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In this paper we analyze a model containing the unfolded normal form of the imperfect pitchfork
bifurcation with additional terms representing additive white noise and a linear Ornstein-Uhlenbeck
noise. After linearizing the model about a branch of stable steady states, we investigate the variance
of fluctuations about these steady states as a function of a control parameter. We apply our model to
experimental data obtained by Griswold, Lorensen, and Tough [Phys. Rev. B 35, 3149 (1987)] on the
transition between superfluid turbulent states T-I and T-II in liquid-helium counterflow experiments.
Our model accounts qualitatively for the steady states, relaxation times, and the variance of fluctua-
tions which were measured in this system. Furthermore, our model predicts the existence of a curve
of unstable steady states which have not yet been observed. Perturbations from the known steady
state in the direction of these new unstable steady states are expected to lead to qualitatively new dy-

namics.

I. INTRODUCTION

Nonlinear physical and chemical systems can show a
rich variety of steady and dynamical behavior. We can
gain some understanding of the underlying physical
mechanisms by studying instabilities in these systems and
transitions between their various states. Generally it is
only for the simplest nonlinear systems that a complete
theoretical description is available. However, if the nature
of an instability or transition can be identified, it is often
possible to develop a model of the system which describes
its dynamical features at least over a certain region in pa-
rameter space and which can lead to further physical in-
sight by predicting additional phenomena. The correct
identification of the nature of an instability in the system
would obviously be facilitated by a catalog of the transi-
tions that can occur in a dynamical system and some
measure of their likelihood. This is the subject of bifurca-
tion theory.

Bifurcation theory attempts to describe all of the ways
in which dynamical systems can make transitions from
one state of motion to another. It has become a very
powerful phenomenological tool for analyzing changes of
states in physical systems. When transitions are made be-
tween steady states a very complete description of the
different possibilities is given by singularity theory.!
These different possible transitions are categorized accord-
ing to a notion of complexity, the “codimension” of the
bifurcation. The codimension counts essentially the num-
ber of external parameters which have to be equal to a
particular numerical value for the bifurcation to occur.
Bifurcations of low codimension are expected to be the
most common in typical systems, because fewer condi-
tions need be met. Singularity theory provides archetypi-
cal examples of equations containing each bifurcation,
called “normal forms” of the bifurcation. These are, in a
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sense, the simplest possible equations which contain the
bifurcation. The steady states of a general model can be
related to those of the normal form via a smooth local
transformation about the singular point. Thus if we can
properly identify the underlying bifurcation for an insta-
bility of a physical system, then the normal form provides
a satisfactory model of the system, at least in the vicinity
of the instability. This approach has been very successful
in complex nonlinear chemical reactions, where generally
the reaction mechanism is only incompletely known. It
has led to a better understanding of experimentally ob-
served phenomena and advanced our understanding of the
dynamical behavior of nonequilibrium chemical reac-
tions.?

There are various methods available in nonlinear dy-
namics, based on time series analysis, phase-space recon-
struction, Poincaré sections, etc., that help with the
identification of the underlying bifurcation. Here we will
discuss yet another method based on an analysis of the
fluctuations of the system in the vicinity of the bifurcation
point. All macroscopic systems are subject to small irreg-
ular influences that cannot be modeled in a set of deter-
ministic equations. We shall call these influences “noise.”
These may be ““internal fluctuations,” due to the complex
interaction of the parts of a composite system, or they
may be “‘external noise,” due to an irregular influence im-
posed on the system from the environment to which it is
coupled. Noise will cause the system to fluctuate. The
way these fluctuations evolve as the system undergoes a
transition may provide clues to the nature of the underly-
ing bifurcation. Wiesenfeld® has recently published a
series of papers analyzing the effect of fluctuations on the
power spectra of systems close to the bifurcation of limit
cycles. The fluctuations add features to the spectra which
are characteristic of the impending bifurcation.

In Sec. II we analyze the influence of fluctuations on
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the imperfect pitchfork bifurcation. In particular, we look
closely at two limiting cases of simpler bifurcations em-
bedded in the unfolding of the pitchfork: the transcritical
and the hysteresis bifurcations. These latter are the
lowest codimension bifurcations (codimension 1) that
mediate continuous transitions between steady states, and
they are expected to arise frequently as limiting cases in
the unfolding of more complex bifurcations. The pitch-
fork bifurcation itself is the only codimension 2 bifurca-
tion that mediates a continuous transition between steady
states, and it arises frequently in the context of physical
systems. It is at the basis of the Landau model of phase
transitions and mean-field theory* and numerous applica-
tions exist to both equilibrium and nonequilibrium transi-
tions in physical systems.> An extension to spatially distri-
buted systems is the Ginzburg-Landau equation.

In Sec. III we apply our analysis of the noisy pitchfork
bifurcation to data reported on a transition between two
turbulent superfluid states, T-I and T-II, observed in
liquid-helium counterflow.*” For recent reviews of
superfluid turbulence see Ref. 8. Fluctuations in tur-
bulent superfluid helium II were first observed by Hoch
et al.® An analysis of noise on the Vinen equation, which
models the laminar-turbulent transition in liquid-helium
II, has been provided by Northby,'® and by Moss and
Welland.!! A microscopic theory exists for the state T-
I1,' treating the turbulence as a homogeneous tangle of
quantized vortex lines. No such successful treatment is
available for the state T-I. We will show that the normal
form of an imperfect pitchfork bifurcation, with noise,
provides a very satisfactory model for the turbulent
counterflow in the neighborhood of the T-I-T-II transi-
tion. Our description of this transition is purely phenom-
enological, but it provides a unified explanation for steady
state, relaxation time, and fluctuation data.

II. ANALYSIS OF AN IMPERFECT PITCHFORK
BIFURCATION WITH WEAK NOISE

In this paper we will only deal with transitions between
steady states. As already mentioned in the Introduction,
singularity theory provides a complete description of the
different possibilities in this case. Bifurcations are
categorized according to a measure of their complexity
called the codimension. Following the terminology of
Golubitsky and Schaeffer,! a bifurcation has codimension
0 if a singular point, i.e., a steady state at which the Jaco-
bian of the system becomes singular, will typically be en-
countered as some distinguished parameter A is varied,
without the need to adjust any secondary parameters.
The only codimension O bifurcation of steady states is the
limit point. This simple example occurs in a hysteresis
loop, as shown in Fig. 1. A bifurcation has codimension
1 if it is necessary to adjust a single secondary parameter
to a particular value in order to encounter the singularity.
A bifurcation has codimension 2 if it is necessary to ad-
just two such parameters. An infinite hierarchy of bifur-
cations exists with increasing codimension. However, as
the codimension increases, more and more parameters
must take on particular values for the bifurcation to be
encountered as the distinguished parameter A is varied; in
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FIG. 1. Ferromagnetic hysteresis loop. The magnetization M
on the ordinate depends on the external field H given by the
abscissa. If M initially points downward an increasing field H
shifts the magnetization to the right along the lower branch of
the curve until the limit point “L” is reached. At L the lower
branch loses stability and the magnetization switches discontinu-
ously to the “up” branch.

this sense they are less and less likely to occur in practice.
Here we will consider the only codimension 2 bifurcation
which mediates a continuous transition between steady
states, namely the pitchfork bifurcation. And this bifurca-
tion contains in its unfolding the trans-
critical and hysteresis bifurcations which are the only
codimension 1 bifurcations giving rise to continuous tran-
sitions between steady states.'

Many different mathematical models contain a given bi-
furcation. It can be shown that all of these models are in
some sense equivalent to certain polynomials, called nor-
mal forms. A normal form for the pitchfork bifurcation is
g(x,A)=—Ax —x>. Signs are chosen so that the well-
known “‘pitchfork” diagram of steady states, given by the
roots of g (x,A)=0, opens out to the left. This choice an-
ticipates the application to liquid-helium counterflow de-
scribed in Sec. III. In the normal form, x characterizes
the state of the system and A is the distinguished parame-
ter, the “bifurcation parameter.” The variable x will gen-
erally denote the deviation from some reference state and
may thus be positive or negative.

As already mentioned the pitchfork has codimension 2.
So two auxiliary parameters must in general be adjusted
in order to achieve the singularity at gx =0, A=0).
Small perturbations will generally destroy this singularity.
Close to the singularity, it can be shown that all analytic
perturbations are equivalent to those generated by two
terms with coefficients a, and «, in the “universal unfold-
ing” of the normal form g(x,A):

px, M) =ag—Ax +ax?—x3 . (1)

Steady states of the unfolded bifurcation are given by
p(x,A)=0 and the dynamics are modeled close to the
singularity by x =p (x,A). When ay and a, have nonzero
values, a continuous transition between steady states will
still be made. However, no singular point will be encoun-
tered, the stable steady state will retain its linear stability
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through the transition region. Such a transition is known
as an “imperfect” bifurcation. In order to avoid cumber-
some terminology, we will refer to p(x,A) itself as the
normal form of the pitchfork bifurcation.

Following Golubitsky and Schaeffer, we depict the un-
folding of the pitchfork bifurcation graphically by showing
bifurcation diagrams for various values of the secondary
parameters, see Fig. 2. A bifurcation diagram for the
pitchfork is a plot of the roots of p(x,A) as a function of
the bifurcation parameter A. We restrict our analysis to
the domain below the abscissa a3=0 and to the right of
the curve ag=a3/27. Here a continuous curve of roots
x _(A) with negative values of x exists for — o <A< .
We consider the negative roots because these apply most
naturally to the liquid-helium model discussed in Sec. III.
However, the bifurcation diagrams in the other domains
of the (a,,ay) parameter plane are either related to those
we consider by reflection about the axis x =0 or else con-
tain discontinuous transitions with which we are not con-
cerned.

The perfect pitchfork bifurcation is at the origin of the
(ay,ap) parameter plane, where the two auxiliary parame-
ters are equal to a particular numerical value, namely
zero. The axis @p=0 is a line of codimension-1 trans-
critical bifurcations. The curve ag=a3/27 is the loci of
codimension-1 hysteresis bifurcations.

Imperfect bifurcations occur in the unfolding of the
pitchfork as Fig. 2 illustrates. If a, >0 then these imper-
fect bifurcations will have the character of imperfect tran-
scritical bifurcations locally about the origin (x,A)=(0,0)
of the bifurcation diagram. If o, <O they will have the
character of imperfect hysteresis bifurcations. When the

FIG. 2. Bifurcation diagrams within the unfolding of the
pitchfork bifurcation for different values of the parameters a
and a,. Shown is the domain below the abscissa ao=0 and to
the right of the curve ay=a3/27. The codimension-2 pitchfork
bifurcation is at the origin of the (a,,a,) parameter plane. The
axis ap=0 is a line of codimension-1 transcritical bifurcations.
The curve ay=aj3/27 is the loci of codimension-1 hysteresis bi-
furcations.

deviation of the secondary parameters from the particular
values necessary for a singularity is indeed small, then the
system will pass, as the bifurcation parameter A is varied,
through a region of weakened linear stability. This region
will be a neighborhood of the singular point in the prod-
uct space of state variables and parameters. In this region
the magnitude of fluctuations of the state variable and
their relaxation times will be enhanced. However, since
no true singularity is encountered, the relaxation times
will always remain finite, i.e., fluctuations will decay ex-
ponentially. We shall call the point on the bifurcation di-
agram at which the relaxation time reaches its greatest
value the “paracritical” point, and we will denote it
(prAp).

A general system containing a pitchfork bifurcation will
not necessarily have the form (1). However, there will ex-
ist in general a smooth change of coordinates which maps
the steady states of the model system onto those of the
normal form in some neighborhood of the origin
(x,A)=(0,0). Only in this neighborhood can properties of
a given model be inferred from those of the normal form.

Much may be learned about the dynamics of a system
undergoing a bifurcation by analyzing fluctuations.
Wiesenfeld has thoroughly studied fluctuations in systems
bifurcating from limit cycles.® Here we analyze fluctua-
tions associated with imperfect bifurcations between
steady states. Our approach has been motivated by a
series of experiments on the transition between two steady
states of superfluid turbulence in liquid helium reported
by Griswold, Lorenson, and Tough.%’ Fluctuations
about the steady state were studied as a function of the bi-
furcation parameter. We consider a model whose deter-
ministic part is based on the normal form (1) and which
includes two sources of noise:!>1*

dx =[ag—(A—z)x +ax*—x3|dt +0,dW,
=p(x,A)dt+o0,dW,+xzdt , (2)
dZ=——‘}/Zdt+0‘2dW2 . (3)

This model contains the two sources of noise any non-
equilibrium system will inevitably be subject to. Namely
internal noise or thermal noise which represents the
influence of the large number of (microscopic) degrees of
freedom on the behavior of the systems. Internal noise
generally evolves on a time scale very fast compared to
the time scale of the system and is thus usually modeled
by an additive Gaussian white noise. This is the term
o,dW, in (2). Nonequilibrium systems are open systems
and as such coupled to an environment. The fluctuations
in the environment are a second source of noise for the
system. The effect of these fluctuations on a nonlinear
system is often state dependent, for instance if they give
rise to noise in the bifurcation parameter. In our model
this leads to the linear term xz dt, modeling a source of
random disturbances perturbing the bifurcation parame-
ter. Since the ratio of the time scales of the system and
the external noise can change as the paracritical point is
approached, we have chosen to represent this linear noise
by a Gaussian process with a nonvanishing correlation
time, namely an Ornstein-Uhlenbeck process (OU noise)
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with correlation time ¥ ~!. This allows us to describe the

competition between the two time scales close to the para-
critical point x,,.

The intensity of internal fluctuations generally scales
with an inverse power of the system’s size and these fluc-
tuations are thus usually a weak source of disturbance in
macroscopic systems. Obviously external noise (unless
deliberately applied) is usually also weak in the laboratory
experiments. Weak noise will give rise to Gaussian fluc-
tuations in the state variable with small amplitude about
the deterministic steady state. If we expand (2) about the
deterministic steady state using x =x_ +y, and then
linearize, we obtain the system

y p;(}\.) X _ y (o8} 0 dW]
dt+ ,
z 0 —v ||z 0 o,||dW,
4)
where
ps(M)=(d /dx)p (x,A) |, _, ,=—A+2ax_ —3x2
(5)

The solution to this system of linear stochastic
differential equations is indeed a Gaussian random pro-
cess. The variance (y2?) about the steady state x _(A) is
given by the sum of two terms, one due to the additive
internal fluctuations and the other due to the linear
noise'*

N ol x% o} ©
UV=V|+V3, V1= T V2= , N
2iPs| 2|Ps |7/('V_Ps)

As indicated by the form of (6), our expression for the
variance does not depend on the explicit form of p (x,A).
Equation (6) gives the variance for stable steady states
weakly perturbed by additive white noise and an indepen-
dent linear OU noise; the normal form p(x,A) is arbi-
trary. Thus (6) applies not only to the pitchfork bifurca-
tion, but also, for instance, to the transcritical or hys-
teresis bifurcations.

In Eq. (6), the term v, due to internal fluctuations is in-
versely proportional to the restoring force p, back to the
deterministic steady state. Near a singular point, where
|p;| is small, we have the familiar phenomenon of
enhanced critical fluctuations. The term v, due to linear
noise is more complex; in order to understand it better we
first discuss the limit corresponding to short correlation
times ¥ ~!. Below we will also discuss the long correla-
tion time limit.

The short correlation time limit is obtained by substi-
tuting ¥y —€ 2y and 0,—€" !0, in the second component
of Eq. (4) and xz dt—e€~'xz dt in the first component of
Eq. (4), and then taking the limit e—0.!> We obtain for
the variance due to external noise

x% o} x2 o} o}

Uy = T Ty T
29| p) 1 20ps | ¥

—03. (7

We would obtain the same expression by first substituting
xzdt—ox dW, in (2) and linearizing

dy=p,(Mydt+0,dW +0o,x_dW, . (8)

The variance then calculated directly from (8) agrees with
(7). The form of (7) is easy to understand. v, is quadrati-
cally dependent on x_, reflecting the fact that the noise
strength is linear in x _ and the variance is a mean-square
deviation. As with the contribution due to additive noise,
the variance is also inversely proportional to the strength
of the restoring force p,.

When the variance of fluctuations on a state variable is
given as a function of A, what can we deduce about the
parameter values in the underlying normal form (2)? We
will see that something may be learned by analyzing (6) to
find out when the two components v; and v, contribute
distinct maxima to the envelope of the sum. We consider
first the analytically tractable case of the white noise per-
turbing the pitchfork bifurcation. We will then compare
these results with those obtained numerically for the more
complicated case of colored noise.

Adding the short correlation time limit (7) for linear
noise to the contribution v, in (6) due to additive noise
and differentiating with respect to A, we obtain the ex-
tremum condition for white noise:

_av 205x _(dx_/dA)|p; | + (0} +0ix )dp./d\)
2|ps |

==
9

The denominator is strictly positive and therefore the ex-
tremum condition may be analyzed by considering the
numerator alone. We will proceed by obtaining expres-
sions for |p, |, dp,/dA, and dx _ /dA in terms of the in-
dependent variable x_ alone, eliminating A. However,
x_ is a monotonic function of A. Thus the zeros of
dV /dX expressed as a function of x_, for x_ negative,
are in one-to-one correspondence with those of dV /dA
expressed as a function of A.
The expression for p,/(A) is given by (5), and therefore

dp; (L) _ dx _ p dx _
dn e Ty

To obtain an expression for dx _ /dA we note that x _ (L)
is a root of p(x,A)=0 so that we have the identity
p(x_(A),A)=0. Then on differentiating

O0=dp(x_(A),A)/dA=(3p/dx _)dx _/dA+0dp /3A
=p,(Mdx _ /dA+x _ , (11)

(10)

from which

dx_/dA=x_/|pJN)]| . (12)
From p(x _(A),A)=0 we solve for A,

A=apx “'4a,x_—x% . (13)

Substituting (13) into (5) and the result into (11) we then
have

dx _/dA=x2 (—ag+ax® —2x3 )71, (14)

Substituting (5), (10), and (14) into the numerator of (9)
and assuming that a,,0,5%0 we obtain the following cri-
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terion for extrema in the variance considered as a function
of A:

QO(x_)=D where Q(x_)=x% (x> +Bx_+C),
(15)

and

B =4a;'r?}, C=—Q3aga;'+r?), D=ama;'r?,

(16)

where r=0,/0,.

Our analysis now separates into two cases: that of the
hysteresislike imperfections with a, <0, and that of the
transcriticallike imperfections with a, >0. We begin with
the hysteresislike case. Then we have

ay<0 and a,<0=>B <0, C<0, D>0. (17)

The sign of C indicates that we have a quadratic max-
imum of Q(x_) at the origin. We also note that
Q(x_)1oo as |x_ | 1. Since a fourth-order polynomial
has at most three extrema, we must therefore have the
qualitative picture shown in Fig. 3(a). We see that there
will be exactly one intersection of Q(x_) with the con-
stant line x _ =D in the physical domain x _ <0. This in-
tersection corresponds to a unique value of A for which
dV /dA=0. V(A) is strictly positive and it is easy to show

FIG. 3. Graphs of the function Q(x _) for the case of (a) hys-
teresislike and (b) transcriticallike imperfections. For hysteresis-
like imperfections there will always be one solution to Q (x _)=D
for the physical case of x _ <0. For transcriticallike imperfec-
tions there are two ways that the graph of Q(x_ ) may be drawn,
depending on whether C is positive (dashed line) or negative
(solid line). In either case there are generally no real solutions or
else two real solutions to Q(x _)=D for x _ <0. The critical sit-
uation in which a minimum of Q(x _) is tangent to w =D is de-
picted. x,. is the coordinate of the physical minimum of Q, and
is shown for the case of C <O0.

that V(A)—0 ad At . Therefore, the unique extremum
must correspond to a maximum in the variance. We
show this result on the (a,,a,) parameter plane in Fig. 4.
To the left of the g axis and below the curve of hysteresis
bifurcations ay=a3/27, we have a domain where the vari-
ance diagram has only a single maximum.

In the transcriticallike case, a, is positive so that we
have

ap<0 and a,>0=>B>0 and D <O, (18)

however the sign of C is indeterminate. Depending on the
sign of C, we may have either a quadratic maximum or
minimum at the origin. The graph of Q(x_) for these
two cases is shown in Fig. 3(b). In either case extrema in
the variance diagram correspond to intersections of the
graph with the constant line Q(x_)=D for x _ <0. We
see that for transcriticallike imperfections we will in gen-
eral have either zero or two intersections. Between these
two generic cases we have the critical case of only a single
intersection, as is shown in the figure. We would like to
calculate the bifurcation set of the variance diagram, that
is, the loci of the critical case in the (ag,a,) parameter
plane. In this situation we have Q(x.)=D, where x. is
the coordinate of an extreme value of Q(x), satisfying
Q'(x.)=0. One root of this equation is at the origin and
the other two roots are given by

x.=3i[-B+(B*—32C)'"?]. (19)
Then Q (x.)=D leads directly to

-05
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FIG. 4. Bifurcation set of the imperfect pitchfork variance di-
agrams for white and colored noise. Sketches of the variance di-
agram are shown in each domain of the unfolding of the pitch-
fork. Variance diagrams for white noise are labeled WN, those
for colored noise are labeled CN. In the white-noise case the
line a,=0 separates hysteresislike diagrams with a single ex-
tremum from transcriticallike diagrams with two extrema. A
root of Eq. (21) gives the solid line in the transcriticallike
domain, which separates two extrema diagrams from zero extre-
ma diagrams. The bifurcation set for colored noise is represent-
ed by the dashed line which was interpolated between the nu-
merically observed points (@). Colored noise results in an addi-
tional maximum for each diagram in the transcriticallike
domain.
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(B?—2C)"*(—9B*+32BC)
=27B*4+128C?*—144B*C+512D . (20)

After squaring both sides and introducing the definitions
(16), we group terms of like powers in a; and finally ar-
rive at the condition

0=381a,a¢+(180a3r?+ 1087 *)ad
+(118a3r* +540a,r%)a}
+(20a3r 0+ 180a2r 8 +432r Yo+ 4a3r O+ a3r® .
21

The roots of this polynomial as a function of ag give the
bifurcation set for extrema of the variance diagram in the
(ag,3) plane. Figure 4 shows the roots for the case
r =0.5, corresponding to the relative strengths of linear
and additive noise used in our discussion of the applica-
tion to liquid helium below. A second curve of real roots
to (21) also exists in this case; this is not shown because
these roots correspond to unphysical positive values of
x _. In addition, the polynomial has a pair of complex-
conjugate roots for the range of values of ay shown.

Sketches of the variance diagram are shown for each
domain in the figure. They are labeled “WN” for white
noise. Above the bifurcation set the variance diagrams
have two extrema. As Al— o« the variance increases
monotonically to its limiting value of 03/4. Below the bi-
furcation set there are no extrema at all. The axis a,=0
is also a bifurcation set, dividing the transcriticallike case
of two extrema from the hysteresislike case with only a
single extremum.

Our analysis has thus far been concerned with the
white-noise limit, in which the correlation time of the
noise disturbing the system is assumed to be much shorter
than the time associated with deterministic relaxation
back to the steady states: ¥ ' <<p/(A,)~!. Close to the
paracritical point, and for sufficiently small |ay| and
|a, |, we expect that this relaxation time will be large
and so the assumption holds. But for large |A | the re-
laxation time decreases as |A| ~! and eventually the
white-noise approximation will be inappropriate. Another
limit of interest is the long correlation time limit,
y~'sspl(A)~!, where once again the expression for the
variance simplifies.

Formally, the long correlation time limit is obtained by
substituting y ->€?y and o,—€0, in the system (4) and
taking e —0. Using this limit, the total power of the noise
processes remains finite.!3® The resultant expression for
the variance v, is given by

x% o3

— 4 .
2y |ps |
This result may be understood by means of the follow-

ing intuitive argument. If the correlation time of the noise

process is much greater than the relaxation time to the
deterministic steady state, then the system will always be
quasistationary with respect to the slowly changing value

of the effective bifurcation parameter A4z in (2). As a

vy (22)

consequence we expect the amplitude of fluctuations in x
to be related to those in A through o, =(dx _ /dA)o,; see
Fig. 5. The variance in A is that of the Ornstein-
Uhlenbeck process (3); o3=02=03/2y. Using (12) we
then obtain

dx_ ’03  x2o3
Ox = ——:—,—2 N (23)
dr | 2y 2v|ps|

in agreement with (22).

We note that the general form for the variance v, in (6)
interpolates between the long correlation time limit (22)
and the short correlation time limit (7) via the denomina-
tor (y —p;). The short correlation time limit is taken by
only keeping the second term in the denominator and the
long correlation time limit is obtained by only keeping the
first.

To illustrate the difference between the long and short
correlation time limits consider the perfect pitchfork
p(x,A)=—Ax —x3. For A <O the long correlation time
limit leads to v, =03(8 | A |¥)~! and the white-noise limit
gives v,=0%/4. When the pitchfork is imperfect the be-
havior for large | A | is qualitatively the same; the effect of
finite correlation times is to decrease the variance in pro-
portion to |A| ! as Al — . The effect of finite correla-
tion times on variance diagrams for transcriticallike im-
perfections is then to add an additional maximum value in
the variance, where for more negative values of A the vari-
ance decreases to zero. Finite correlation times do not
modify the number of extrema in the case of hysteresislike
imperfections, where even for white noise the variance de-
creases asymptotically as Al — oo. Sketches of the vari-
ance diagrams for colored noise (labeled “CN”’) are shown
next to those for white noise in Fig. 3.

What is the effect of finite correlation times in the bifur-
cation set shown in Fig. 4? This has been investigated nu-
merically by computing a series of variance diagrams for
fixed a, while varying ag, and recording the critical value
of a, where the number of extrema visibly change. The
dashed line in the figure interpolates between our observa-
tions. The bifurcation set for finite correlation times fol-
lows closely the one for white noise along the branch
furthest from the axis a,=0. Here the white-noise ideali-

FIG. 5. When the system relaxation time |p/(A)| ~! is much
shorter than the external noise correlation time 'y", the state
variable x closely follows the slowly changing values of the
effective bifurcation parameter A+2z: x, ~x_(A+2).
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zation is apparently robust with respect to the exact char-
acter of the noise so long as the correlation time of the
noise is much shorter than the relaxation time of the sys-
tem in the neighborhood of the paracritical point. How-
ever, close to this axis the results for white noise diverge
sharply from those for finite correlation times. In this re-
gion the extrema are due to a shallow modulation of the
variance which rises quickly towards its asymptotic value
as A decreases. The number and position of the extrema
are here very sensitive to small changes in the character of
the noise.

III. APPLICATION TO LIQUID HELIUM

Griswold, Lorenson, and Toughé'7 have studied the
transition between two superfluid turbulent states in
liquid helium. Their apparatus includes a reservoir of
liquid helium connected to a small chamber with a heater
by means of a thin flow tube. A pressure transducer in
the chamber measures the pressure difference across the
flow tube, which is proportional to the chemical potential
difference AG across the tube. This chemical potential
difference is a state variable and may be related to the vor-
tex line density in the superfluid flowing through the tube.
The behavior of the state variable is measured as a func-
tion of Q, the rate at which heat is introduced into the
helium by the heater. According to the two fluid model
the flow through the tube may be treated as a counterflow
of two fluids; the superfluid component flowing from the
reservoir to the heater and the normal fluid component
flowing in the opposite direction. For low values of Q the
chemical potential difference AG =0. At a critical value
of O, AG increases discontinuously to a finite value. This
transition is associated with the appearance of quantized
vortices in the superfluid. The resultant turbulent state is
denoted T-I. As Q is further increased the state T-I un-
dergoes a complex transition to another superfluid tur-
bulent state: T-II.

Turbulent superfluid states T-I and T-II and the transi-
tion region between them all consist of macroscopic
steady states. The simplest transitions between macro-
scopic steady states are one state variable bifurcations.
Certain transitions between steady states do have more
than one state variable in their normal form, however,
these all have codimension 3 or greater.! In this sense
they are less likely to be encountered. Therefore, it is
quite natural to attempt to model the transition between
T-I and T-II using only a single-state variable. Further-
more, we know that in the case of superfluid helium many
properties of states T-I and T-II are successfully described
by a phenomenological one-state variable theory based on
the Vinen equation.

We suggest that the transition between states T-I and
T-II takes place via an imperfect pitchfork bifurcation
perturbed by both additive and linear multiplicative noise.
This interpretation provides a qualitative explanation for
results of steady state, fluctuation, and relaxation time
measurements. First we will describe the results expected
on the basis of our model in the transcriticallike and hys-
teresislike regimes. Then we will compare these with the
experimental results reported by Griswold et al.” at 1.6

and 1.75 K. We will see that the measurements at 1.6 K
agree more closely with the transcriticallike case, while
the measurements at 1.75 K resemble the hysteresislike
case.

We now proceed to describe the results of our model in
the near transcritical limit. Figures 6(a) and 6(b) show a

bifurcation diagram in the regime ;>0 and
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FIG. 6. Imperfect transcritical bifurcation in the unfolding of
the pitchfork. (a) Global view of the bifurcation diagram
ap=—1x10"% a,=1. (b) Magnified view of a small region
near the origin. The small circle (O) is centered around the
paracritical point. (c) Variance as a function of A for the same
values of ao and a,, and with »=0.5. The envelope of v,
(—e——- ) is roughly centered at the origin. The envelope of the
linear component v, (— — —) rises to the left, where the pitch-
fork opens up. Also shown is the summed envelope v =v, +v,
( ). The additive component contributes a distinct peak in
the envelope for the total variance. (d) Variance as a function of
A for parameter values ap=—6x10"*% a,=1, and r=0.05.
The additive component is not resolved in the envelope of the to-
tal variance.
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|ag/a, | <<1, near a transcritical bifurcation. Figure
6(a) provides a global view and 6(b) magnifies a small
neighborhood of the origin. The lower curves represent
stable steady states and are the ones we label x _. In Fig-
ure 6(b) a small circle is drawn around the paracritical
point (x,,A,); it occurs close to the point of maximum
curvature of x _(A).

Figure 6(c) displays the variance (6) as a function of A,
with the same parameter values a( and a, as were used to
generate 6(a) and 6(b). Both the components v, and v,
and the total variance are shown. Note that according to
(6), v, is proportional to the deterministic relaxation time
|p; | ~!, reaching its maximum value at the paracritical
point. v, peaks near A=0 and v, rises to the left. A
shoulder appears in the envelope for the total variance
with a maximum corresponding to v;. Figure 6(d) has the
same parameters as 6(c) except for a larger value of |ag|;
in this case the shoulder is not resolved in the envelope of
the total variance.

Figure 7 displays a bifurcation diagram for parameter
values near the curve of hysteresis bifurcations given in
Fig. 2. The paracritical point is now close to the
inflection point in the curve x _(A). Figure 7(b) shows the
corresponding plots of variance versus A. The maxima of
v, and v, are only slightly separated and both close to the
paracritical point. The total variance shows only a single
peak with no hint of separate components.
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FIG. 7. Imperfect hysteresis bifurcation in the unfolding of
the pitchfork. (a) Bifurcation diagram for ap= —8.6x 1073,
a,=0.5. The small circle (O) is centered around the paracritical
point of x _ (b) Variance as a function of A for the same parame-
ter values. Both the additive (—.—.—.) and linear (— — —)
components peak near the inflection point of the bifurcation dia-
gram. The summed envelope ( ) has only a single max-
imum.

We now turn to the measured steady states, relaxation
times, and fluctuation power as reported by Griswold
et al.” Figure 8(a) shows the measured loci of turbulent
superfluid steady states as a function of the parameter Q
in the regime of the T-I to T-II transition at 1.6 K. The
transition has a complex global structure. The normal
form (1) represents a power-series expansion of the pitch-
fork bifurcation about the singular point, which is close to
the paracritical point. Therefore, we only claim to model
the transition in some neighborhood of the empirical para-
critical point, which is denoted “c” in Fig. 8(a). To the
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FIG. 8. Measured properties of liquid-helium counterflow at
1.6 K (Ref. 7). (a) Steady-state values of the free energy across
the flow tube as a function of the heat current Q in the T-I to T-
IT transition region. The paracritical point is marked c. (b) The
relaxation time as a function of heat current in the T-I and T-II
transition region. The relaxation time reaches a maximum at the
paracritical value of Q. (c) The power at 0.1 Hz of fluctuations
in the T-I and T-II transition region. At the paracritical value of

Q there is a local maximum. Adapted from Ref. 7.
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right of ¢, a line of steady states extends into the T-II re-
gion; these we associate with the line of trivial steady
states extending to the right of the paracritical point of
Fig. 6(b). The measured power of the fluctuations rapidly
decreases to zero as Q is increased into the T-II region, in
agreement with our formula for variance as shown in Fig.
6(c).

We locate the empirical paracritical point at the value
of Q where the measured relaxation time attains its max-
imum value, see Fig. 8(b). It is close to the center of the
rounded corner in the curve of steady states. This is con-
sistent with our results for the transcritical bifurcation as
shown in Fig. 6(a). It is in contrast with the situation of
the hysteresis bifurcation shown in Fig. 7(a); in that case
the paracritical point is found near the inflection point of
the curve of steady states. At the paracritical value of Q
there is a local maximum in the fluctuation power, shown
in Fig. 8(c), corresponding to the resolved shoulder in the
total variance due to additive noise as seen in Fig. 6(c).
No such distinct component can be resolved in the total
variance of a noisy hysteresis bifurcation. To the left of
the paracritical point a curve of steady states descends
into the transition region between T-I and T-II. Here the
experimentally measured fluctuation power increases to a
broad maximum at “b” before decreasing again. Our
computed variance also increases as the bifurcation pa-
rameter decreases from the paracritical value, due to the
contribution of linear noise.

Figure 9(a) shows steady states measured at 1.75 K.
Once again the paracritical point is marked c. As com-
pared with the data given for 1.6 K, the paracritical point
is now shifted away from the point of maximum curva-
ture and is closer to the inflection point of the loci of
steady states. This resembles the geometry of steady
states in our model for the near hysteresis regime. Figure
9(b) shows the relaxation time curve whose maximum
determines the location of the empirical paracritical point.
Figure 9(c) shows the measured fluctuation power as a
function of Q; this should be compared with the model
variance shown in Fig. 7(b). There is no clearly resolved
maximum corresponding to the paracritical point; this is
also consistent with the near hysteresis limit.

We note that the line of measured steady states which
extends to the right of the paracritical point in Figs. 8(a)
and 9(a) is not parallel to the axis of the parameter Q. If
Q were to change suddenly while the system were in state
T-II, the system would be taken away from a steady state.
In contrast the line of trivial steady states shown in Fig.
6(b) nearly lies along the A axis. In this region fluctua-
tions in A make very little difference to the steady state
value of x, and consequently linear noise makes very little
contribution to the variance. In fact, experiments have
been performed with the counter-current apparatus in
which the heat current was deliberately made to fluctu-
ate.” The resulting variance did not decrease as Q in-
creased from c, but rather grew as Q 2. This demonstrates
that the intrinsic fluctuations shown in Fig. 9(c) are not
due to fluctuations in Q.

The relationship between the experimental (Q,L
coordinates and the (A,x) coordinates of our model is
shown in Fig. 10. Following the standard procedure, we
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FIG. 9. Measured properties of liquid-helium counterflow at
1.75 K (Ref. 7). (a), (b), and (c) as in Fig. 7. In (a) the paracriti-
cal point is shifted towards the inflection point and away from
the point of maximum curvature on the curve of steady states, as
compared with Fig. 8(a). In (c), no maximum is apparent at the
paracritical point. Adapted from Ref. 7.
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FIG. 10. Relation betweep model coordir_lates (A,x) and ex-
perimental coordinates (Q,L'?). A«xQ and x=L}"?

«s(Q—QO), where s is the slope.
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transform coordinates so that the line of trivial steady
states corresponds to A=0. . The experiments reported in
Ref. 7 demonstrate that Q does not itself fluctuate; how
can this be compatible with our model of fluctuations in
A? Suppose we write A=A—A,, where A=Ay is the
singular point. The expression for linear noise A+z in
our model (2) can then be interpreted as due to fluctua-
tions in Ay. In other words it may not be the bifurcation
parameter that fluctuates but rather the critical point at
which the bifurcation takes place. This is one possible in-
terpretation. However, our model is consistent with any
source of noise whose amplitude depends linearly on the
state variable x _.

There is a simple physical explanation for a state-
dependent noise which disturbs T-I much more than T-II
and which is associated with a bifurcation point Ay which
fluctuates up and down the line of trivial steady states.
Schwarz’s theory of homogeneous turbulence has very
successfully described the state T-II; therefore, we expect
the line of steady states in T-II to be nearly independent
of the geometry of the experimental apparatus, and in par-
ticular of any irregular influences associated with the
walls. However, the state T-I is likely to be inhomogene-
ous® and sensitive to the proximity of the capillary tube
walls. The critical heat current at which the transition be-
tween T-I and T-II takes place also depends on the
geometry of the tube; it is roughly in inverse proportion to
the tube diameter.’® Therefore, any irregularities associ-
ated with the wall and the fluid flow close to the wall may
strongly perturb state T-I and the transition between T-I
and T-II while leaving the steady states of T-II virtually
undisturbed.

If the corner near the point ¢ in Fig. 8(a) really does
represent an imperfect transcritical bifurcation, then a
curve of unstable steady states passes close to it in the
manner shown in Fig. 6(b). What would happen if a per-
turbation carried the system from the corner past the
curve of steady states? If the dynamics of the system con-
tinues to be described by a single variable, the system
must relax to a different, metastable state. If the system
relaxes back to the original stable state, it must do so
through a mechanism described by more than one state
variable. In any case, if a study is made of the response
to perturbations near the corner in Fig. 8(a), we predict
that there will be a perturbation of critical strength,
beyond which the dynamics change.

IV. CONCLUSION

We have incorporated the normal form for the unfolded
pitchfork bifurcation into a system of stochastic
differential equations including both additive and linear
noise. The source of the linear noise is modeled by an
Ornstein-Uhlenbeck process with finite correlation time
y~!. A formula for the variance of the resultant fluctua-
tions may be readily obtained. We consider this variance
as a function of the distinguished parameter A in the nor-
mal form for the pitchfork; this function depends on the
relative magnitude of the noise correlation time y ~! and
the deterministic relaxation time p/(X).

For the case of white noise we have found the bifurca-
tion set for extrema in the variance diagram. With hys-
teresislike imperfections, only one extremum is possible.
For transcriticallike imperfections, either one or two ex-
trema may be found. We have also investigated the
change in the bifurcation set when the linear noise ac-
quires a finite correlation time. The finite correlation time
adds an additional extremum to the variance diagram for
transcriticallike imperfections, but does not change the
number of extrema in the case of hysteresislike imperfec-
tions.

We find good qualitative agreement between the results
of Refs. 6 and 7 and our very simple model of the
superfluid turbulence transition region near the point c.
The model provides a unified explanation for the paramet-
ric behavior of steady states, the characteristic time of re-
laxation to those steady states, and the power in fluctua-
tions about the steady states. It predicts that, close to the
point ¢, the response of the system to perturbations whose
strength exceeds some critical value will change in a qual-
itative way.

Our analysis also has several limitations which point in
directions toward which this work should be extended.
We only investigate the linearized system (4). At a singu-
larity linear terms in the Taylor expansion about the
steady state vanish; therefore, our results do not hold too
close to a singular point. However, because the bifurca-
tion is imperfect, no singular point is encountered experi-
mentally and our analysis is applicable to the experimen-
tal data as demonstrated by the good qualitative agree-
ment. Another consequence of linearization is that our
analysis only covers the case of weak noise; again that
seems to be the regime for the experiment in Refs. 6 and
7. However, if in different experimental setups a larger
amplitude of fluctuations is encountered, higher-order
terms in the expansion of the restoring force about the
steady state will become important and would have to be
retained in the analysis. Finally, we do not take into ac-
count the spatial extent of the narrow tube through which
the helium flows. Temporal fluctuations at one end of the
system may be carried by the flow and therefore become
spatial fluctuations. The measured state variable, the
free-energy difference between the ends of the tube, must
represent some average of local fluctuations. Again, the
good qualitative agreement between our theoretical
description and the experimental observations suggests
that these spatial fluctuations do not strongly affect the
dynamics of the measured state variables.
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