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obtainment of thermal noise from a pure quantum state
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It is shown that if one has access to only one mode of a two-mode squeezed-vacuum state, the
photon statistics of this mode is indistinguishable from that of a thermal distribution. Parametric
interactions that give rise to two-mode squeezing thus provide a mechanism for thermalization
that is intrinsically quantum mechanical.

Two-mode squeezed-coherent states have received
considerable theoretical attention' and have recently
been generated experimentally via four-wave mixers
and parametric down converters. In such parametric
processes photons are generated in pairs with one pho-
ton at frequency coo+co and the other at coo —co where coo

is a carrier frequency which is half the pump frequency
for a parametric down converter or equal to the pump
frequency for four-wave mixers. We will arbitrarily call
the mode at frequency coo+co the signal and the mode at
~o —~ the idler. The signal and idler modes can be spa-
tially separate as in the case of the photon-correlation
experiments of Friberg, Hong, and Mandel. ' For
squeezed-state experiments the optics is genera11y ar-
ranged so that the signal and idler beams are collinear.
Since the signal and idler modes have different frequen-
cies they can be spatially separated with a dispersive ele-
ment even if generated collinearly. Hence one can have
access to the signal mode or idler mode separately. Here
it is shown that the light in the signal mode or the idler
mode is indistinguishable from thermal light when the
incoming light is in the vacuum state. This is remark-
able since the squeezing Hamiltonian which transforms
the vacuum state into a two-mode squeezed state does
not give rise to classical chaotic behavior and the two-
mode squeezed state itself is a pure quantum state. This
pure state has two parts, the signal and idler which
when viewed separately have photon statistics that are
indistinguishable from thermal light.

Four-wave mixing or parametric down conversion is a
process by which an intense pump beam modulates the
susceptibility of a nonlinear medium on the time scale of
an optical cycle. The time-dependent susceptibility does
parametric work on the vacuum to create photon pairs.
Equivalently one can regard the pump as modulating the
index of refraction or the optical path length of the
medium. In fact, parametric photon pair production
could in principle be achieved by wiggling one of the
mirrors of an empty optical cavity' at twice the cavity's
resonant frequency. Hence the mechanism by which a
parametric process generates thermal noise from the
vacuum can be regarded as being similar to the mecha-
nism by which a mirror undergoing constant accelera-
tion generates thermal noise from the vacuum. This
latter system has played a significant role in the discus-

sion of black-hole evaporation. "
The calculations here are carried out in the

Schrodinger picture. Let a
&

and a2 denote the usual bo-
son annihilation operators for the signal and idler mode,
respectively, i.e.,

[a;,]2) ]=5;~

and

[a;,a, ]=0
for i, jH I 1,2I. For later use in determining the classi-
cal correspondence it is useful to note that the electric
field operator or vector potential, when expressed in
terms of the operators a& and a2, scales as A' . For ex-
ample, the signal mode electric field has the form

Es =]]] [Eoa]+Eo~ ] ] .

The Hamiltonian for parametric pair production has the
form'

H =Ho+H (4)

where

Ho ——]rl(coo+ co )a ]a ] +]]](coo—co )a 2a 2,
and

—2i (P —coot) y y 2i{$ —coot)
HI ——ifik(t)[]2]a2e —a]a2e ' ],

where

g= f 'k(r')dr',

and

S(g, g) =exp[/(a]a2e '~ —at]a2te '~)]

is the two-mode squeezing operator.
At this point it is useful to introduce the operators

where k (t) is an arbitrary function of time.
An initial state

~

i ) at time t; =0 will evolve, under
the action of H, into the final state

~ f ) at time tf tvia-—
the unitary transformation'
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and

K+ =a )a2

K =a&a2,

(10) ff &=sech
I y I g tanh

I y I.=0

'n

)2

(25)

K, = —,'[a]a/+a2a2] . (12)

[K,K+ ]=2K, ,

[K„Kg]=+K+ .

(13)

(14)

When the initial state li ) is the vacuum state
I
0)

specified by

a) lo)=0 (15)

These operators satisfy the commutation relations for
the SU(1,1) lie algebra, 3' '

where
I

n ) t is the normalized number operator eigen-
state for the signal mode

[a, ]"
In), = —lo), . (26)

Vn!
Similarly,

I

n ) z is the normalized number operator
eigenstate for the idler mode.

Let o.
&

denote an operator which operates on the sig-
nal mode state space, i.e., the space spanned by the
state-vectors

I
n ) &. Then it is straightforward to show

from Eq. (25) that

and

a,
I

o&=0 (16)
(f lo&l f)=sech lyl g (tanhlyl) "(n Icr&ln) .

n=0

Eq. (7) can be simplified to

I f ) =exp[yK+ —y'K ] I
0), (17)

(27)

We now compare this expectation value with the
thermal average

where

zi(y —~,t j

(~I )p Tr[p~l )

where the density matrix p has the form

(2g)

It can be shown ' that the unitary operator appearing
in Eq. (17) can be factored as follows: p= g P„ I

n)(n
I

n=0

exp[yK+ —y'K ]=exp tanhly
I

K+r
and

(30)

X exp[ —2[in(cosh
I y I

)]K, J and

From Eq. (11)

&exp
I r I

tanhly
I

K

(19)

(31)

Here kz is Boltzmann's constant, T is the temperature,
and ~, =coo+co is the signal mode frequency. One then
has

K
I
0) =0, (20) (o, )q ——y P„(n

I o,
I

n & .
n=0

(32)

consequently

exp t»hlr
I

K lo&= Io& . (21)

Comparing Eq. (27) with (29) one sees from Eq. (30) that
the averages are equal provided

tanh lyl=e (33)

Further, from Eq. (12)

K, lo)=-,' lo)

so

(22)

Since this equivalence holds for an arbitrary operator o.
&

we have shown that the photon statistics of the signal
mode is indistinguishable from the photon statistics of a
thermal source with temperature

I f ) =sech
I y I

exp tanhly
I

K lo) . (24)r
Expanding the exponential, this state can be written as

exp [
—2[in(cosh

I y I
) ]K, J I

0 ) =sech
I y I I

0 ) . (23)

Substituting Eq. (19) into (17) and using Eq. (21) and (23)
one obtains

&~sTS-
2k~ ln(coth

I y I
)

(34)

Similar expressions result when one considers the photon
statistics of the idler mode.

It can now be shown that the system described by the
Hamiltonian, Eq. (4), is well-behaved in the limit fi~o.
To this end, let the initial state

I
i ) have the form
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where the signal is in the coherent state of the form

(35) (&E, )'—= (f ~
E,'

~ f ) —(f ~
&, f )' (39)

(36)

where A' a& is the coherent-state amplitude. The idler
is taken to be in the coherent state obtained by replacing
the subscripts 1 with 2.

In Eq. (36) fi has been factored out of the coherent-
state amplitude in such a way that the expectation value
of E, remains fixed as A~O. That is, the classical limit
is taken in a way that holds the classical part of the field
amplitudes fixed. The final state

~ f ) into which the
state Eq. (35) evolves is determined by Eq. (7). The ex-
pectation value of E, with respect to

~
f ) is easily evalu-

ated by using the standard result'

S (g, g)a&S(g, g)=cosh(g)a& —e ' sinh(g)a2 . (37)

One then has

(f
~

E
~ f ) =Ep[ cohs(g) x«&

—e '~ sinh(g)af ]e ' +c.c. (38)

which is independent of A. On the other hand, the vari-
ance

scales as A and vanishes in the classical limit R~O.
Hence Eq. (38) characterizes the classical response of the
squeezer. The response is linear in the amplitudes of the
signal and idler input. Since the classical behavior of the
squeezer is nonchaotic, the thermal noise characterized
by the temperature given by Eq. (34) arises from an in-
trinsically quantum mechanism, i.e., the amplification of
vacuum fluctuations.

In conclusion it has been shown that an initial vacuum
state will evolve under the influence of the Hamiltonian,
Eq. (4), into the two-mode squeezed state Eq. (25). This
is a pure quantum state. However, if one looks at the
quantum statistics of the signal mode or the idler mode
alone the light is chaotic, exhibiting the statistics of
thermal light. The Hamiltonian, Eq. (4), describes a sys-
tem consisting of a nonlinear medium bathed with an in-
tense classical pump for the case when pump depletion
can be neglected. Hence a thermalization mechanism by
which a very sma11 fraction of the coherent pump energy
is converted into chaotic light has been described. Since
the system's behavior is nonchaotic in the classical limit
fi~o for all values

~ y ~

of the coupling parameter, a
thermalization mechanism has been described which is
intrinsically quantum mechanical.
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