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Collective oscillations of stored ions
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When ions of slightly di8'erent mass and the same charge are stored in a radio-frequency electric
quadrupole trap, a collective oscillation is observed rather than the independent motions usually

assumed. A high-temperature model of ion clouds, each characterized by ions of one mass, shows
that the ions of each cloud move as a unit and exhibit a correlated motion with the other clouds
when a strong coupling condition is satisfied. This phenomenon is expected to arise whenever
more than one ion is trapped and might be observable in neutral atom traps as we11.

The current interest in trapping elementary particles
or ions in Penning or electric quadrupole traps includes
such studies as precision g-2 value measurements for a
single electron or positron, ' an improved determination
of the electron to proton mass ratio, the development of
microwave and optical clocks, ' sympathetic cooling of
a two-species plasma, and detecting optical quantum
jumps in a single ion. In this paper, we report an obser-
vation which appears to have gone unnoticed, namely,
that ions stored in a quadrupole trap do not necessarily
oscillate independently of one another, as previous
analysis assumes, but instead collective oscillations can
occur as if the ion clouds are giant particles with a large
charge. These collective modes arise, as one might ex-
pect, from the ion-ion Coulomb potential, but rather re-
markably this potential can be far weaker than the trap-
ping potential. From the elementary theory of coupled
oscillators given here, we conclude that the condition for
collective motion depends simply on these two potentials
and the relative mass of the ions. Even with a single-
species ion cloud, collective motion is a certainty. This
phenomenon is unique to ion traps although there is an
obvious resemblance to the plasma oscillations encoun-
tered in neutral plasmas.

Consider the observations first. Our Paul quadrupole
trap consists of two end caps and a ring having hyper-
bolic surfaces where the dc potential is zero and the ap-
plied ac potential in the axial and radial positions, z and
r, obeys V= V„[cos(Qt)](z —r /2)/zo. The ions move
in a time-averaged pseudopotential which in lowest or-
der corresponds to a harmonic oscillator. The micromo-
tion frequency 0/2m. =5.130 MHz and the characteristic
trap dimension zo satisfies zti ——(z o+ r o/2) where
ro/zo ——&2, ro ——0.250 cm being the inner-ring radius
and zo one-half the end cap spacing. Ions such as Ho+
and Er+ were loaded into the trap, first by evaporating
the neutral atom from a tungsten filament containing the
metal, then by ionization with an electron gun, and final-
ly by cooling the ion cloud with the addition of He gas
at room temperature and at a pressure of 1)&10 Torr.
When two metal ion species were examined simultane-
ously, two independent ovens were used. The axial

motion of the ions was detected' by sweeping the ampli-
tude of the ac trapping field until the axial secular fre-
quency co, matched the resonance of an external LC cir-
cuit tuned to 0.5939 MHz. A weak axial probe field also
of frequency co, allowed synchronous detection. A Flo-
quet solution of the appropriate Mathieu equation for
this trap predicts a resonance at a voltage to mass ratio
V, , /m =3.814 V/amu.

The mass spectra of Ho+ and Er+ in Fig. 1 provide
one example of unexpected behavior which has forced us
to conclude that collective motion is the proper interpre-
tation of this phenomenon. As expected, ' Ho+ yields
only one mass peak since there is only one naturally
occurring isotope, and it gives no hint of a collective os-
cillation. However, Er+ shows only one peak also, and
since the resolution is about 0.05 amu, we would have
expected to see at least four isotopes in the range 166 to
170 and of comparable amplitude. As we shall see, our
collective motion theory predicts one mass peak, the
mass being the average of all species present. The third
trace shows Ho+ and Er+ loaded simultaneously, the
relative amounts being somewhat arbitrary and un-
known. Again, only one mass peak appears, which al-
ways falls between the two peaks of pure Ho+ and pure
Er+, and suggests an average mass value between the
two extremes. Similarly, in the case of pure Sm+ and
pure Xe+, which consist of several naturally occurring
isotopes, only one mass peak was detected (see top trace
of Fig. 2). A summary of these data appears in Table I
where the measured mass is given relative to the single
isotope ' Ho in order to minimize systematic errors,
particularly in the measurement of V„. We see that the
accepted atomic masses of Xe, Er, and Sm are in excel-
lent agreement with our measured values, supporting the
premise that it is the average mass that is measured.

Masses are resolved, however, when the mass
difI'erence is suKciently large. For example, when Xe+
and Ho+ are loaded together (Fig. 2), two peaks appear
corresponding to the pure species but shifted slightly to
higher mass.

How are these results to be explained? The simplest
model, which we consider first, is that of two singly
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Here k;=m;q; II /g with i =1,2 and q; =4(e/m;)V„/
(zoQ), which implies a time average over the micromo-
tion, and we have ignored higher-order contributions
that arise in the Mathieu equation. ' The Coulomb
force constant is defined by a:—2e /r0 &0 which is the
result of an expansion of e /r about an average particle
separation ro =—(xo —yo ) & 0, determined by initial condi-
tions. The determinantal solution of (1) yields two secu-
lar frequencies

1
co, 2

—— (m, (kz+a )+m2(k, +a )
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+[[m](kg+a) —mp(k/+a )]

+4mma )' ) (2)

Rearranging terms in the square root and with the
reasonable assumption that a &&k12, we define a strong
coupling condition

a
k 1

m1 —m2
(3)

where the modes of oscillation are

charged ions of mass m1 and m2 that are confined in a
quadrupole trap with force constants k1 and k2, the par-
ticles repelling one another with a force constant a. The
reduced equations of motion are

d x
m, = —k, x+a(x —y),2

0
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FIG. 2. The weak-coupling condition is satisfied for the
mixture Xe++Ho+ (lowest trace) which shows two resolved
peaks corresponding to the Xe+ and Ho+ ion clouds moving
independently of one another. The mass peaks of the two are
shifted relative to the pure elements (top two traces).

From the phase relations of the solutions of (1), we see
that the u1 mode is a translational motion of the two
masses with a fixed spacing r0, the ion-ion Coulomb
repulsion being unchanged as indicated by the absence of
an a term in Eq. (4). It is this translational mode that
results in an axial current that is detectable. For the cuM2

mode, the ion-ion distance is stretched and compressed
about an unchanging center-of-mass position, and the
current and hence the signal vanish. While this mode
cannot be detected electronically, we predict that optical
detection is possible. We rewrite Eq. (4) as

k2+2a
+

m2

k1 k2
CO1 = +

2 m1 m2

k1+20
C02 =

2 m1

(4)

Ho + Er'

Er+

1
1/2

coi —— (&2e/zoQ) V„
m

to emphasize that the average quantity ( 1/m )
2= —,(1/m 1 +1/m 2 ) is of importance, and for small mass2

differences ((1/m ))' =(1/m )=I/(m ). Thus, for
these collective modes, it is predicted that only one mass
peak will be observed corresponding to the average
mass.

For the case of weak coupling, the inequality sign of
Eq. (3) is reversed and we obtain from (2)

2
co, 2=(k, 2+a)/m, 2,

1.e., each mode corresponds to a single mass, the reso-
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Ho
ABLE I. Atomic and measured masses in amu. Naturally

occurring Xe has nine isotopes in the range 124 to 136, Ho has
one isotope, Er has six isotopes in the range 162 to 170, and
Sm has seven isotopes in the range 144 to 154. Masses are
measured relative to Ho.

RMS Voltage (V)

FIG. 1. The strong-coupling condition is satisfied in detect-
ing axial resonances of an electric quadrupole trap for pure
Ho+ (lowest trace), pure Er+ (middle trace), and a mixture of
Ho+ and Er+ (uppermost trace). The single mass peak in the
top two traces is a signature of strong coupling and corre-
sponds to the average mass.

Element

Xe
Ho
Er
Sm

Atomic
mass

131.30
164.93
167.26
150.35

Measured
mass

130.6
164.93
167.3
149.6
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The first term arises from the trap pseudopotential
4 = ( —,

' e )kr and the second from the self-energy or
Coulomb interaction, R; being the distance from the
center of mass (c.m. ) of the ith cloud to the trap
minimum and r the corresponding distance of an ion.
The high-temperature limit" implies a Gaussian charge

—a(r —R; )

density n(r, R; )=N(a/n) e ' with a—=mes /
(2k& T ). Integration of the first term of Eq. (8) yields

U(R;)/N = 'kR, + ———,
3 k
4 (x

(9)

while the self-energy integral is a constant. These con-
stant terms do not affect the dynamics of the problem.
Thus the average potential energy per ion, —,'kR;, is ex-

actly the same as a single ion located at the position R;,
and the ion cloud behaves as a single giant particle. In
this way, the ions of an individual cloud are strongly
coupled and oscillate collectively in the trap as in the
two-particle problem when m

&

——mz.
If we introduce a second cloud of another species, the

potential of the first cloud is U~(R~, Rq) = U~(R~)
+ U~2(R~ —R2) where the trap potential U& is given by
Eq. (9) and the intercloud repulsion is

n, (r, , R, )n~(r~, R )2
U]p(R) —Rp)=e' J J d'r/d'rp .

r& —rz

(10)

For small displacements R:—R
&

—Rz, numerical and an-
alytic solutions of Eq. (10) as well as symmetry argu-
ments reveal that

U, ~(R ) = U, 2(0) ——,
' AR

where A is a positive constant. The potentials (9) and
(11) result in the same equations of motion as for the
two-particle problem, Eq. (1), but with one difference.
The sign of A in (11) is positive whereas for two parti-
cles the coupling constant a is negative. Indeed, Fig. 2
shows that the mass peaks are shifted to higher values in
agreement with 3 &0 while for two particles we predict
a shift to smaller masses. The physical reason for the
difference is that the two clouds can overlap with a

nance being shifted by the a term. Furthermore, in the
limit m& ——m2, the strong coupling condition (3) is al-
ways satisfied, no matter how weak the Coulomb coupling
is, making the weak-coupling condition inapplicable.

As a second model, we consider the many-particle
case of one or more clouds of ions, each composed of
ions of one mass. In a high-temperature regime, which
is appropriate to the experiments described here, we find
that each cloud moves as a unit retaining its spheroidal
shape. Thus collective oscillations can exist on two lev-
els, first in the motion of a single cloud of ions and
second in the correlated motion of several clouds.

The potential energy of a single cloud of X ions of one
mass and unit charge e is

U(R;)=e J n(r, R;)%(r)d r

repulsive force that vanishes at R =0 but initially in-
creases when

~

R
~

)0 and then decreases as I/R for
large R. However, two charged particles can never over-
lap and their repulsive force always decreases with in-
creasing R.

We note that a determination of the minimum mass
difference that can be resolved allows an independent
determination of the ion density. For this purpose, we
define the transition between the strong- and weak-
coup»ng «gimes by l«ki I

= I(mi —~z)/m2
I

where
~

m& —mz ~;„ is the minimum resolvable mass
difference. Assuming a Gaussian distribution, we derive
in (11) the Coulomb force constant per ion of two clouds
as a = 3 /N= ,'&2/v—rNa ~ e, N being the number of
ions in each cloud. Experiments on a mixture of ' Ho+
and ' Sm+ suggest that a mass difference of 15 divides
the two regimes. This result implies that

~

a /k
&

=0.01, and since k& ——3.7&(10 dyne/cm for Ho+, we
conclude that the density at the peak of the distribution
nz N(a/~)———:1.1X10 cm, which is significantly
less than the maximum value' '" or Brillouin density
n, „=(3/4')men, /e =3.8X10 cm . From the above
expression for a and using n~ and a measured %=10
ions, we estimate a plasma temperature T =4&(10 K.

Still a third approach that might be appropriate for
low temperatures is to model the plasma as a three-
dimensional lattice where masses m

&
and m 2 lay in alter-

nating planes that vibrate as a unit. The motion then
reduces to a one-dimensional problem. With the as-
sumption that only nearest neighbors interact, the result-
ing modes are found to be virtually identical to the two-
particle results when Kl «1 (strong coupling) or Kl =~
(weak coupling) where IC is the propagation vector of the
traveling wave and l the lattice spacing. However, at
low temperatures the ion density distribution is expected
to be Oat prior to an abrupt falloff, " and the assumption
that the shape of the charge clouds is unaffected by a
neighboring cloud will not be obeyed as demonstrated
recently for Hg+ and Be+.

It would seen, therefore, that the two-particle and the
high-temperature ion cloud models are a reasonable first
approximation to understanding collective oscillations of
stored ions. The theory could be generalized further to
allow for more than two mass numbers. However, as
the number of different masses increases, so will the
number of modes, but with axial detection, only the co&

translational mode will be observed. We hope to detect
the remaining modes optically. The predictions for two
trapped ions should be tested also, and with optical cool-
ing, the present observations are expected to change. '

Moreover, the inhuence of collective motions on pre-
cision measurements should be considered. Finally, col-
lective oscillations are predicted to occur in neutral atom
traps where the Coulomb coupling is replaced by a van
der Waals interaction.
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