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Phase transitions associated with dynamical properties of chaotic systems
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A new type of phase transition associated with a singularity in the spectrum of generalized en-

tropies, or in a corresponding free energy, is shown to exist in dynamical systems. Candidates for
exhibiting such transitions are intermittent chaotic systems where certain generalized entropies
vanish. This new transition may coexist with one associated with the static properties of the sys-

tem.

Nonanalytic behavior in the spectrum of generalized di-
mensions D~ (Refs. 1-3) or in the static multifractal spec-
trum f(a) (Refs. 4-6) has attracted recent interest. One
of the reasons is that such behavior might be interpreted
as a phase transition ' in the framework of diAerent
kinds of thermodynamic formalism worked out for
dynamical systems. ' A typical example is the one-
dimensional quadratic map in its fully developed chaotic
state where there exists a break in the Dq spectrum at
q =2. ' Here, just as in all other examples investigated,
the phase transition is not accompanied by a singular be-
havior in the spectrum of the generalized entropies
Kq, The latter can be regarded as the dynamical
counterparts of Dq.

We show in this paper that singularities may occur also
in the Eq spectrum and that this phenomenon, too, can be
interpreted as a phase transition. Candidates for exhibit-
ing such phase transitions are chaotic systems with inter-
mittent behavior. Note that in these systems critical slow-

ing down shows up not only in an abstract space but also
in real-time dynamics. It will be pointed out that the new
transition may simultaneously occur with a singularity in

the Dq spectrum. We also discuss how the thermodynam-
ic formalism introduced in this paper and that based on
the ensemble of the unstable trajectories of the dynamics
are related.

We consider one-dimensional maps x'= f(x) modeling
higher-dimensional systems with strong dissipation. For
the sake of simplicity, f(x) is assumed to be a single-
humped function describing a fully developed chaotic
state, when the attractor is mapped two-to-one onto it-
self. These maps have an absolutely continuous invariant
measure p. The maximum point of f(x) divides the at-
tractor into two intervals Io' and I ~

' . A common
refinement of this generator partition, made by taking
subsequent preimages of the attractor, leads after n steps

Before showing that F„(P) is intimately related to the
generalized entropies of the dynamics, a partition function
based on unstable fixed points is introduced. This Z„(P)
is defined ' as

If'"1'(y)
I t'-exp[PF(P)nl, (3)z„(p) =-

y c lf (n)el

where [ft"1*[ stands for the set of fixed points of the nth
iterate f1" of f, and prime denotes differentiation. If the
stationary density goes to infinity or takes a zero value in
certain points (this is the case if the map possesses a criti-
cal point or a cusp) F(P) may differ from F„(P). Maps
for which F(P) =F„(P)will be called dynamically simple.

We note in passing that other definitions of free ener-
gies have also been used in the literature. In Refs. 8 and
14, the intervals I~~" defined above are considered, but a
partition function and a free energy with respect to the
length these intervals are introduced. Another free ener-

gy, connected with the eigenvalue of a generalized
Frobenius-Perron equation is studied in Ref. 12. The
latter free energies and F(P) are in certain cases

to a set of intervals I ", 1 =0, 1, . . . , 2"—1, which com-
pletely covers the attractor. Let 1t(Itt"1) denote the natu-
ral measure of the interval I~", i.e., the probability that a
randomly chosen point (with respect to the stationary dis-
tribution) on the attractor falls into Itt"1.

We define a partition function Z„„(P)by .

Z„„(P)=g[p(1('"')—t ~,
l

where P E ( —~,~) is a parameter, the inverse tempera-
ture. A free-energy density F„(P) is then obtained for
large n, as

PF„(P) = ——lnZ„„(P) .1
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PF„(/3) =PA(P) —g(A(P) ),
where A(P) is obtained from dg/dA! ~(~) =P. This means
that A and g(A) can be considered to be an energy and an
entropy function, respectively. The dynamical multifrac-
tal spectrum, thus, has an important thermodynamical
meaning:

(6)

g(A) =S,(E) l E -~,

equivalent. These free energies are interesting quanti-
ties in themselves and are suitable to exhibit the existence
of phase transitions, but they are, in general, diA'erent
from F„(P). For the sake of completeness we mention
that in the thermodynamic formalism applied for studying
the D~ spectrum a partition is used"' ' in which all in-
tervals have the same natural measure.

Let us turn back to the formalism of Eqs. (1) and (2).
Since p(II" ) represents the probability of trajectories
with a certain binary code of length n, the generalized
entropy K~ (Refs. 22 and 23) can be expressed in terms of
p(Ii'" ) as

—ln g [~(I,'"')]~1 1

1 —qn
for n ee. A comparison of Eqs. (1) and (4) immediate-
ly leads to a relation between F„(P) and K~ in the form

K, =qF„(q)/(q —1) .

Note that the free energies of Refs. 8 and 12 are defined
independently from the generalized entropies and a rela-
tionship similar to (5) can be valid only for a certain class
of maps.

It is worth establishing a connection with the dynamical
multifractal spectrum g(A). A dynamical scaling in-
dex A was introduced by writing the probability of a
path of length n»1 as exp( nA)—The. set of the A
values is, thus, given in our case by [—n 'in[@(li" )]J.
(Note that the path probability as defined in Ref. 27 re-
quires a partitioning of the space-time into uniform boxes,
while we use a generator partition. ) The dynamical spec-
trum g(A) is the topological entropy of trajectories with
the same A. Their number is, therefore, exp[ng(A)]. An
evaluation of the sum in (4) for n ee leads to the result

ly. We shall point out that in such systems phase transi-
tions associated with the dynamical properties also occur.
A particular example for critical maps is the family
defined by

f(x) =1 —ix' —(1 —x)'i ' ",
with r & l. In this class the invariant density is known
to be P(x) =r(1 —x)'

First, we show that the generalized entropies K~ vanish
for q & 1 in critical maps (see also Ref. 29). Since

gi [p (II " ) l ~ contains only positive terms, an upper
bound is found for K~, q & 1 by keeping the contribution
of the leftmost interval only. From Eq. (4)

K~ ~ lim —In[@(I~" )]~ . (9)
1 qn n

lt can be seen that p(I1" ) exhibits a power-law be-
havior for large n: p(I 1(")) n—', s & 0. Since K~ cannot
be negative, Kq =0 follows for q & 1. Note that, by
definition, fully developed chaotic maps in the critical case
should have an absolutely continuous measure. Conse-
quently, the Kolmogorov entropy K] &0. In the special
case r =2 of the family (8), for example, K~ =

2 (Ref.
24).

For q & 1 no analytic estimates exist for the generalized
entropies. In order to see the behavior of Kq for q & 1, the
entropies are to be determined by using definition (4).
The family (8) is particularly well suited for this purpose
since the stationary density P(x) is known. We have cal-
culated the preimages of the unit interval up to the four-
teenth generation and p(II" ) has been evaluated by in-

tegrating P(x) over II("). By using the asymptotic behav-
ior

n 'g [p(I~" )]~=(1—q)K~+(2+Bi")/n,
I

where 2, 8, and 6' are constants, the entropies have been
obtained with a high accuracy for q & 1. The results sug-
gest a smooth behavior up to q =1. Figure 1 shows Kq vs

q for the case r =2. For critical maps at q =1 the truncat-
ed entropy exhibits a power-law decay. This means that
6 1 when q 1 —0, i.e., a critical slowing down sets in.

where S„(E)denotes the fundamental equation. [A simi-
lar relation with S„replaced by the entropy of the formal-
ism of Eq. (3) has been conjectured, '2 which is valid for
dynamically simple maps. ] As a consequence of Eqs. (5)
and (6) the quantity (1 —P)Kp= PF„(P) is the Legen-—
dre transform of S„(E).

If a nonanalytic behavior is present in the K~ spectrum
this implies singularities in the free energy F„(/3) or in the
entropy S„(E),which is a sign of a phase transition. Such
a transition we shall call a phase transition associated with
dynamical properties of the system.

We now apply the general formalism to the so-called
critical maps ' of the interval (0,1), which are fully
developed chaotic maps with an intermittent point in
the origin: f'(0) =1. Because of this marginally stable
point there is a critical slowing down in the dynamics, and
the correlation function decays slower than exponential-

K(q)

05

FIG. 1. The K~ spectrum for the r =2 case of the family (8)
obtained via Eq. (4).
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FIG. 2. The PF(P) spectrum for the same system as in Fig. 1,
obtained via Eq. (3).
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FIG. 3. Qualitative plot of the g(A) spectrum for a typical

critical map. A, denotes the Lyapunov number.

Since critical maps are not everywhere hyperbolic and
possess a cusp, it is a basic question whether they belong
to the class of dynamically simple maps. In view of this,
we have also calculated the partition function (3) and the
corresponding free energy F(p). The fixed points of f "
have been determined, up to n =12, by iterating the map
backward. pF(p) has been obtained by comparing Z„(p)
of the last two generations. The results for the case r =2
are plotted in Fig. 2. A comparison of F„(p), determined
via Eq. (5), and F(p) shows that these quantities coincide
within numerical error. This suggests that the thermo-
dynamic formalisms based on the dynamical behavior and
on the fixed points are equivalent in this case.

We are now in a position to sketch the qualitative form
of the g(A) spectrum of typical critical maps. Since the
Kolmogorov entropy is finite, there is a jump in EC~ at
q =1. Consequently, PF„(P) behaves like (P —1)Kt for
p 1 —0 and F„(p)—=0 for p~ 1. When performing the
Legendre transform of PF„(P)= (1 ——P)Kit [see Eq.
(6)] we find, therefore, that A(p= 1) can take any value
between Kt and 0. Thus, g(A) =A in the range
0 ~ A ~ Kt. This part of the g(A) curve then joins a sin-
gle humped curve with a continuous first derivative (see

Fig. 3). Phase transition occurs at A =K~. In the
language of the thermodynamics, the internal energy
E(p) jumps from K~ to 0 at p = l.

Finally, we note that phase transitions associated with
static properties may coexist with those associated with
dynamical properties. In the case of family (8), for exam-
ple, one obtains for the generalized dimension
Dq =rq/(q —1) for q (q* =1/(1 —r) and D~= 1 for
q & q*, since the stationary density has a singularity of
order r at x =1. The phase transition associated with this
singularity differs from that found in the thermodynamic
formalism based on Z„„(p), a sign of which is the fact
that the critical point of the former, q*, depends on the
parameter r, while the second occurs always at p= 1, in-
dependently of r. The connection between these two
different types of phase transition remains to be clarified
by further studies.
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