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Unstable periodic orbits and the dimension of chaotic attractors
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A formulation giving the q dimension Dq of a chaotic attractor in terms of the eigenvalues of
unstable periodic orbits is presented and discussed.

and, for q & 1 (q & 1), it is maximized (minimized) over
all coverings fS;I;

sup(I (q, z, [S;J,l)) for q & I, z~ 0,

inf(I (q, z, IS;J,I )) for q & 1, z ~ 0. (2)

Next the limit I 0 is taken,

r(q, z) =lim(r(q, z, l)) .
I 0

(3)

The function z(q) is defined as that value of z below
which the limit (3) is zero and above which it is infinite;

~ for z& z(q),
0 for z& z(q). (4)

In terms of z(q), the dimension spectrum D~ is then given
by

(q —1)D, =z(q) . (5)

The Hausdorff dimension corresponds to q =0, and the in-
formation dimension is D~ =limq I,Dq.

The dependence of Dq on q has been ascribed to the fact

A common way of quantitatively characterizing the
properties of chaotic attractors, in both experiment and
theory, is through their fractal dimensions. ' Here we
are concerned with the dimension denoted Dq and intro-
duced for chaotic attractors in Refs. 2 and 3. Typical
chaotic attractors are "multifractals;" that is, their di-
mension Dq varies with the index q, thus providing a spec-
trum of dimension values for the attractor. A Hausdorff-
type formulation of the Dq has been given in Ref. 4 and is
as follows. We cover the attractor with balls S; of radius
I;, each of which is restricted to be less than I, I; & I. The
natural probability measure of the attractor in each ball is
denoted p;. (That is, the fraction of time a typical chaotic
orbit spends in S; is p;.) A partition function is then
defined,

r(q, z, (S;J,I) =capp/I

that different points on a chaotic attractor may have
different singularity scalings, as characterized by their
pointwise dimension. [The pointwise dimension' at a
point x on the attractor is D~(x) if p(l, x), the natural
probability measure of the attractor in a ball of radius l is
centered at x, scales as I ' for I 0.]D

The reason for different scalings can be understood in
terms of the unstable periodic orbits on the attractor. The
set of these orbits is dense in the attractor. The impor-
tance of unstable periodic orbits has long been recognized
in the mathematical literature (e.g. , see Bowen ) and has
recently been emphasized in the present context in Ref. 8.
In particular, for any point x on the unstable manifold of
a periodic saddle of period n of a two-dimensional inverti-
ble map (the only type of system to be considered in this
paper), we show below that

Dp(x) =1 —ink„/ink, ,

where X, & 1 and X„& 1 are the magnitudes of the stable
and unstable eigenvalues of the n-times-iterated map at
the saddle. Since points on different periodic orbits typi-
cally have different X„and X„D~(x) will not be the same
for all points on the attractor. To obtain (6), consider a
point xo on the unstable manifold of a saddle periodic
point and two small circles centered at xo with radii I ~ and
l2, where I ~/l2 =k, '. We iterate the two circles backward
an integral number of periods so that the two circles are
now similar ellipses close to the saddle and with their ma-
jor diameters parallel to the stable manifold of the saddle.
We now iterate the l2 ellipse backward one more period.
Since it is close to the saddle, its backward iteration by
one period is governed by the linearized map at the saddle
(i.e., by X, and X„). Thus, since we chose I ~/I2 =k, ', the
major diameter of the 12 ellipse is stretched to be precisely
the same as that of the l ~ ellipse, while its minor diameter
is smaller than that for the I

&
ellipse by the factor X,/X„.

Due to the smoothness of the attractor along its unstable
direction, we have

p(l2, xp)/p(l ~, xp) =X /X„

3522 1987 The American Physical Society



I II i i~i i
~

I
I/I g ~ Ii

'i II i Ij,'

UNSTABLE PERIODIC ORBITS AND THE DIMENSION OF. . . 3523

Setting p(l, xp) —I ' and l2 =Iik„ this yields Eq. (6), the
desired result.

The main result which we wish to present in this paper
is a formulation giving the dimension Dq of a chaotic at-
tractor for an invertible two-dimensional map in terms of
the eigenvalues of the dense set of periodic saddles on the
attractor [rather than in terms of the measure of coverings
of the attractor, i.e. , the p; in Eqs. (1)-(5)]. This formu-
lation is as follows:

f'(q, z) = lim f (q, z, n ),
ff ~ OO

1=(q,..) =g "~„-"«-')~„-,q,
J

(7)

where g" denotes the sum over all fixed points of the n

times-iterated map which lie in the attractor, j is an index
labeling each fixed point, and X,,~ and X„J are the stable
and unstable eigenvalues of the n times iterated map at
the jth fixed point. The quantity z(q) [and hence D~ by
Eq. (5)] is determined by Eq. (4) with I (q, z) replaced by
I (q, z). Alternatively we can obtain a good approxima-
tion to z(q) and hence D~ by setting I (q, z, n) =1 for
some large value of n. Since periodic points and their ei-
genvalues are computationally accessible (e.g. , Ref. 8),
this provides an alternate way of calculating attractor di-
mensions. Our claim is that Eq. (8) gives the same value
for D~ as Eqs. (1)-(3).

The Hausdorff dimension f(a) of all points on an at-
tractor with pointwise dimension D~(x) =a can be found
by including in Eq. (8) (with q =0) only those eigenvalues
in a narrow range around Inl, „~/Ink, ,~

=1 —a [cf. Eq. (6)].
Letting (q —1) be small and using (4), the coefficient of

the (q —1) term in expansion of (8) in powers of (q —1)
yields

D, =1 —lim 'g Z„, 'Ink„j/g X„J'In),)'
Il ~ J

which is the Kaplan-Yorke formula for the information
dimension of the attractor" in terms of the Lyapunov
exponents of typical orbits on the attractor [here we iden-
tify the limit of the ratio of the two sums in Eq. (9) with
the ratio of the Lyapunov exponentsl. Also, Eq. (8) for
the case q =0 (the Hausdorff dimension) has been previ-
ously stated in Ref. 8.

In order to establish the relationship between Dq and
periodic orbits [Eq. (8)], in what follows we shall verify it
for two examples. [A proof of Eq. (8) for uniformly hy-
perbolic systems, including higher dimensionality, will be
published elsewhere. ]

Example I. The generalized baker's map. The gen-
eralized "baker' s" map was introduced in Ref. 1 as a mod-
el for dimension studies which is amenable to analysis yet
also has nonconstant stretching and contraction. We
divide the square 0 ~ x,y ~ 1 into a bottom part,
0 ~ y & a, and a top part, a & y ~ 1. We compress the
bottom (top) part by a factor A,, ()t.b) along x, and stretch
it in y by a factor a ' (p ', p=l —a). We then have
two rectangles, both of vertical height unity, one of width
k, and the other of width Xb. We place the lower left
corner of the A, -width strip at the origin and the lower left
corner of the A, b-width strip at x = —,',y =0. Thus we have

a map of the unit square into itself: x„+i =k(y„)x„
+ —,

'
u (y„—a); y„+ ~

= y(y„) [y„—au (y„—a)]; where
X(y) =(X„A,b) for y~&a, y(y) =(a ',p ') for y~&a, and
u(y) is the unit step function. Using similarity argu-
ments' it can be shown directly from the map that the fol-
lowing transcendental equation determines Dq (cf. Refs. 2
and 3),

(10)

can specify an orbit for the generalized baker's transfor-
mation by its symbolic itinerary which specifies whether
the orbit's location on successive iterates is in the top
(symbolized by a 1) or in the bottom (symbolized by a 0).
Thus a periodic orbit of period n which spends k ~ n of its
n iterates in y & a is represented by a string of n symbols
with k ones and n —k zeros. The eigenvalues associated
with such an orbit are A,, X," A, bk, X„=a (" )p
Equation (8) yields

n

f (q, z, n) = g N kg (n k)gk—
0

where N„p is the number of fixed points of the n times
iterated map which belong to periodic orbits which spend
k iterates in the top (y & a). Thus N„i, is the number of
ways of arranging k zeros and n —k ones,

n
Nnk = (12)

(a)

x 0 )( I'2
(b)

I

I

I

I

I

I

I

I

I

—2+ Xb
I

(c)

FIG. l. (a) and (b) Schematic illustration of the map. (c)
Orbit can go from the bottom to either the bottom or the top,
but can only go from the top to the bottom.

Hence Eq. (11) is just a binomial expansion,
I =(A+8)". Letting n ee, Eq. (4) thus yields Eq.
(10).

Exam~le 2. The previous example has the property that
setting I (q, z, n) 1 gives precisely the desired result, Eq.
(10), for all n, rather than only in the n ee limit. The
generalized baker's map is exceptional in this regard. A
more typical example, which is still analytically treatable,
is illustrated in Figs. 1(a) and 1(b). Again, we divide the
unit square into top (y & a) and bottom (y & a) parts.
We again horizontally compress the two parts by A,, and
X,b. The bottom part is vertically stretched by a ', as be-
fore. The difference is that we now vertically compress
the top part by a/p. The parts are then reassembled in the
square as shown in the figure. Again, we can specify or-
bits by a string of ones (tops) and zeros (bottoms). In this
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case, however, an orbit point in the top is always mapped
to the bottom [Fig. 1(c)]. Thus a one is always followed
by a zero. Replacing 8 by 8=(P/a)6. b

' (to
account for the compression by a/P as opposed to the
stretching by I/P in example 1), we see that Eq. (11) still
applies. Equation (12) for N„k, however, does not. To
find N„I, we first note that the number of fixed points of
the n-times-iterated map is the number of possible se-
quences of length n which contain k ones and n —k zeros,
subject to the constraint that a zero follows a one (except
when the last symbol is a one). We consider two cases:
(a) the last symbol is a zero, and (b) the last symbol is a
one. In case (a), to find the contribution to N„t, from such
sequences, we regard the sequence (1,0) as a single sym-
bol denoted by a 2. Thus a period-n orbit which is located
in the top k times is represented by a string of n —k sym-
bols of which k are two's and n —2k are zeros (clearly
k ~ n/2). There are (g ) such symbol sequences. Se-
quences ending in the top [case (b)], on the other hand,
end in a one. Since the sequence represents a periodic or-
bit it must also start with a zero. All the rest of the sym-
bols can be thought of as zeros and twos. For this case the
zero-two sequence has n —k —1 symbols of which k —

1

are two's. There are ("k t
') sequences of this type.

Thus we have
r

n —k

Z(xp) =0. This gives a transcendental equation for D~,

1 =2+28 . (i4)

rtt(1) =raL(1)+rttR(l) . (is)

Applying the map to one of the S; coverings in the bottom,
we see that it is compressed by k, and elongated by I/a.
Thus this S; covering can be covered by (aX, ) ' cover-
ings of radius (I;k, ). Each of these new coverings has a
probability (p;aX, ). Inserting this information in the par-
tition function we have that

Thus,

This is the result of applying Eq. (8). The question is, is it
correct'? To show that it is, we now obtain Eq. (14) by a
rigorous independent method: the similarity technique'
[used, for example, in Refs. 2 and 3 to obtain Eq. (10)].
We write the sum in the partition function, ~f/1, as a
sum over the top region plus a sum over the bottom re-
gion, I (1)=I T(1)+I tt(l). Similarly we write I tt as a
sum over the bottom left (x & 2 ) region plus a sum over
the bottom right region,

and N„k =0 for k & n/2 Usin~ .Stirling's approximation
to expand Z(x)=1/nln(N„kA " "8 ) for large n, we
have

Z(x) = (1 —x)ln(1 —x) —tc]nx —(1 —2x)[n(1 —2x)

+ x lnB+ (1 —x)lnA,

Similarly,

rBR(1) ( )( ) I T(l/Ab)
(P/a)'

Also, I BL (a/p)I T. Combining these in (1S) and letting
1~ 0 [Eqs. (3) and (4)], we obtain the equation for D~,

where x=k/n and —,
' & x. &0. The quantity Z is con-

cave down (d Z/dx &0) and has one maximum in

2 & x &0. The location of this maximum is given by
tcp(1 —xp) =(1 —2xp) 8/A. Since the summand in Eq.
(11) is exp[nZ(x) l, if n ~ and Z(xp) & 0, then
I (q, r) 0. On the other hand, if Z(xp) & 0, then
I (q, r) ~. Thus from (4) we have the condition

(q —1)(D —]) (q —1)(D —i )
(~ab j

which is (14)."
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