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Quadratic fluctuation-dissipation theorem: The quantum domain
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A derivation of a general relationship between the frequency- and wave-number-dependent lon-
gitudinal quadratic response functions and the three-point dynamical structure function (the
Fourier transform of the equilibrium three-point density-density correlations) is presented. This
relationship is the full quadratic equivalent, valid for quantum systems of arbitrary degeneracy, of
the customary (linear) fluctuation-dissipation theorem. The high-temperature limit reproduces
earlier classical results, while its zero-temperature limit is characterized by a piecewise analytic be-
havior in the (coico2) plane, generated by the respective dominance of the differently ordered triplets
of density operators. There are two main versions of the theorem. In the first the completely
symmetrized combination of the three-point functions is expressed in terms on a "triangle-
symmetrized" [in the (keg) space] combination of the response functions. In the second "inverted"
form, each of the six differently ordered three-point functions is expressed in terms of combina-
tions of response functions, where the triangle symmetry is broken.

I. INTRODUCTION

The relationships commonly known as "fluctuation-
dissipation theorems" (FDT) establishing a link between
the linear response (a nonequilibrium property) of the
system and equilibrium correlations of fluctuating quan-
tities, have become a powerful tool in modern statistical
physics and many-body theory. The primitive idea was
due to Nyquist, ' who studied the relationship between
the resistivity and noise of electrical networks. About
two decades later Callen and Welton generalized
Nyquist*s observation to a number of physical systems
and conjectured the existence of an underlying general
physical principle. Callen and Welton were also the first
to use the phrase fluctuation-dissipation theorem in their
paper. The establishment of the FDT in its modern
form is, however, due to Kubo.

While the Callen-Welton-Kubo formalism focuses on
the linear-response of the system, it is clear that, in gen-
eral, the system's response is not restricted to be linear.
Thus, in addition to the well-explored linear-response
functions, one can examine the properties of higher-
order (quadratic, cubic, etc.) response functions, which
relate the system's response to higher powers of the per-
turbing field. Moreover, once one relaxes the restriction
of concentrating on the simplest response characteristics
of the system, the very concept of "response" can be
generalized.

The conventional response functions, to which we will
refer as "response functions of the first kind, " relate the
perturbed averages of physical quantities (density,
current, etc. ) at a given space-time point to the perturb-
ing field. The eft'ect of the perturbation on the system is,
however, further characterized by the perturbation of
averages of correlated physical quantities taken at two,
three, etc., space-time points. The relationships between
these perturbed two-, three-, etc. , point functions, which
also can exhibit both linear and higher-order behavior,
and the perturbing field define "response functions of

the second kind, " "response functions of the third kind, "
etc. That all these higher-order response functions, and
also the response functions of higher kind, would satisfy
some kind of fluctuation-dissipation-like theorem, i.e.,
should be related to averages of equilibrium correlations,
is a rather obvious expectation. Even a cursory
reflection over the derivation of the linear FDT should
suggest a correlation, e.g., between the quadratic
response function or the linear-response function of the
second kind, on the one hand, and the equilibrium
three-point function, on the other.

Over the last 15 years, a series of quadratic FDT's has
been established along these lines. The basic relation-
ship between the quadratic conductivity and the three-
point current-current correlations for a one-component
classical plasma was derived by Golden, Kalman, and
Silevitch (GKS) and independently by Sitenko. Re-
lationships for the current-current response function of
the second kind were given by Golden and Kalman. '
Generalizations to the surface layer of electron gas and
to binary ionic mixtures were derived by Golden and Lu
in Ref. 11 and Ref. 12, respectively. Apart from provid-
ing a satisfactory extension of the entire concept of the
fluctuation-dissipation relations, the formalism of the
nonlinear FDT's has turned out to lend itself to formu-
lating useful approximation schemes for strongly cou-
pled classical Coulomb systems. ' ' ' The hierarchy
of linear, quadratic, etc. , FDT's also generates a con-
venient alternative to establishing perturbation schemes.
This is due to the "order-raising" property of the FDT's:
if an expansion in the plasma parameter y
[y =(4m'e n13) /4trn ] exists, a response function of
rank m (m = 1 linear, m =2 quadratic, etc.) relates to an
(m +1)-point function by the latter being of O(y +"), if
the former is O(y").

A di6'erent line of research on the nonlinear properties
of fluctuations of quantum-mechanical systems has been
pursued by Soviet workers. The works of Efremov, ' '
of Stratonovich, ' and of Bochkov and Kozlov '

aimed at establishing relationships of various orders of
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nonlinearity between space-time representations of Auc-
tuating quantities.

The present paper, and others representing a sequel to
it, address themselves to the problem of establishing a
quadratic FDT relation for quantum (for a preliminary
account, see Ref. 22) systems of arbitrary degeneracy.
Our goals and results overlap, to some extent, with those
of Efremov' and Stratonovich.

Nevertheless both our approach and our conclusions
are different. Our derivation is representation free and
follows the singular integral equation method established
by GKS. In our results, in contrast to Refs. 16—21, we
focus on relationships in momentum-energy (k, co) repre-
sentation between precisely defined response functions
and three-point current-current-current or density-
density-density correlations.

A digression on a point on which much attention has
been focused in connection with the very idea of
quadratic —and higher-order —responses, may be in or-
der. A quadratic perturbation necessarily generates a
secular contribution in the response of the system. The
consequences of this are twofold. First, the manifesta-
tion of the secular time growth in the co representation is
a divergence of certain response functions and of the re-
lated three-point correlation functions at co=0. Second,
the heat generated by the perturbation also accumulates
in time and by raising the temperature it destroys the
isothermal character of the system. In their instructive
and illuminating paper Trernblay, Patton, Martin, and
Maldague (TPMM) (Ref. 23) demonstrated (on a specific
model) how these two effects originate from the same
source. They also showed that even though the system
can be kept at a stationary temperature by coupling it to
a heat bath, the way this is done affects the response of
the system and therefore, in this sense, quadratic
response functions are not uniquely defined.

Important as these aspects of the nonlinear response
theory are, they do not have a significant bearing on the
analysis presented in this paper (or on earlier studies
written in a similar vein ' ' ') neither are they, of
course, specifically related to the quantum character of
the system. This work focuses on relationships between
frequency- and wave-number-dependent response func-
tions and correlation functions. These relationships are
problem free for all frequencies, except for a possible
divergence at m=O. Thus the relationships derived are
certainly valid and unaffected at finite co values. Actual-
ly, a pathological behavior at co =0 is not a unique
feature of the nonlinear responses: the linear conductivi-
ty, for example, also exhibits (admittedly, for difFerent
physical reasons) a divergence at co =0 in the RPA.
This, however, does not affect the validity and usefulness
of the linear FDT, even in the approximation character-
ized by the random-phase approximation (RPA).

The (rather trivial) answer to the problem of heating is
to try to live with the secular terms and to restrict the
analysis of the system to "sufticiently short" times. The
real question is whether the condition of the time of the
analysis being sufficiently short can be met. In this re-
gard, one has to carefully distinguish between two as-
pects of the problem. The formal question is whether

the heating time ( = T/T) is sufficiently longer than any
other characteristic time of the system and thus whether
the momentary thermal equilibrium" model, implicit in
the nonequilibrium perturbation calculation, is a reason-
able assumption. For the experimentalist, however, the
question that poses itself is whether in a given experi-
mental or observational situation the time of the obser-
vation is short enough to justify the same assumption. If
this is not the case, the mechanism of cooling becomes
of crucial importance indeed, and the question as to the
precise nature of the fIuctuations and responses one con-
templates to measure has to be addressed with extreme
care. The guidance provided by TPMM in this respect
is again very valuable.

This paper addresses only the formal aspect of the
problem. Thus one has to be satisfied that the first
weaker condition is met. This, in principle, depends on
the strength of the perturbing field, but the reader can
easily convince himself that for any reasonable model
and for any reasonable value of the perturbing field, the
macroscopic heating time is many orders of magnitudes
longer than any of the characteristic microscopic times,
such as those related to collective excitations, decay of
correlations, and the like. TPMM provides more de-
tailed analysis and numerical examples for this.

The model we adopt in this paper is that of a one-
component plasma, although generalization to other sit-
uations should not present any difticulty. The derivation
emulates the classical approach of GKS; it nevertheless
deviates from the classical pattern, primarily because of
the noncommutability of the different density (or
current) operators at displaced arguments, leading to the
appearance of six differently ordered three-point func-
tions. In Sec. II the quantum I.iouville equation for the
statistical operator A is solved to second order in the
perturbing scalar potential, and the second-order average
current is calculated. The result is the primitive form of
the FDT, expressing a certain combination of the three-
point functions in terms of the quadratic external con-
ductivity as the solution of a singular integral equation.
In Sec. III, the primitive form undergoes a series of
transformations which ultimately lead to an algebraic re-
lationship between the symmetrized real part of the con-
ductivity [consisting of three pieces, exhibiting a "trian-
gle symmetry" in the (ken) space], and the fully sym-
metrized three-point function.

In Sec. IV we present an "inversion" of the FDT rela-
tion, i.e. , we express each of the six three-point functions
in terms of a (rather involved) combination of the
response functions. This inversion —which is certainly
not a trivial consequence of the primitive form of the
FDT—makes possible the further applications of the
theorem which will be discussed in subsequent publica-
tions. The rest of the paper is devoted to examining
various limits of the general expression. In Secs. V and
VI, the zero-temperature limit and the high-temperature
classical limit are calculated, respectively. The interest-
ing structural feature of the former is the piecewise ana-
lytic behavior of the three-point functions in different
domains in the plane of the perturbing frequencies co&,

co&. The latter, as expected, reproduces the earlier re-
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suits of GKS. Finally, in Sec. VI, the static limit of the
QFDT is investigated: similar to the case of linear FDT
and to the classical QFDT, an explicit expression for the
static structure function in terms of the quadratic
response function can be found.

ville operator

1 [0— . ]
fz

~(0)+~(1)

II. PRELIMINARIES

Consider an equilibrium system described by the
Hamiltonian H' ' and by the canonical statistical opera-
tor (30 +i/A=0 .

Bt
(4)

The time evolution of the system is conveniently de-
scribed with the aid of the Liouville equation for the
perturbed statistical operator

(1)
This latter can be expanded in the external perturbation

We are interested in the second-order response of the
system under the effect of an external perturbation P,

g [4'k(t)n k +4k(t)nk] g Wk(t)n k2V „
where nk is the Fourier transform of the local density
operator.

The total Hamiltonian H' '+H'' generates the Liou-

n =@'"+n'"+n")+

The quadratic longitudinal external conductivity o2,
however, relates the average second-order current densi-
ty

( jk)' '(t)=Tr[II' '(t)j k]

to the external perturbing field E through Ohm's law

(2) + oo +~(jk) (t)= —g dr( d72&(k T) k)1'p2)E (kt —r))Ek (t —rp) .
10 k oo

1 2

(7)

The formal solution to the perturbed statistical operator is

0"'(t)= i f —dt, U(t, t) )X'"(t) )fI ',

with

z z dt& - dt's U t —t] n k t, U t& —t2 n k t, 0' '
k t& 4'k t2

1 2

—tZ'(r —r )

U(t, t, )=e ' =U(t t, )—

(9)

(10)

being the time evolution operator.
A transformation of (9) can be accomplished through a number of steps. First we use the identity

[x ~zl =~ [x ~]+[x ~]z

and shift the operators n k, n k from the arbitrary reference time t to t& and t2. Next we note that the application
—pe'1 2

of the Liouville operator X(') leads to the commutator [nk, e ~ ], which can be evaluated with the aid of the
HausdorA'-Campbell "' formula, discussed in Appendix A. The result is

[n„,e ~H ]= iPke ~ P ——i' nk
dt dt

with

g(x)=(e"—I)/x .

Finally, employing Eq. (12), Eq. (9) is simplified as
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1

Q' '(t)= —
2 2 g f dt, f dt2In k (t1), [n k, (t2»&"']IC'k, (»~'k ( 2)

1 2 r

g(O) p d F2g f dt1 f dt2 —k2 f p(phco2)[n k (t1), j k ( —cg2)e ' ']
oo 271 1 2

1 2

d co ( d67p
+p jc1k2 f f $(pAco1)Q(pfico2)

l (Q71f 1 + cg2t2 ) .Xe J —k1( ~l)J —k2( ~2) @k1(tl )@k2(t2)

(14)

According to Eqs. (6) and (14), (jk )' '(t) now becomes

1 f di1 f dt2
oo

17 2

Pjc2 d co2
WP~ 2)( [n —k (t1 ) J —k ( ~2) ]Jk(t) )

dco] d cop
+p k1k2 f f p(pficu1)f(pkco2)

r (m1t1 +co2t2 ) .X&e J —k1( ~1)j—ki( ~2)jk(t) )

XCk~(t, )Ck (t2) .

The asymmetry in the time variables t, and t2 in (15) can be removed by inverting the order of integration, inter-

changing the variables (k1, t1, co, ) and (k2, t2, co2), and then symmetrizing the resulting expression. In addition, the

ime variables of the averaged products can be shifted as long as their time differences are preserved. We now intro-

duce a notation for the crucially important three-point current correlations and three-point density correlations,

1
(nk (601)nk (Ci)2)n k( —Q7) )

2m 2

=N51, k k 5(co —co1 —co2) IS(120)+N[5k 5(co1)S(k2co2)+5k 5(co2)S(k1co1)+5k5(co)S(k1co, )]

+N 5k, 5k,5(co1)5(co2)I, (16a)

with

1
(nk (co, )n k ( —co2) ) =N5„k 5(co, —co2)[S(k1,co1)+N5k 5(co1)]

1 2 1 2 1

and

1
(Jk, (~1)jki(~2)j —k( ~) ) N5k —k~ —k25(~ ~1 ~2)~( (16b)

If one exploits the relations between cycles for the S or Q functions, as discussed in Appendix C, such as

(J—k, ( ~1)j—k2( ~2)jk(~) ) = (J —k( ~)jki(~2)jk1(~1) )

the quadratic conductivity can be written as
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8(k), r)', kl, r2) =
—l ( 6) l 7 l + 6)21 P )

(e ' —1)[Q(021)—Q(012)]n dQ) ) dCO2

, e(r, )e(r, )e(r, —r, ) f f,2A 2' 277 Cc) ]C02

d CO] d CO2 e
'"'"+"'"'

Pge(r, )e(r )e(r, rz) f f (e ' —1)[Q(012)—Q(021)]
2w 277 N ~~2

n dQ)i dC02 e
, e(r, )e(r, )f f2A2 277 2'

—i(co ) ~) +co2r~ )

N ~F2

&&(e
' —1)[e(r~—r2)Q(012)+e(rl —r, )Q(021)] . (17)

However, the latter can be formulated in a simpler way by observing relations that exist among Q functions with
differently ordered arguments. As discussed in Appendix 8, one can shift frequency arguments within a cycle with
the aid of the relationship [where (abc) stands for any combination of the arguments (k&co~) (knoll) (kpcop) with
(kpcop)~( —k, —co)]

e 'Q(abc)=Q(bca) .

With these relations in mind, Eq. (17) becomes

o (k„r„.k2, 72)

n de~ dC02

2A
e(r, )e(r, )e(r, —r, ) f f277 2'

—I ( co
l

7 l +QP2 T2 )

Q) ~F2
( [Q(012)+Q(210) ]—[Q (102)+Q(201)])

Il d CO) d Q)2e(r, )e(r„e(r, —r, )f f2A 2' 277

—](Cul~)+CO27. 2)

I [Q (021)+Q(120)]—[Q(102)+Q(201)]), (19)

while its Fourier transform is' ".""»= " f -' f -'&.(-.--')&.(-+- --'--,),', [[Q(0»)+Q(210)]—[Q(102)+Q(201)])
CO ~CO2

n I I 1+ 2 d
& d~l ~+(co~ —co~)6+(co~+co2 —coI —co2)2'

CO )Ct)2

X I [Q(021)+Q(120)]—[Q(102)+Q(201)] j (20)

Equation (20) is the primitive form of the QFDT. Even
though it provides an explicit expression for the quadra-
tic conductivity a2 in terms of the three-point current
correlations, its usefulness is limited.

III. DYNAMIC FLUCTUATION-DISSIPATION
THEOREMS

Equation (20) provides a link between the two princi-
pal objects, the quadratic conductivity a.2, and the
three-point current correlations, whose relationships are
to be the central statement of the QFDT. Nevertheless,
Eq. (20) is still not of the form that could constitute the
desired formulation of the QFDT. The main reason for
this is that the right-hand side (rhs) of Eq. (20) is an in-
tegral relationship which, in fact, generates an integral
equation for the combination of the Q functions that ap-
pear under the integral. Only the solution of this in-
tegral equation would provide an explicit connection be-
tween the quantities in question. Linked to this prob-
lem, although not in an obvious way, is the structural
defect of Eq. (20) which manifests itself through the lack
of symmetry in the variables co&, co2, and co in the projec-
tion operation generated by the 6+ functions. The ori-
gin of this lack of symmetry can be traced back to the

entirely different symmetry properties with respect to
these variables of cr2 on the one hand, and of the Q func-
tions on the other. &(k„co„k2coz) is symmetric in the
pairs (k„co&) and (kz, col) [but not in (k, co)], while the Q
functions possess an intrinsic symmetry with respect to
any of the three pairs, which is, however, broken by the
different orderings of the arguments of Q's (but is com-
pletely restored in the classical limit). Thus to arrive at
the desired form of the FDT we proceed to eliminate the
asymmetry. This can be accomplished in two stages.
First, a particular symmetrized combination of Eq. (19)
is constructed so as to generate a completely symmetric
kernel of the integral equation for the three-point func-
tions. In the second stage the asymmetry in the frequen-
cy arguments of the conductivity is eliminated by rotat-
ing the arguments in the (k, co) space along the sides of
the triangle spanned by the (k„co~)-(k&,co&)-(k, co) triad.
This operation will, at the same time, provide a solution
of the integral equation.

The first step is most easily done in the time domain.
We change time arguments, but preserve the response-
function character of the o's with the new time argu-
ments by requiring them to vanish both for ~& &0 and
rq &0. Starting with Eq. (19), we generate
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8(r] )o (k, , rz —r]; —k, rz)

dc' dc'
", e(, )e(,)e(, , ) f "' f [ [Q(012)+Q(210) ]—[Q(120)+Q(021) ] }2A 277 2rr

co](cubi

+c9z)
(21)

It is easily shown that o has odd parity under spatial reflection: [o( —k, , —kz)= —o(k], kz)], and a combined
(k],co])~(—k, , —co]) and (kz, coz)~( —kz, —coz) transformation, leads to the change of cyclic order of the arguments
of the Q functions [Q(abc)~Q(cba)). Applying these operations to (21) we find

8( r] )cr (k], z
—„—ki rz )

—i(col rl +cu272)

8(r])8(rz)8(rz —r]) f [ [Q(012)+Q(210) ]—[Q(021)+Q ( 120)] }
2A —~ 2' —~ 2' ~](M]+~z )

and similarly

8(.,)e( —k ., ;k, , —., )

—1 ( co
l

7
1
+ GUS

7 2 )

= ",e(r, )e(r, )e(r —v, ) f +" ' f '"
[ [Q(021)+Q(120)]—[Q(012)+Q(210)] I2' —~ 2' —~ 2w coz( co] + coz )

(22)

We now combine (19), (22), and (23) and construct the symmetrized function

]Ij(k„r],'kz, rz)—:cr(k], r],'kz, rz) —8(r])o (k], rz —r]; —k, rz) —8(rz)cr( —k, r],kz, r] —rz)

+ ~ d~] + ~ d~z ]]~,~, +~—,~, ] Q (k]&~]i zi z)
, 8(r])8(rz)

2A 00 2 77 00 2' (24)

where 8(r]) and 8(rz) are steP functions. A more useful form is obtained by exPressing (24) in the Fourier domain

P(k»co»kz, coz)—:&(k],co],kz, M2)+ f dp 5+(co] —p)cr *(k„p;—k, —coz —p)

+ f dp5+(cgz —p)o '(kz, p; —k, —co] —p)

n +00 + 00 Q (k„p, ;kz, pz)
dp] dpz 5+(co]—p])5+(coz —pz)R

2A 00 P]P2
(25a)

Here R I } represents full symmetrization with respect to the permutation of the arguments,

Q (k],co],kz, coz)
R Q (102)+Q(201) Q (012)+Q(210) Q (021)+Q(120)

The Q functions are real, as shown in Appendix C; thus taking the real part of (25) leads to a more explicit form of
the integral equation,

Pg + 00 + 00 1 1+ (klieg]i kzi~z) z dp] dpz $5(~1 pl )5(~2 pz)
2R 4~' (~]—p»(~z —p»

Q(ki pi kzpz)yR-
P]P2

r

R ~

Q(kl pl kz pz)

Q(k], M],'kz, &2) r] + P )P2
2R -+

2 2P dP1 dP2
8A ~~~2 8R m 00 (~]—p])(~z —pz)

(26)

We note in passing that the importance of the symmetrization procedure outlined above is especially clear in the
classical limit where the unsymmetrized kernel (22) is expressible only in terms of unwieldy Poisson brackets.

R [0'(k],co],kz, coz)]:—0'(k], co„'kz, coz)+9'(kz, cozI —k, —co)+0 ( —k, —co;k„co]), (27)

which now does possess the "triangle symmetry. " Note that R [ ) acts on a function already symmetric in (1,2) and
therefore is diff'erent (by a factor of —,) from R [ }. In contrast to the previous definition [Eq. (24)] R [ ], acting on a
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function already symmetric in its (1,2) arguments, generates only a rotation on the (k„co, ), (kz, coz), ( —k, —co) trian-
gle.

Noting the fact that the real part of o.
z has odd parity and the imaginary part has even parity with respect to the

simultaneous sign reversals of its frequency arguments, we obtain from (25)

1II (k»co»kz»coz) =& '(kl»~»kz»~z) —,'cr —'(kl,—col» —k»co) ——,
'o. '( —k, co;kz» —coz)

1 1
P dP & "(k„P;—k, coz —P)+ P dP & "(—k, ~l —P;kz, P)

27' —oo CO] +P 277 —oo CO~+ P
=o. '(k, , cu„.kz, coz) ——,'& '(kl, —~1', —k»~) ——,'& '( —k ~'kz» —~z)

P dp2' —~ co —p

+~ 1
& "(kl,~z —p; —k,p)+ P dp & "(—k, p;kz»col p),—

27K —oo CO —P

(28)

+ (kz»~2» k» c»1 ) cr (kz»c»22» k» c»1 )+ 2
1T ( 1»c»21»kz»~2) 2

o (kl» ~l»

& "(k,,p;kz»co —p)+ p f dp cr "(kl, coz —p; —k,p)
277 —oo p —CO

2»~2» k» ~)+ z~ (kl»~l»kz»C»12) z~ ( 1» ~1»

+'P dp
1

& (k, ,coz —p; —k,p),1
& "(kl»cu p;kz, p)—+ p f dp—p 277 —oo p —CO

(29)

y'( k, —co;kl»col) =o- '( —k, —co;kl, col) ——,'& '( —k, co;kz, —coz)+ —,'& '(kl»~1»kz»~z)

1 + 1 1
P f "dp & "(—k, p;kz, ~, —p, )+ P f dp

2'lT —oo p —CO 2' —oo —COp +P
o "(k„cu—p;kz, p) .

(30)

By combining (28)—(30), according to (27), we find

[0'(kl, col', kz»mz)] =2[cr '(kl, col, kz, mz)+ & '(kz, cuz,
' —k, —co)+& '( —k, —co; kl, col )]:—2R [& '(kl, col, kz»coz)] . (31)

Now we concentrate on the effect of the R [ ] operation on the rhs of Eq. (26). While it leaves invariant
R [Q(kl, col,'kz, coz)/colcozI, it aff'ects the Hilbert transform term,

Q( k 1, co 1,kz, cuz )
%'( —k, —co;kl, col ) = — R

SA CO ~ CO2

r

, f dpi f "dpzP —CO+p&+p2

1 Q (kl, p, l', kz»pz)
R ~

CO) —P ) p&pz
(32a)

and

n Q(kl, col»kz, coz)+ ( ~p p CO 2, —k p
—CO ) = — R

8A CO ~COp

', f''"dp, f+"dp, P
COp —p2 —

CO+ p)+ p2

Q(ki pi;k»pz)
R

p]p2
(32b)

In order to be able to combine (32a) and (32b) with (31), we have to interchange the order of integration in (32b),
which can be done with the aid of the Poincare-Bertrand theorem,
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ii Q(kl ~1 k2 ~2)4'( k2, co~; —k, —co )=- R.
8A

, I dp, j dp, p
c02 —p2 —co+p )+pp

Q(kl Pl k2 P2)~ 6(coq p2)—6(cu —
p& —pz) R ~

p )pp

n Q(ki, cubi,'k2, &2) 1 + +
z

- —
z dp& dp2P

8A Q7 ~CO2 '7l OC Mp —p2 —co+p ) +p2

Q(ki, p, ;k2, p~)
XR

pip2
(32c)

Now combining (26) and (32) into R [4'(k~, co„k2,co2)] we find that the Hilbert transform terms cancel each other,
leading to the final form of the QFDT,

R [& '(k, , cubi,
.k2, cu2)]=— n Q(kl~~lik2~~2)

R
4h Cc) ~M2

n e R AS(ki, co)', k, , co~) . .
4p ~ kk)k2

(33)

Alternative forms of the QFDT can be obtained by trading, on the one hand, the conductivity for the polarizability
o; or for the density response function P, and, on the other hand, the current three-point function for the density
three-point functions S(120), etc. , defined in (16), and by working in terms of the internal response functions. Then

p2 k, k, k
R [AS(ki, cubi, k2, co2) I

=— Im
n~

1
R [cuba ( k, , co, ; k2, co 2 ) ]

e(k, , co, )e(k, , co2)e*(k, cu)

4A' 1
R [cog(k&, co„'k2, co&)) .

e(k„cu, )e(k~, ~2)e*(k, co)
(34)

IV. INVERSION
OF THE FLUCTUATION-DISSIPATION RELATION

Equation (34) constitutes a useful form of the FDT. It
is probably also the simplest form into which the rela-
tionship can be cast. Nevertheless, Eq. (34) provides
only the symmetrized combination of the S functions.
Because of the appearance of both cycles in the syrn-
metrized product, it is impossible to invert (34) in such a
way that an explicit expression for S(k, , co„k2,co2) re-
sults. It is possible, however, to obtain such an explicit
representation. In this section we present an alternate
form of the FDT relation, which, while it lacks the sirn-
plicity of (34), leads to an expression for a single
S(k, , ~&, k2, co2) in terms of the quadratic response func-
tions. The derivation rests on the observation that corn-
binations of Eq. (19) and its counterparts generated by
shifting arguments can be combined to yield a linear sys-
tem of equations for the two cycles of S, from which
each cycle can independently be extracted. ' First we
trade o and Q for X and S in Eq. (19),

X(ki, ri, k~, r~)

2A
[B(7 i)B(72—7 i)Fi~[S(012)+S(210)]

+B( )B(,—2)Fi2[S(120)+S(021)]

—B(,)B( ~)Fiq[S(201)+S(102)]] (35)

with F&2 representing the Fourier-transform operator

F» =F(ri r~
i
~i ~2)

dc'] dc'& i(u ~ +~ ~ )

e ~ ~ ~

2~ 2~
(36)

Changing the arguments of 7 one generates a second
equation,



36 QUADRATIC FLUCTUATION-DISSIPATION THEOREM: THE. . . 3407

X(kq, ~q —~i) —k, —r, )

2A
{6(w r,—)6( —r )F, [S(120)+S(021)]

+6( —i)6( p)Fip[S(201)+S(102)]

F,2[S(012)+S(210)—S(201)—S(102)]
2W

X[(k),r»k2, %2)+X(ki, r—~', k2, —r2)
n

—X(kp, ~2 —r, , —k, , r—, )

—X(k2, ri —rp, —ki, r, )—] (39)

or—6(r2 —~i )6( —r ) )F,2 [S(021)+S(210)] ] .
S (012)+S(210)—S(201)—S(102)

4/2
(kl~~li 2~~2) X (k2~~2i k~ ~)l

n
Here we have exploited relations such as

F( 7 2
—7i, —7 i ~

co i, cga q )S ( 0 12 ) =F( r i, r 2 ~

co i, co q )S ( 1 20 )

(38)

Two additional relations can be generated by
7'i —+ —7 i, 'rp ~ —72 time reAection, observing S ( cba )

=S( —a b —c) [—cf. Eq. (C9)]. Adding now these four
relationships one can note that for the surviving terms
the 6 functions combine into a full coverage of the ~&-~2

plane, thus leading to the result

(40)

Interchanging 1 and 2 yields a similar, but independent
relationship,

S(021)+S(120)—S(201)—S (102)

4A
[X '(k/, coi', kp, cd/) —X '( —k, —6);ki, coi )] .

n

(41)

Observing now the relationships within the cycles, Eq.
(B4), we can express, say, S (012) and S (210),

4$ $ —Phut —Phco2 ~, ~ (S(012)= — —
{(1—e ')e '[X '(k„co, ;kg, co~) —X '(k~, ~~; —k, —co)]

n D
—philo) ~ )+(1—e ')[X'(k, , co„k2,co, ) —X '( —k, —co;k, , co, )]), (42a)

S(210)= —{(1—e ')e '[X '(k&, co~, k2, co&) —X '(kz, coq', —k, —co)]4$ $ +phco I +phcu2 ~, ~ )

n D

+(1—e ')[X '(k), coi', k2, co2) —X '( —k, —ccrc;k, , co()] ] (42b)

with

D =2[sinh(Plica ) —sinh(/3A'co, ) —sinh(/3A'co2) ] . (43)

Equations (42a) and (42b) are the desired results of this section.
It is also useful to list the expression for the completely symmetrized combination R {S],

R {S(ki,cubi, kq, co~) J

8A 1
{[»nh(pkco)+ 2 sinh(pe~i ) —sinh(/3fico2 )][X'(k„~„k2,~ )

+ [sinh(price) —sinh(piricoi)+2 sinh(/3Rm2)][X '(ki, ~& k (44)

V. ZERO- TEMPERATURE LIMIT

At zero temperature, the system is in a pure quantum state (its ground state). As a consequence, each of the S
functions is different from zero only within a certain frequency domain. Therefore, the FDT develops a much simpler
structure, though it has to be formulated differently for different frequency regions. In order to find the appropriate
frequency domains, one develops (0

~ jjj ~

0) or (0
~

nnn
~

0) as a sum over a complete set of intermediate states, say
~

a ),
~ P ), etc. , and finds
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&0
I nk. (~ )"k, (~b)nk, (~. )

I
o&

=2~& Jdri Jdrze ' ' ' ' &o
I nk. ( —rz)

I
~&&~

I
nkb(o)

I
13&&& Ink, ( —ri) IO&&(~. +~b+~. )

a,P

=g~'g &o
I nk. (~. )

I
a&&a

I
nk (~b)

I
13&&&

I nk, (~. )
I

0&~(~ +~b+~ @(~ —~ o)&(~.+~go) (45)

with

co o
——E —Eo,

cop@ ——Ep —Eo,
and a, b, c representing any permutation of the indices 1,2,0 [(coo,ko) =—( —co, —k)].

The domains where a particular Q (abc) survives are now determined by the conditions

cog )0
toe (0

(46)

On this basis we can divide the frequency space into six regions. In Table I each of the S's and their domains of ex-
istence are listed.

First we formulate the zero-temperature limit of the FDT, Eq. (34), for the six difFerent (co~, coz) regions,

4R Re
n

1
R [AX(ki, cubi', kz, coz)]

e(ki, cot)e(kz, co, )e'(k, co)

coiS(210)+cozS(120) for co»O, coz&0 (region 1)
—AS(102)+cozS(120) for coi &O, coz&0,

I
co,

I
&

I
coz

I
(region 2)

—coS(102)+coiS(012) for cubi & 0 coz & 0
I cubi I

&
I

coz
I

(region 3)

cozS(021)+coiS(012) for coi &O, coz &0 (region 4)

cozS(021)—AS(201) for cubi &O, coz&0, I cubi I
&

I
coz

I
(region 5)

cotS(210)—coS(201) for co& &O, coz&0, I
coz

I
&

I
co,

I
(region 6) .

(47)

Since the left-hand side of (47) is a continuous function
of its frequency arguments, so must be the right-hand
side. That it indeed is can be seen by examining, for ex-
ample, the behavior on the boundary between regions 1

and 2 where co2 ——0. The "jump" on the right-hand side
is b, =coi [S(102)+S(210)] o. However, it is easily

seen that both S(102) and S(210) are zero on the
boundary. Indeed, consider the matrix element
&p I nk

I
0& in S(102) at —coz ——Eci Eo ——0. Since t—he

ground state is nondegenerate . E&——Eo implies

I
p& =

I
0&; the matrix element &0

I
nk

I
0&, however,

vanishes for a11 k2&0 because of momentum conserva-
tion and k2 ——0 has been excluded by virtue of the
defining Eq. (16). Similar considerations apply to
&0

I
nk

I
a& in S(210). Thus b, =O. The continuity on

the other boundaries is ensured in the same fashion.
It is also of interest to consider the zero-temperature

limit of the inverted relationships (42) and (43).
Different limits are obtained in the six different domains
listed above which can conveniently be summarized in
the form given in Table II. Here we have used the ab-
breviations

4/2 ~,
( k (, co ) ', kz, coz )

4A
b = X'(kz, coz, —k, —co),

C= 4fg2 ~
X( —k, co;ki, cubi) . —

The apparent discontinuities on the boundaries are again
easily shown to vanish. For example, between domains
1 and 2, S(120) has a jump a b; on the -boundary, how-
ever, u2 ——0 and since 7' is an even function,
a (coz ——0)=b (coz ——0).

VI. CLASSICAL LIMIT

The classical QFDT has been known for some time. '5, 8

We now demonstrate that the classical %~0 limit
(which is manifestly equivalent to the high-temperature
P~O limit) of Eq. (34) reproduces the known GKS clas-
sical result. In order to accomplish this, we need an ex-
pansion of Eq. (34) to order fi, which then yields
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e 'S(012)+e 'S(021)
R [coS(ki, cot', kq, co2)] = —coco)coq

CO iCOp

e ~""S(021)+S(012)
COCO2

e~" S(012)+S(021)
COCO i

and thus

p fi

2 coco ico2[S(012)+S(021 ) ] (49)

a "(ki,coi, k~, co2

CO iCOp

a "(k),co), kq, co2)

CO iCO2

a "(k„co,; —k, —co) a "(kq, coq, —k, —co)

harp'e 3n
S(k(, coi, kq, co2) .

1 2

(50)

This is exactly the classical result given by Golden, Kalman, and Silevitch in Ref. 5. In terms of the density
response function 7,

4S(k, , coi, k~, cop) = —
~

Re
pn

1

e(ki, co, )e(k2, cop)e*(k, co)

X(k), co)', k2, co2)

CO iCOp

4
Re

pn e(k i, co i )e( k2, co2)e'(k, co )

X'(k, , co, ;k~, co~) X'(kq, ~co;
—k, co) —X'( —k, —co;k, , co, )

CO iCO2 COCO2 COCO i

(51)

Equation (51) above reproduces the result given by
Kalman, with the exception of the coefficient 4//3 n

which is incorrectly given as 2//3 in Ref. 7.

X '(ki, coi, kq, co2)
R

CO iCO2
R

4A'

S(ki, co)', kq, coq)

CO iCOp

VII. STATIC QFDT (52)

The linear static FDT can be formulated in two
different ways. The first more customary relationship
arises when one generates the static structure function
Sk —— dco/2~ S kco in terms of a frequency integral

involving X "(k,co). To obtain the second relationship
one integrates ( 1/co )X "(k, co ) to obtain, via the
Kramers-Kronig relations Y(k):—Y'(k, O); this, in turn,
is expressed as a frequency integral involving S(kco). In
the classical limit there is a conAuence of the two rela-
tionships, and X(k) becomes directly related to Si, . An
analogous procedure can be followed in the case of the
QFDT. It is possible to obtain an expression for the
static X(k~, kz) —=I' '(k&, 0;k2, 0) and also for
S„,„,= f d~, /2~ f d~2/2mR [S(k, , co, ;k2, co&)) in terms

of the response function although the two relationships
are different. Again, in the classical limit, as it has been
already shown, the situation is special and there is a
direct relationship between g(k&, k2) and Sz k .

1 2

In order to obtain the first version of the static QFDT
we consider Eq. (34),

X '(ki, coi', kq, co2) =X '(ki, k2)+X '(ki, coi , k2, co2)'(53)

with

X '(ki, k~) =X '(k(, 0;k2, 0)

being the static quadratic response function. By combin-
ing Eq. (52) and Eq. (53) and taking the static limit, we
find

To obtain the desired result, a careful limiting pro-
cedure is needed. First, we prove that both sides of Eq.
(52) are finite in the static (co&~0, co2~0) limit. The
boundness of the rhs becomes obvious, by expanding
R [S(k,, coi, kz, co&)/co&conj as it is done for
R jg(k„co&,k2, co&)/co, co&) in Sec. V, and realizing that
the three-point-density correlations S(210), etc., are
bounded for physical reasons. The demonstration for
the lhs, however, is more involved. In the subsequent
derivation we follow the pattern of Ref. 5.

Let us split X '(k, , co, ;k, , co, ) as fo llo ws:

lim lim
col ~0 co2~0

lim lim
col ~0 cc)2 ~0

CO[

X '(k, , co, ; —kq, co~)

CO ~CO2

7'(k~, cop', —k, —co) X '( —k, —co;k„coi)
COCO2 COCO i

X '(k, , k~) —X '( —k, k, ) X '(k„k~) —X '(k~, —k)
+

n+ 2
lim lim coR

~4g co& ~0 F2~0

S(k, , co), kq, coq)

CO] CO2 (54)



34lO G. KALMAN AND XIAO-YUE GU 36

The second term on the rhs of Eq. (54) is zero because
of the boundness of R IS(k],co],'kz coz)/co]coz) ~ Further-
more, the first term on its rhs vanishes too due to the
even parity of X '(kl, col, kz, coz) with respect to the sign
change of all frequency arguments

which indicates that the lhs of Eq. (52) is finite in the
static limit.

Next, we integrate both sides of Eq. (52) over co, and

X '(k], co],kz, coz)=X '(k], —co],'kz, —coz),

which allows one to expand X' as

dQ)) + 00 dCO2
R—00 2' —00 277

X ( k» co ] ', kz, co 2 )

CO ~COp

1 a'L''

2I
QPi

0,0

pA.

k]~~]i zizz) + (kl~k2)+ colcoz
Bco

~ BQ72 +00 dCO) +00 dmq S k), ~()k2, ~2
R

4$ —00 2m —00 2' 0J ~COp

(58)

BX'+-
Bc'

Q)p+
0,0

Since the integrands on the lhs are regular, the in-
tegrals can be replaced by their principal values,

=X '(k, , kz)+X '(k, , co„k„co,) . (55)

I' '(k„kz) =X '(kzt —k) =X '( —k, k, ) . (56)

Thus one obtains

X '(k], co],'kz, coz)
R

Consequently, X '(k], col,'kz, coz)/colcoz is finite at the stat-
ic limit. Therefore, the lhs of Eq. (54) is also zero, which
requires

I= dco] + „dcoz 7 '(k], co],'kz, coz)
R

00 2& 00 2' CO ~672

=P dco] +~ CICoz I (k],co]&kz, coz)
P

—00 27T —00 27T CO ~Q)p

dco] + ~ dc&)2 X ( —k, —co;k], co] )—P P
00 2' 00 2' CO ~67

=X '(k], kz)
CO ~COp COCOp &CO

~

dco] + dcoz X '(kz, coz, —k, —co)—P P
00 2'lT —00 2 7T COpCO

g '(k], co],'kz, coz)
+

CO ~Q)p

T

X '(k], co], kz, coz)
(57)

(59)

The integration can easily be carried out by using the
Kramers-Kronig relation repeatedly,

I, = —]X'(ki, kz),

dco] + ~ dcoz 7 ( —ki co] cozik]ico] )

I2 ———P P
oo 2'll —00 2' co ]( co ] +co2 )

+„dco, +„dcoz X '( —k, co] —coz,'k], —co])
=P P

00 2' 00 2' co](coz —co] )

= ——,'X '( k],kz ),

I, = —pf " pf+„dcol + dcoz + (kz, coz', —kl —k2, —col —coz)

00 2' 00 2' coz(co] +coz )

+~ dco] +~ dcoz X'(kz, —cozy —k] —
krzy

—co]+coz)
=P P

00 2' 00 2& co 2 ( co ]
—co 2 )

dcoz + dco] X '(kz, —coz; —k] —kz, —co]+coz)
=P P + —,'X '(kz, —k)

00 27T —00 2' co 2( co ] —co 2 )

(60)

=0.
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TABLE I. Division of the frequency space in six domains of
existence.

TABLE II. Zero-temperature limits [with a, b, and c defined
in Eq. (48)] for the six difFerent (co~, co2) domains of existence
listed in Eq. (47).S (abc)

S (201)
S (102)
S(210)
S (012)
S (120)
S (021)

5,6
2,3
1,6
4,3
1,2
4,5

Domain of existence

(o) i (0, co2 & 0)
(m, &0, co &0)
(- 0, '-, 0)
(- 0,'-, 0)
(co&0, ~i &0)
(co(0, col (0)

S (abc) domain
S (210)
S (120)
S (102)
S(012)
S (021)
S (201)

1

b-a
c-a c-b

a-b a-c
b-c

e-a c-b
a-b a-c

Finally, the substitution of (60) for (59) and (58), with

F(12)=coi+cope —cuePg~ Pfi~2

provides the QFDT for the static response function,

+ „dco) + dcoq S(k), cubi', kq, coq)
X '(ki, kp) =- R

277 —oo 2'7l CO ]602

(61)

n f +~ dc@i f +~ dc@2

277 —oo 2' COCO]C02
[F(12)S(012)+F(21)S (021)] . (62)

In order to derive the relationship for the static structure function one can integrate any of the S functions or any
of their combinations, since the ordering of the static operators is irrelevant. However, the most useful combination is
the completely symmetrized one, given in Eq. (44), which yields

8M 1 QCOP
R S k], co', kp, c02

4/2 867 ( G C02 —sinh AM~ X k& ct)~ k2 Mp —P' k2 ci)p' —k —co
n 2w 2n D

+ sinh(/3iricoz)[X '(ki, cubi, kz, co&) —X '( —k, —cu;ki, coi )]] (63)

In writing down (63) we have exploited the vanishing of the integrals

den) dcoq 7 k), co)', k2, co2 —7 kq, ~, —k, —co

and

~q X' k), co],kq, co2 —7' —k, —co, k), cu)

which follows from (39) and (40). The classical limits both of Eqs. (62) and (63) reduce to the well-known

Si, i
—— X(ki, kz) (64)

expression. In the zero-temperature limit (63) simplifies considerably. One finds
r

12kS« ——' " f '"d~, f' d~2[X'(ki, ~),k2&~2) X (k2&~2,
1 2 —Q)

l

+ f '
des, f den, [X'(k&,~»k2, ~, ) —X'( —k, —~;k»~&)] (65)

Equations (63) and (65) are especially useful as providing
a way to calculate the three-particle correlation function
[h(r, —r2, rq —r3) with Fourier transform h~ i, ] for a de-

generate system through

~+ gk, +ngk +~gk++ ~k k Sk k, (66)

VIII. CONCLUSIONS

In this paper we have derived a general relationship
between the three-point density or current correlations
and quadratic response functions. This is an obvious,
but certainly not trivial, extension of the well-known
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linear fluctuation-dissipation theorem ~ it is also the gen-
eralization of a similar relationship derived earlier for
classical systems. The formal and structural differences
between the classical and quantum theorems stem large-
ly from the noncommutability of the density (or current)
operators taken at different space-time points. One of
the consequences of this noncommutability is the ex-
istence of six different three-point functions, dis-
tinguished by the ordering of the density operators. In
one version of the theorem [Eq. (34)] only the fully sym-
metrized combination of these three-point functions
enters the theorem. In contrast to the classical situation,
the Fourier transform of the three-point function
S(k, , co&, kz, co2) does not exhibit any definite parity prop-
erty in its frequency argument. As a result of the sym-
metrization, however, only the even projection of
S(ki, co„kz, co2) is connected through the QFDT to the
symmetrized combination of the quadratic response
function. Thus, in contrast both to the general linear
FDT and to the classical QFDT, the theorem in this
form does not provide sufficient information to deter-
mine the fluctuation spectrum from the knowledge of the
response functions. A different version of the theorem
[Eq. (42)] allows one to express each of the six three-
point functions in terms of the response functions; in
this case, however —in contrast to the classical
theorem —the three-point function is 'given not in terms
of the fully symmetrized triangle-symmetric combination
of the response functions.

Similarly both to the general linear FDT and to the
classical QFDT, useful explicit relationships exist be-
tween the static structure function

dc@) dc@~
k, k, = — S(k), co, ;k~, cu2)
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APPENDIX A: EVALUATION OF COMMUTATORS

Let n be the exponential operator

B(s, t, u, . . . ) (A 1)

where s, t, u, . . . are parameters. The Campbell and
Hausdorff formula provides that

an =~I, =Qg( —Ad[8])B, , (A2)

[n, II ]= II''( —Ad[8] )[n,B],
where

(A3)

x
1

p(x) = X X+ + + 0 ~ ~

3l
(A4)

Ad[8] = [8, ] . (A5)

By using (A3) —(A5) we obtain

[n, e ']=e 'P( —Ad[ PHo])[n, P—Ho]—

with D =d /dt.

i Phe —'P( i PhD )—
dt

(A6)
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taken great interest in this problem and has contributed
to its solution through many clarifying discussions and
comments. This work was partially supported by Na-
tional Science Foundation (NSF) Grant No. ESC-83-
15655. One of us (X.-Y.G.) was also supported by NSF
Grant No. ATM-83- 1 1 1 39.

and the response functions, on the one hand, and be-
tween the static response functions [X(k~, kz) =X(k, ,

co, =0; k2, co& ——0) etc.] and the three-point functions on
the other.

As to the response function [say, the conductivity
cr(k, , co, ;kz, co2)), that is also the fully symmetrized com-
bination constructed out of o.-s with arguments rotated
along the sides of the triangle (ki, coi )(kq, ~q)( —ki
—kz, —ni —~2) (triangle symmetry) that appears in the
first version of the theorem. This feature, however, is al-
ready present in the classical version and can be traced
to the fact that the Joule dissipation

f d~, f dco2Rej(k, ~)E*(k,~)
kl, k~

&& ~k —k, —kP(~

APPENDIX 8: EVALUATION OF RELATIONS
FOR Q AND S FUNCTIONS WITHIN A CYCLE

Corresponding to the six possible permutations of the
j(n) operators with different arguments, there are six
different Q (S) functions. They fall in two cycles
("clockwise" and "counterclockwise" ). Different rela-
tionships apply to two Q (S) functions, depending
whether they are within the same cycle or belong to
different cycles. In this appendix we display the rela-
tionships for Q's within the same cycle.

Consider (jk (r))jk (rp)jk(0))
definition of the average

(Jk)(rl )Jk~(r2)J —k(0) )

—PHTr[e jk (r~)jk, (r2)j k(0)]

projects out precisely this combination.
We expect that the QFDT will turn out to be useful

on the theoretical level both as a calculational tool for
the quadratic response functions and for three-point
equilibrium correlations, as well as for exact relation-
ships between them, and as a vehicle to formulate new
approximation schemes for systems where many point
correlations are significant.

(j —k( iP~Vk, (r1Vk (rz)) (B1)

=e (j k( —co)jk (co&)jk (co2))' ' . (B2)

we can find the relations between the Fourier trans-
forms,

( jk (~1)jk (~2)j —k(
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Thus, according to the defining equation (16b), we have

e~""Q(012)=Q(120) .

Similarly, the following relationships can be shown to be
valid:

e 'Q(201) =Q(012),

e 'Q(120) =Q(201),

Q(gi, —r&', gz, —rz)= g (Tg*,QJTP )

= g (P* T+,QJTP )*

= —(Tr[AJ(gi, Ti, fzrz)]*

(C2)

e~" Q(021) =Q(210),

e 'Q(102) =Q (021),

e 'Q (210)=Q(102) .

These can be summarized as

e 'Q(abc) =Q(bca),

(83)

(84)

where (a, b, c) stand for any combination of the argu-
ments (k, , pi, ), (kz, piz), (kp, cop) with (kp p)p)=( —k —pi).

The same technique can be used for S functions.
First, we recall

(nk (cd )znk( —co))' '=e ""(n k( —pi)nk (coz))' ' .

in view of the negative time parity of the J operator.
Moreover, due to the spatial reAection invariance of the
system,

Q( (1~+1~ f2~+2) Q(f li+li(2~+2 ) (C3)

Q'(abc)=Q(abc) .

Second, we compare

(C4)

which can be proved along the line of the derivation
(C2), exploiting the negative spatial parity of the J
operator.

The Fourier transform of Q(gi, ri', gz, rz), Q(abc) is
now easily shown to be real,

Next, we use the relation similar to (Bl),

( nk, (~1)nk (~P2)n —k(

=e " (n k( —co)nk, (pi])nk, (piz))

(85)

(86)

Q (abc) = Tr( Ilj jbj. )

with Q*(abc) expressed as

Q'(abc) =Tr[flj,j„j,) ] =Tr(j,jbj, fl )

(C5)

(C6)

Combining Eqs. (84) and (85) with the defining equation
(16a), it follows immediately that

e 'S( bca) =S(bca) . (87)

APPENDIX C: EVALUATION OF RELATIONS
FOR Q's BETWEEN THE CYCLES

First we demonstrate that the functions Q (abc)
[where a, b, c stand for any combination of the arguments
(ki, coi ), (kz, piz), (kp, pip) with (kp, pip)—:( —k, —pi)] are
real. To see this, compare

Q(gi, 'Ti', gz, rz) =Tr[A J(gi, ri', gz, &z)]

= g (P",QJitj ), (C 1)

where J is any combination of the three current opera-
tors j(giri), j(gzrz), j(00) with the time reversed
Q(g'» —r&', gz, —rz) calculated with the aid of the antilin-
ear time-reversal operator T,

Here —a, etc. , stand for the pair ( —k, , —pi, ), etc. , and
the trivial Sk, 5(co), etc. , factors in front of Q of Eq. (16)
have been omitted. We have used the property of the
Fourier transformed jk operators

~ t ~

JkN j—k —co (C7)

Combining now (C4) and (C6) we can conclude that two
Q functions belonging to different cycles can be related
to each other by the

(kpi) ~( —k, —pi) transformation,

Q(cba)=Q( —a —b —c) . (C8)

S(cba) =S( —a b —c) . — (C9)

Similar considerations apply to the S functions, except
that both the time and space parity of the corresponding
N operator [combination of the density operators
n (g„r, ), n (g'z, rz), n (0,0)] is positive,
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