converse-
ly, if y =xp only. In particular, this result is also given
immediately to zeroth order, by virtue of the simultane-
ous validity of the inequalities e(y ) & e(x p ) and
e(xp) & e(y). Consequently, the mutual interconnection
criterion reads P(k)=P, (k)=0, so that

d p f (x p )+ (y —x p
——)f '(x p )+

where

(2.6) e' (xp) =0
i =1

(2.15)

f'(xp)=2xpe'(xp)=xpg(xp) . (2.7)

On the other hand, the minimization of the 1/N
effective potential

to s order, which represents an algebraic equation for
the determination of the k parameter. Accounting for
Eqs. (2.11) and (2.4), one finds that the quasiclassical dp
parameter is given self-consistently by

( eft')V ' '(x) = + V(x)
Sx

(2.8)
dp —————[f(xp)]'

2

so that

(2.16)

g(xp) ~0, (2.9)

which corresponds to Eq. (2.3). In addition,
k /4= f (xp). Then the I /N energy level is given by the
expansion

proceeds by using the substitutions dp~k/2 and y ~xp,
owing to the similarity between Eqs. (2. 1) and (2.8).
Then the minimum of V" '(x) is located at x =xp, so
that minV' '(x)=e(xp), in so far as

e, '(I, n„)=e(x ), (2.17)

to each order. So Eq. (2. 17) works, order by order, in
terms of selected k values, as given by Eq. (2.15). It is
understood that Eq. (2.17) can also be used with respect
to the basic Hamiltonian form e(x) =5&(x), provided
that the x ~x p limit is supplemented by d p

——k /2.
Equivalently, we found a self-consistent solution to the
fixing problem of the k parameter.

Setting s = 1, we get the first-order fixing condition

e' '( I, n „)=e(x p ) +e ' (x p ) +e I '(x p )+, (2.10) k (k —2I —1)=2x p(1+2n„)[g (xp )]'~ (2.18)

in which e(xp)=e' '(xp)=O(k ) expresses the zeroth-
order result, whereas e"(xp ) =0 (k '), i = 1,2, . . . , are
the higher-order corrections. The radial quantum num-
ber has been denoted by n„. More definitely, the s-order
result reads

which reproduces identically Eq. (15) of Ref. 2, as one
might expect. Next-order calculations are of further in-
terest. For the sake of simplicity, we shall restrict our-
selves to the attractive power potentials V„(x)=y(n)/x"
where —ny(n) ~0. Then the second-order fixing condi-
tion reads
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e' "(xo)+e '(xo) =0, (2.19) Fz(n)= (n +13n —98n +120)+—'(2 —n) ~ . (2.24)
72 2

in which

(2.20)

Xp

(2+n)(l+2n„) 3n +10
2(2 n)' 8(2 —n )

+ (n +8n+27)(1+2n„+2n„2)1

(n +5) (11+30n„+30n„) (2.21)

e "(xo)= [a —2+(1+2n„)(2—n)'~~]
4xp

represents the first-order correction, whereas e' (xo)
takes the form

We remark that F2(n) vanishes for n =n'+I=1. 724417
and for n =n' '=——25. 141154, so that do (n) exhibits
complex values for n'+'&n &2 and n &n' '. But it is
easy to verify that the imaginary contributions for
n '+ ' & n & 2 take quite small values, like
ImdoI '(1.75)=0.018746. Moreover, these contributions
vanish at n =2 and n'+'. This situation motivates us to
approach do '(n) by its real part if nI+'&n &2. Then
ImdoI '(n) can be seen as a small oscillation.

The next-order correction to the leading energy con-
tribution has also been calculated using the first-order
fixing condition (2.18) instead of Eq. (2.19)." Then the
GSE obtained in this manner can be fitted in terms of
the effective dp parameter

This agrees with the last higher-order term from the
right-hand side of Eq. (7) of Ref. 10. Considering the
GSE (I =n„=0), we see that Eq. (2.19) gives the solution

1/2

do ——do (n) = [d(')"(n)]—
144

(2.25)

4do '(n)+[(2 —n) Fz(n)]'~~
do=do (")=

6—n

where

(2.22)

which vanishes for n =n [*
]
———49.639117. This means

that Eq. (2.25) becomes meaningless for n & n ~* I. Let us
now compare Eq. (2.22) with Eq. (2.25). First, we re-
mark that both doI '(n ) and d oI" (n ) fulfil the exact
boundary condition

do ——do" (n) = —,
' [1+(2—n)'~ ] (2.23) d(2)(2) d(1)(2) (2.26)

expresses the first-order result relying on Eq. (2.18) and
where

at n =2, which has the meaning of a symmetry condi-
tion. In contradistinction, d o (2) ——0.471404, which

TABLE I. Comparison of do '(n) with do (n) for several n values. First-order do' (n) values have

also been inserted. Except for n = —14, the confrontations with the numerical do(n) evaluations
favor clearly d o ( n ).

14
9

1.5
10
7

4
3

1.2

0.4

—0.5

dp(n)

0.5
0.708 234

0.808 107

0.832 116
0.860 876

0.896 147

0.940 818
1

1.084 051

1.142 145

1.218 629

1.302 681
1.376 083
1.5
1.602 044
1.688 432

1.763 068
1.828 466
1.886 481
2.165 871

do (n)

0.5
0.75

0.833 333

0.853 553

0.877 964

0.908 248

0.947 213
1

1.077 350

1.132 455

1.207 107

1.290 569
1.366 025

1.5
1.618 034
1.724 745

1.822 876

1.914 213

2.5

do (n)

0.471 404

0.736 864

0.825 062

0.846 404

0.872 134

0.903 990

0.944 864

1

1.080 211

1.136 862

1.212 846

1.296 609
1.371 100

1.5
1.609 427

1 ~ 704 494
1.788 260

1.862 731
1.929 306
2.236 068

d"'(n)

0.5
0.705 882'

0.814 815

0.838 048

0.865 651

0.899 455

0.942 449

1

1.083 020

1.141 168

1.218 453

1.302 532

1.376 106

1.5
1.600 699
1.683 666

1.752 146

1.808 233
1.853 344

1.914213

'This comes from Redo '(n).
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k i /3(k( )
dp= + Xpg(xp)

1

(2.27)

means that dp (n) crosses the exact dp evaluation at a
point located in a small neighborhood of n =2. Further-
more, Eqs. (2.22), (2.23), and (2.25) meet, by construc-
tion, the exact dp evaluation at n =1 and —2. Choos-
ing, for instance, n H [ —7, 2], one sees that the "exact"
numerical estimates dp(n) (Ref. 12) are approached more
accurately by dp '(n) than by dp (n), as shown in Table
I. The lo~er bound n ) —7 mentioned above can also
be moved towards n ) n 2, where n 2 = —10, as is crudely
obtained by extrapolation. It is understood that accura-
cy comparisons should be performed, from the very be-

ginning, within restricted n regions. Indeed, excessively
large-n regions are inappropriate for such comparisons,
since increasing degrees of accuracy may imply decreas-
ing regions of validity. The above results then enable us
to say that the most accurate solution acting within the
interval n H[n2, 2] is given by dp '(n). This interval en-

compasses, in practice, all the physically relevant cases.
Such agreements confirm the actual relevance of the
fixing condition (2.15) proposed above. Complementari-
ly, dp" (n) exhibits the largest region of validity.

We would like to remark that one has often dominant
V(x) constituents, such as Coulomb terms, which can be
selected within corresponding regions of the coupling
space. This allows us a description of energy levels us-

ing concrete k =k& values characterizing such constitu-
ents. These latter values come up by performing suitable
xp~x& limits. Then Eq. (2.6) yields

1/2

p ~ X2+2P p2 (I 2)
p 4x

(3.3)

and

k(k —21 —1)=2(1+2n„)[—,'(axp+3Kx p)]' (3.4)

k (k —21 —1)=4xp(1+2n„)(@+3','xp)' (3.5)

to first order, where

1 2a2 ~ I —
&

—3
u p= ———axo+ —~x o4 2 2

(3.6)

and

in which p is a free parameter. This transformation pro-
duces the energy eigenvalues corresponding to the
transformed Hamiltonian forms in terms of suitable p
values. So far the quasiclassical equivalence between
Eqs. (3.1) and (3.2) has been analyzed, in particular, by
keeping unchanged the basic do evaluation. This is, of
course, a noncovariant description, since keeping fixed

do, the transformation properties concern exclusively the
energy levels and the couplings. Now we have the op-
portunity to combine Eq. (3.3) with the fixing condition
(2.18). Then the generalization emphasized above can be
readily accomplished. More definitely, Eq. (2.18) allows
us to establish the covariance behavior of dp under Eq.
(3.3).

First, Eq. (2.18) shows that the self-consistent fixing
conditions characterizing Eqs. (3.1) and (3.2) are given
b 13

in which, this time, dp&k& 14=f (xp). In view of this,
p(ki )&0, so that Eq. (2.17) ceases to be valid. We need
to specify that we are looking for general xo&x& solu-
tions. Then the energy levels come up by combining Eq.
(2.27) with Eqs. (2.2) and (2.4). Such particular fixing
conditions are able to give better results in specific cases.
In general, this latter fixing approach seems to be much
more appropriate for potentials exhibiting a more com-
plex structure. Choosing as an illustrative example the
linear-plus-Coulomb potential, we shall then perform
comparisons between Eqs. (2.27) and (2.18) in Sec. III.

2

dp = =Pxp +2k xp
k 4

and

E(Xp ) =—KX�-
p2X

E (x p ) =2@xp + 3A, x p

so that

respectively. Accordingly,

(3.7)

(3.8)

(3.9)

III. THE COVARIANCE BEHAVIOR OF do UNDER
QUASICLASSICAL SYMMETRY TRANSFORMATIONS

and

xp —— IZ(xp)+[8 (xp)+3aK]' }
3K

(3.10)

Our next step is to analyze in a more general manner
the quasiclassical equivalence between the linear-plus-
Coulomb Hamiltonian

xp2=e(xp)[p+[p +3k'e(xp)]'~ j

Thus Eqs. (3.4) and (3.5) become

(3.11)

do a2

Z =Z(x ) = ——+Kx
X

and the quartic anharmonic oscillator

doE=E(x)= +/2X +A, X
X

(3.1)

(3.2)

(3.12)

(3.13)

k(k —21 —1)=2xp(1+2n„)[e (xp)+3aK]'
and

k (k —21 —1)=4x p(1+2n„)[p +3k, 'e(xp)]'

respectively. On the other hand, the symmetry trans-
forms of Eqs. (3.1) and (3.2) read

discussed previously. The l dependence concerns d
2

0
and do, as shown in Sec. II. Recall that this equivalence
comes from the symmetry transformation and

d pp* —p* Ex +p*Kx =p*a
X

(3.14)
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dp2

p —/3
—+pl, 'x = —pp, (3.15)

d p
——2dp+4(2axp+6irx p)' (3.25)

k(k —21 —1) 1 P 1

k (k —21 —1) 2 2+p*
(3.16)

which shows that p*p= 1, as one might expect. Further,
k =&pk, so that

2k —1 —2l

k +1+2l
2k

(3.17)

which determines the scale factor in terms of k or k.
Next let us assume the additional parametrizations

k = 1+21+fp(n„)(2dp I —1) (3.18)

and

which are defined, in general, up to the scale factors P*
and P. Then Eq. (3.14) reproduces Eq. (3.2) via e=P*a,
dp ——P* d p, P = —/3* F, and A, '=P'lr, whereas the inverse
transformation is characterized by e = —pp, d p

——pd p,

a=Pe, and ir=PA, '. Combining these equivalence results
with Eqs. (3.12) and (3.13), one finds immediately the co-
variance criterion

d =d ', 'I(~) =
2

where

1/2 1/2
exp+ 3KX 0

(3.26)

axp+i~x p= —,'(1+&3)' . (3.27)

However, this latter approach breaks down for negative
K values, as shown in Table II. Moreover, for relatively
small-~ values like 0&i' &2, both d p' (~) and di(Ic) are
better than d I, ''(~). Similar descriptions can be done
for the anharmonic oscillator and, in general, for any
spherically symmetrical potential.

for the GSE, which works via Eq. (3.6). The comparison
of d p''(1~) and d, (ir) with the exact numerical result
dp(x. ) (Ref. 15) is presented in Table II. The present
data refer to a=2. We see that dp(ir) is reproduced
more precisely by di(~), except for the large-v region
(ir&2), in which d p''(v) becomes more accurate. ' In ad-
dition, the particular fixing k

=@i�

( —1) can also be used
satisfactorily for large K) 0 values. Then the GSE is
given by

k =1+21+fp(n„)(21 p
' —1), (3.19)

IV. CONCLUSIONS
in which fp(0) = 1, whereas dp =d pI and dp =d p

' are
responsible for the GSE's. ' Then the covariance cri-
terion exhibits the simple linear form

(3.20)

d 0=-2=
1/2

k1 k1 cxxp + 3Kx 0

4 2
+ (1+21)+(1+2n„)

2

(3.21)

if a & 0, where k, =ki(1) and

k 1 =20,'x0+ 2Kx 0 (3.22)

It is obvious that ki(1) comes from the familiar first-
order evaluation

k =k, (n) = 1+21+(1+2n„)(2—n )' (3.23)

implied by the attractive power potential V(x)= V„(x),
now for n =1. Then Eq. (3.21) gives

1/4
exp+ 3Kx p

dp ——d1(K) =
2

(3.24)

for I = n „=0. The self-consistent solution reads
dp =d p (Ic), sucl1 tl1at

which favors, in turn, the relevance of Eqs. (3.18) and
(3.19). One sees immediately that if ir=k. '=0, Eq. (3.20)
is synonymous with Eq. (3.17) of Ref. 8, this time in
terms of d p

'( i'd=0)=d p(n =1)=1 and dp '(A, '=0)
=dp(n = —2)= —,'.

Particular fixing conditions relying on Eq. (2.27) can
also be done. Assuming, e.g. , the dominance of the
Coulomb term in Eq. (3.1) and setting correspondingly
k =k, (1) yields

Proof is given that 1/iV energy expansions can be in-
terpreted adequately in terms of quasiclassical minimiza-
tions of corresponding Hamiltonian forms. This means
that the concavity conditions characterizing both
methods should be simultaneously valid, as discussed in
Sec. II. In view of this latter requirement one obtains
the fixing condition (2.15), which acts to sth order
(s & 1). Having chosen a such that Eq. (2.15) is satisfied,
one finds, order by order, the energy levels with the help
of Eqs. (2.16) and (2.17). Thus Eq. (2.15) leads to self-
consistent dp ——k/2 solutions acting correspondingly to
each order. We emphasize that accuracy can then be
enhanced merely by using such improved k parameters,
at least up to certain limits. Generalizations towards po-
tentials which are not spherically symmetrical' can be
performed in a similar manner. Next we would like to
note that general qualitative and symmetry properties of
the 1/X method seem to be described adequately in
terms of the first-order approximation. Moreover, ex-
clusive higher-order calculations are not automatically
responsible for a better accuracy, owing to inherent limi-
tations of their validity degrees.

In general, one has trouble with Eq. (2. 18) if the dom-
inating potential energy term is not "stable, " i.e., if it
does not subject itself to a GSE. We have to realize that
in such cases the energy level approaches a critical
value, like the well-known zero-energy limit. Then we
are faced with limitations on accuracy characterizing, in
general, both variational and perturbative methods. It is
obvious that within such regions the higher-order coun-
terparts of Eq. (2. 18) proposed above should be invoked.
However, such improvements may concern progressively
decreasing domains of underlying couplings, so that ac-
curacy cannot be extended beyond certain limits. Such
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TABLE II. Comparison of 2 0"(a.), Z~(~), and d I "(~) with the numerical do(~) evaluation (a=2).

—0.08
—0.06
—0.04

0
0.1

0.4
0.6
1.2
1.6
2

125
1000

0.976 651
0.983 273
0.989 279
1

1.021 662
1.063 851
1.082 438
1.118 732
1.134 655
1.147 059
1.309 325
1.342 278

d p (K)

0.978 812
0.984 329
0.989 701
1

1.023 149
1.073 786
1.096 747
1.140 112
1.158 134
1.171 695
1.317 197
1.341 809

r%

0.22
0.11
0.04
0
0.14
0.93
1.32
1.91
2.07
2.15
0.60

—0.03

0.976 298
0.983 034
0.989 172
1

1.021 179
1.059 971
1.076 291
1.107 255
1.120 562
1.130 843
1.262 216
1.288 759

—0.03
—0.02
—0.01

0
—0.05
—0.36
—0.57
—1.02
—1.24
—1.41
—3.60
—3.99

0.562 779
0.785 902
0.858 261
0.930 605
1.009 930
1.093 467
1.119401
1.161 454
1.177 596
1.189493
1.318 614
1.342 162

—42.37
—20.07
—13.24
—6.94
—1.15

2.78
3.41
3.82
3.78
3.70
0.71

—0.01

limitations refer, e.g. , to the 8 ~~ 2 region of the
Hellmann potential. ' Furthermore, one realizes that
the accuracy of Eq. (2.27) will be enhanced if the dom-
inant constituent of the potential, for example, V~, I(x),
gives additionally the most singular contribution. Then
the corresponding k

&
parametrization works reasonably

well even outside the dominance region. This has been
confirmed by the reasonable accuracy of the k =k~(1)
choice [ V~ &~(x) = —a/x] in the large-x' & 0 region, as
displayed in Table II. Similarities with other perturba-
tion approaches can also be noticed. So the requirement
that the sum of corrections to the zeroth-order term

vanishes, order by order, has also been used before in or-
der to construct a convergent Rayleigh-Schrodinger per-
turbation theory for the one-dimensional anharmonic os-
cillator. ' However, in general, neither the starting
zeroth-order input nor the corresponding unperturbed
Hamiltonian are uniquely involved.
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