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A connected-moments expansion (CMX) is constructed for the overlap between the approximate

and the exact (but unknown) wave function of the ground state. The CMX series provides approx-
imations to the overlap that do not require the knowledge of the exact energy of either the ground

or the first excited state. Moreover, the obtained approximate overlaps have a correct size exten-

sivity. A numerical example is given, demonstrating the performance of the new method.

The quality of approximate description of the ground
state can be judged from the magnitude of the overlap
between the approximate and the exact wave function
corresponding to this state. ' Several upper and lower
bounds to the overlap have been derived. ' Upper
bounds require usually the knowledge of the moments of
Hamiltonian and the exact ground-state energy. Lower
bounds, like Eckart's, demand also the exact energy of
the first excited state.

Despite the quite extensive information required, the
performance of these bounds is often not very impres-
sive, since their quality deteriorates for extended sys-
tems. The source of this shortcoming can be easily sin-
gled out: All the known bounds do not possess a proper
size extensivity. The issue of size extensivity is most
strikingly demonstrated in the example of Eckart's
bound:

S~= (Q
I Q ) ) 1 —[(E—Eo)/(Et —Eo)]

where

E=(41H14&, Eo=&Q IH IQ&

I Q) and
I

iti) are the exact and approximate wave func-
tions, respectively and E& is the exact energy of the first
excited state possessing the same symmetry as the
ground state. It is not difficult to find out that for the
system of M independent particles (subsystems), the ex-
act overlap is a product of the overlaps for the single-
particle wave functions and therefore the logarithm of
the overlap is a size extensive quantity. On the contrary,
the Eckart's bound, Eq. (1), does not exhibit a proper
size extensivity and for large values of M becomes nega-
tive, making the bound completely useless.

Quite recently, a new approach to the calculation of
approximate eigenenergies of the Hamiltonian has been
elaborated. The connected-moments expansions
(CMX's) provide energies of the ground and excited
states as well as the approximations to the expectation
values of various operators. ' In this paper we con-
struct the CMX series for the overlap that bears a prop-
er size extensivity and can be calculated without the
knowledge of either the exact ground state or the first
excited state energy.

As pointed out by several authors, ' '" the ket

10 ) = (0
I
exp( —tH ) 10 &

- '"exp( —tB /2)
I y &

is normalized and approaches the exact ground-state
wave function, provided that

(4)

From this we immediately conclude that the function

U(t ) =(P
I P, )'

= ( tb
I

exp�(

tH /2 )
I P ) / ( P I

e—xp( tB )
I

tb)—
has the limit

S = lim U(t) .t~ oo

Furthermore,

[lnU(t )]'= U'(t )/U(t ) =F(t ) F(t /2), —

where F(t ) is the familiar Horn-Weinstein function ' "
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F(t)=&0 I& id &

= & 4 I
a exp( ta ) 14 & /& 4 I

exp( —t»14 & .

N —1

f~(t ) = g A; b; (1 b;—t ) '= Vtv (Ptv —tQx ) 'Vx

(17)

In terms of the moments of the Hamiltonian,

&H") = &$1H "1$) (9)

where

Vx=(I2»I~) ~

F(t) has the form I2 ~ ~ ~ IN

(19)
( t )k&ak+1) /k[

F(t)=
g ( t)k&—H")/k!

k=0

(10)
and

I2N —2

I3 . . IN+1
and can be also expressed with the use of the connected
moments, Ik, as

N ~ ~ ~ ~ ~ ~ ~ ~ ~

IN + 1 ~ ~ ~ I2N

(20)

F( t ) = g ( t )"Ik +—
) /k!,

k=0

where

I, =&a&, I„=&a')—g,.
1

I, &a" ') . -
i =1

From the above discussion it is clear that

(12)

Taking into account Eqs. (13) and (17), we obtain for the
Nth-order approximation to the overlap, SN,

lnSN ——— FN t —FN ap dt
0

N —1

A;/b; = —1im [t fz(t)+t fz(t)], (21)
i =1 f~oo

or more explicitly

S = exp —I [F(t)—F(oo)]dt
0

(13) InS~ = —V~ Q ~ P~Q ~ V2 —1 —1 (22)

N —1

F~(t)= Ao+ g A; exp( b;t), b; )—0 . (14)

and therefore any size-extensive approximation to F(t)
will provide an estimate for S that bears a proper size
extensivity.

To derive the connected-moments expansion for the
ground-state energy, the following Nth-order approxi-
mation to F(t ) has been proposed:

As can be seen from Eq. (22), the Xth-order approxi-
mation to S, which we denote by CMX(N), requires the
knowledge of only 2N —1 connected moments. Various
numerical tests indicate that the CMX series provides
approximations to the exact overlap that, although not
being rigorous bounds, have considerable accuracy.

Let us consider the following anharmonic oscillator
Hamiltonian:

The coefticients A; and b; are obtained from the condi-
tion that the first 2N —1 terms in the Taylor expansion
of F&(t ) have to match those of F(t ), which gives rise to
the equations

H= —( —,')d Idx —( —,')d Idy +x /2+y /2+0. 1x y

(23)

N —1

I, =A +0+ A, ,

with the choice of the trial ket

1$) =m. '~ exp[ —(x +y )/2] (24)

N —1

I +, = g Ab;", k =12, . . . , 2X —1 . (16)

Any quantity depending solely on A s and b s can be
conveniently expressed in terms of the helper function

as an example. The exact overlap is 0.9997044, while
Eckart's formula gives the value of 0.9996228 for the
lower bound. On the other hand, we obtain the approxi-
mate overlaps of 0.999 809 7, 0.999 733 8, and 0.999 709 1

from CMX(2), CMX(3), and CMX(4), respectively.
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