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Geometrical description of Berry's phase
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Berry, Simon, and Aharonov and Anandan have discovered, interpreted, and generalized a
geometrical phase factor that occurs for a quantum state evolving around a closed path in the
projective Hilbert space of rays. Here this phase is directly given in terms of the holonomies of
several natural geometrical structures on the projective space.

(y I y) =b.ttz zt'= ztjz—t' 1, (2)

and thus lies on the unit sphere S "+' in C"+'. A ray is
an equivalence class of states up to overall normalization
and phase, so I tlt& =

I
y') if

I y) =c
I
y') or Z' =cZ" for

all a with a nonzero complex constant c. Thus, the space
of rays is the projective Hilbert space, which is isomorphic
to CP", complex projective space [also denoted P" or
P„(C)], the set of lines in C"+' passing through the ori-
gin. For Z &0, CP" may be given complex coordinates

(3)

where Latin indices from the rniddle of the alphabet range
from l to n.

Using units in which 6 = 1, and denoting time deriva-
tives by an overdot, one may write the evolution of the
quantum state by a Hermitian Hamiltonian H as

I y(t)& = —iH(t)
I y(t)), H(t) =Ht(t), (4)

Recently, Berry' has shown that when a quantum state
is adiabatically transported around a circuit as an eigen-
state of a Hamiltonian with slowly varying parameters, it
acquires a geometrical phase factor in addition to the fa-
miliar dynamical phase factor. Simon demonstrated that
this geometrical phase factor is the integral of the curva-
ture of a Hermitian line bundle over the parameter space
and that it depends only on the circuit of the eigenspace
rather than on other aspects of the Hamiltonian. Aharo-
nov and Anandan have found a generalization which re-
moves the restriction to adiabatic evolution. Thus, there is
a geometrical factor which occurs for all cyclic evolutions
and depends only on the path of the ray in the projective
Hilbert space. In this paper this phase is expressed in
terms of natural geometrical structures on the space of
rays.

Take the Hilbert space to have dimension n+ l, so that
a quantum state is given by n+1 complex amplitudes Z',
where Greek indices (superscripts, not exponents) range
from 0 to n:

I y& =
I
z', z', . . . , z"& .

The Hilbert space is, thus, isomorphic to (I
"+'. Using,

henceforth, the Einstein summation convention in which
there is an implicit sum over each pair of repeated indices,
and using 6 ~ to lower indices and an overbar to indicate
the complex conjugate, a normalized state has

or

(5)

If the evolution undergoes a circuit in ray space, the origi-
nal state returns to itself up to a phase factor:

I w(T)) =e""'
I v(0)& .

Part of this phase p(T) may be identified as a dynamical
phase

e(T) =—
Jp

(y(t ) I
H(t ) I y(t ) &

d
(y(t ) I y(t))

(7)

but the remainder,

y(T) =y(T) —e(T), (8)

i
l

z'(t)z'(0)
z'(0)z'(t )

' Z (t ')H. tt(t ')Zt'(t ')
+ —,', dt'

Z„(t ')Z "(t ') (9)

which obviously reduces to (8) when t = T. By using (3),
(5), and its complex conjugate, one gets the infinitesimal
change of (9) with time as

dz' dz'
y(t)dt = ——'

Zo Zo
Z~dZ' —Z~dZ

w;dw w;dw

1 +Wkwk

where w; =—6';zw~ =w', so

y(T) =II~A,

(10)

the integral of the one-form A around the circuit in CP".
Thus, A acts as a representative for an Abelian connection
for the geometrical phase on the projective Hilbert space.

is geometrical and depends purely on the closed-path evo-
lution of the ray in the projective Hilbert space, ' i.e., on
the path in CP".

To obtain an explicit expression for y(t) in terms of the
coordinate representation (3) of CP" (assuming for
inessential simplicity that Z ~0 all along the path), let
p(t) be the phase of Z (t)/Z (0) and e(t) and y(t) be
given by Eqs. (7) and (8) with T replaced by t That is, .
let
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Redefining p(t) [say as the phase of Z'(t)/Z'(0)J for
t AO and t e T would give Eq. (10) with a gauge-
transformed A, but Eq. (11) is invariant, mod2n, under
such a gauge transformation.

By Stokes's theorem, one may alternatively write

)(T)=„F, (i2)

the integral, over a surface S bounded by the circuit, of
the Abelian curvature two-form

w; wi
—( I +wk w" )8;JF—:dA =i dw'AdwJ .
(I + wiw') '

re'~zo= Zl Z Owl

(I + wkw") '

Then in terms of r =(y~ y)'~, p, w', and w', the standard
flat metric on C"+' becomes

(i4)

ds (C"+ ) =$, dZ dZ&=dr +r ds (g "+ )aP

Thus, F is an explicit realization of the two-form V given
by Eq. (5) of Simon in terms of the coordinates (3) of
CPn

(Note that my choice of the letters A and F is meant to
emphasize the formal similarity with electromagnetism,
but of course A and F here live on CP" and are not to be
identified with any actual electromagnetic field. )

Now we may give several ways in which the connection
A and its curvature F arises naturally from geometrical
structures on CP". First, if one takes the S "+' of nor-
malized states (2) as the Hopf bundle over CP", then A
and F are (up to a factor of i) the connection and curva-
ture of this U(1) fiber bundle. As a geometrical way of
getting this explicitly, let

E= —,
' In(1+wkw ) . (20)

The Riemannian connection one-forms in the complex
coordinate basis are then readily calculable to be

-kco' =I '
I, dw +I ' -dw = — dwJ J Jk

8' wk+6'kw
N — co — dw M — co 0

1+w w'

(2i)

and the Riemannian curvature tensor for the Fubini-
Study metric may be seen to have components

+abed gacgbd gadgbc +JacJbd

Third, one may see that A and F are proportional to the
U(1) part of the Riemannian connection and curvature of
the Fubini-Study metric (16) on CP", which we now cal-
culate. As a complex manifold, CP" has a complex struc-
ture tensor whose components with respect to the complex
coordinates w' and their conjugates w'= w' are

J' = —J'-= —i6' J'-=J' =0J j )& j J

When the raised indices are lowered with the metric (16),
one gets the components of the Kahler form

J=ig.-dw'AdwJ .
EJ

Since CP" is Kahler, dJ=0 (and, in fact, J is covariantly
constant), which implies that locally one may write

(i9)
where the comma denotes partial difrerentiation.

The Fubini-Study metric (16) may be given by taking
the Kahler potential in (19) to be

=dr +r [(dp —A) +ds (CP")], (15) Jad Jbc + 2Jab Jcd (22)

where A is the same as in Eq. (10) and

ds (CP") =2g, ;.dw'dw~

(I + wkw")8;~. —w;wj dw'dw',
( I + wi w')

(i6)

is the Fubini-Study metric on CP". An evolution, in
which the dynamical phase e(r) remains zero, corresponds
to parallel propagation of the U(1) e'~ fiber over the CP"
base and, hence, dp —A =0 along the path. Then
y(T) =P(T) =fA just as Eq. (11)gives.

Second, one may take the Hilbert space C"+' (with the
point 0 blown up to CP"), to be the natural complex line
bundle, with fiber re'~, over the projective Hilbert space
CP", as in Chap. XII.3 of Kobayashi and Nomizu and in

Example 4.2.2 of Eguchi„Gilkey, and Hanson. Then
F =i A in terms of the curvature 0 given on p. 309 of Ref.
4 for n =1 and calculated for general n in Example 5.4. 1

of Ref. 5. Alternatively, F/2n is the first Chem form of
this one-dimensional complex vector bundle. The Hopf
bundle discussed above is then the projection of this line
bundle to the circle bundle with r =I and, hence, U(I)
fiber e'~.

R b= 2 R b~ddx'&dx (23)

are (as in any Kahler manifold) purely holomorphic or
antiholomorphic in their indices a and b:

A'J =%'-=2(8'J.gki+ 8'kg i)dw" Adw ',
%'- =%' =0 .i

(24)

Thus, they rotate the holomorphic and antiholomorphic
vectors separately and generate the holonomy group
U(n) =U(l) x SU(n), a subset of the generic holonomy
group SO(2n) for a general manifold with real dimension
2n. The U(l) part of the holonomy is generated by the

where here and henceforth Latin indices from the begin-
ning of the alphabet range over the n values of the un-
barred (holomorphic) coordinates w' plus the n values of
the barred (antiholomorphic) coordinates w'=w' (e.g. ,
x'=w' for a =i and x'=w' for a =i+ n, so a ranges from
I to 2n, the real dimension of CP").

The connection one-forms Eq. (21) and the curvature
two-forms
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trace of the holomorphic part of the connection and curva-
ture:

to=co'k =(n+ I)(iA d—K),
k l%—:% k

= J'—b%, =dto = (n+ 1)iF .
2

(2S)

(26)

One may for any Kahler manifold write the Ricci from p
as

p = —2i % = —2iR dw. '-A dw~
/J

=2 (ln detg&t ),-dw' A dw J . (27)

F= —2J . (29)

Then, since —p/4tr is the first Chem form of a Kahler
manifold, F is —2tr/(n+1) times the first Chem form of
CP" and the geometric phase y(T) is —2tr/(n+ I ) times
the first Chem invariant of the circuit of the ray in the
projective Hilbert space.

Because the Fubini-Study metric is Einstein, with

+bd =+ bad 2(n+ 1 )gbd (28)

in our normalization, its Ricci form (27) is —4(n+1)
times the Kahler form J given in Eq. (18). Hence, one
may directly give

However, the coefficient depends inversely upon the con-
stant of normalization chosen for the metric [e.g. , if the
coefficient in Eq. (20) were c instead of —,', the coefficient
of J in Eq. (29) would be —I/cl, whereas the coefficient
of A (but not of dE) in Eq. (25) and the coefficient of F in

Eq. (26) are independent of the scale of the Fubini-Study
metric.

Thus, we see explicitly how the geometrical phase fac-
tor occurring for the cyclic evolution of a quantum
state' may be generated by the holonomy associated
with several natural geometric structures on CP", the pro-
jective space of rays.

I am indebted to Jeeva Anandan for acquainting me
with the work of Berry' and Simon and for discussing his
own work with Aharonov prior to its publication. He and
Barry Simon and McKenzie Wang gave useful comments
on the manuscript. The University of South Carolina and
The University of Texas at Austin provided hospitality
during the beginning of this work. Financial support was
provided in part by National Science Foundation Grants
No. PHY-8316811 and No. AST-8414911, and by the
John Simon Guggenheim Memorial Foundation.

'M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).
2B. Simon, Phys. Rev. Lett. 51, 2167 (1983).
Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593

(1987).

4S. Kobayashi and K. Nomizu, Foundations of Differential
Geometry (Interscience, New York, 1969), Vol. II.

~T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66, 213
(1980).


