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Absorbing-boundary limit for Brownian motion: Demonstration for a model
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We consider one-dimensional diffusion with an absorbing boundary in the context of a model
that retains the essential "missing" boundary condition feature that complicates the solution of the
Fokker-Planck equation for this problem. The model solution is obtained and some of its features
are briefly discussed but our primary purpose is to demonstrate a limiting process that transforms
the solution of a related diffusion problem to that for the absorbing-boundary problem. This ap-
proach, which we refer to as the absorbing-boundary limit, consists of obtaining the solution for
the infinite-space case with the physical space —oo &x & oo characterized by separate friction
coefficients for x +&0. The solution obtained will be a function of these two quantities, p, for x &0
and Pq for x &0, and in the limit P2~0 describes a process for which the Brownian particle
diffuses to x = —oo when it crosses the origin and does not return to x & 0. The solution for x & 0
is thus identical to that for the case where the origin is an absorbing "boundary. " This limiting
process provides a new method for obtaining a solution to the Fokker-Planck equation with an
absorbing-boundary condition and may lead to a result that is in closed form and more transpar-
ent than the eigenfunction expansions recently obtained by other means.

I. INTRODUCTION

The solution of the Fokker-Planck equation (FPE) for
one-dimensional Brownian motion in the presence of an
absorbing boundary leads to some fairly deep mathemat-
ical questions. ' These solutions, only very recently ob-
tained, take the form of complicated eigenfunction ex-
pansions that are not particularly transparent relative to
much of the information we would hope to extract from
them. Experience with the conceptually easier problem
of determining the solution of the FPE in the absence of
any boundary indicates the possible existence of a
simpler, closed form solution for the absorbing-boundary
problem. Indeed, for the case of a rejecting boundary it
is well known that such a solution follows directly from
a consideration of a related problem including an image
source, obviating the need to directly confront the
boundary-value problem and its inherent complications.

Our purpose here is to demonstrate a new approach to
the absorbing boundary problem in which we obtain the
solution for a reference system characterized by separate
friction coefficients, P, for x &0 and Pz for x &0, and
then take the limit P2~0. In this limit the solution de-
scribes a process identical to that for the x & 0 half-space
problem with absorbing origin since once the Brownian
particle crosses the origin it dial'uses to x = —oo and
does not return. The analogy made above with the
reAecting-boundary problem is only suggestive since our
reference problem presents difhculties of its own. How-
ever, these appear to be less formidable than those en-
countered with the actual absorbing-boundary problem
and further consideration of this approach seems war-
ranted.

To demonstrate the limit approach to the absorbing-
boundary problem we consider a model for diftusion that
retains the essential feature of the FPE in this regard—

the lack of boundary data for incoming particles. This
model has the additional feature in cornrnon with the
FPE that in an appropriate limit it contracts to the
diffusion equation (DE). Of course, the study of model
equations has an intrinsic interest (that sometimes devel-
ops into an industry), and the results we obtain also pro-
vide the basis for a more detailed study.

II. ONE-DIMENSIONAL DIFFUSION
WITH AN ABSORBING BOUNDARY

Consider a system of Brownian particles that are uni-
formly distributed in the half-space x & 0 and confined at
x =0 by an absorbing boundary. In the DE description
the particle density n (x, t) satisfies the DE subject to the
initial condition n (x, O) =no and boundary condition
n (O, t) =0; the latter is an artifice of the description at
the DE level which contains no information about parti-
cle velocities and cannot distinguish between incoming
and emergent particles at the absorbing boundary.

The solution of the above problem is
n (x, t) =noerfx (4Dt) '~, D the diffusion coefficient.
The number of particles absorbed in time t is

N(t)= f dsD (x,s) ~„o a: t'
o Bx

and this growth law holds over the entire range
0&t & ~.

The FPE description allows us in principle to include
the nonzero density at the absorbing boundary due to in-
coming particles as a boundary condition, but the ab-
sence of the explicit value of this quantity makes this a
very difticult problem to solve. ' We will consider a
model, similar to the Carleman model of the Boltzmann
equation, in which the diA'using particle has velocities
+a and the distribution functions u+ (x, +a, t),
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u (x, —a, t) replace n(x, t) in providing the basic level
of description. This is only a caricature of the FPE,
which contains the full spectrum of particle velocities,
but it extends the DE description so that the essential
property of nonvanishing density at the absorbing
boundary is retained. The u; satisfy the equations

primary goal and briefly examine some of the properties
of the boundary solution. To invert wp we take note of
the branch points at the origin and at —2P and apply
the Laplace inversion theorem; the sole contribution for
P & 0 comes from the branch cut between these two
points and we find

Bu+ Bu ++a =P(u —u+ ),aj Bx
w (t)= dz(l —z)' z ' e

2u
7T 0

(6)

Bu—a =P(u+ —u )
Bt Qx

where p ' is the mean time between collisions and plays
a role similar to the friction coefficient that appears in
the FPE. ' For this system D ccP '. We have for the
problem described above the initial condition
u+ (x, O) = u (x,O) = up and boundary condition
u+(O, t)=0 with no companion boundary condition for
u (O, t). As we will see, the latter circumstance does
not lead to serious problems.

Rather than solve for the u; directly we consider
w(x, t)=u+(x, t)+u (x, t) and U(x, t)=u+(x, t)
—u (x, t), which for this model also represent the den-

sity and (a ' times) the particle current, respectively.
Apparently this particular feature allows us to consider
the distribution function(s) and its (their) moments on
the same footing and provides the simplification that al-
lows us to directly solve the absorbing boundary prob-
lem. Introducing W'(x, t)= w(x, t) ——2up, we have

aw aU+a =0, (3a)
Bx

aU aW+a = —2Pv,
Bt Bx

(3b)

with W(x, O)=U(x, O)=0, W(O, t)= Wp(t)= —[U(O, t)
+2up]. Solving for W we find

W'(x, s) = Wp(0)e

s'"
U(x, s) = Wp(0), e

(S +2P)'"

(4a)

(4b)

where the overbar indicates a Laplace transform with s
the transform variable and q

—= [s(s+2P)]'

III. THE BOUNDARY SOLUTION

The boundary solution follows directly from Eqs. (4);
the explicit solution for x &0 will not be required here
(or later) and so we relegate this to an appendix. Setting
x =0 in Eqs. (4) and making use of the relationship be-
tween 8' and U at that point [see immediately below Eq.
(3)] we have from Eq. (4b)

which is an integral representation for the confluent hy-
pergeometric function N( —,';2; 2P—t) F.or small values
of the time we have wp(t)= 1 —

~

b
~

t, whereas at large
values of t, wp(t) =

~

b'
~

t '; of course n (O, t) is identi-
cally zero in the DE description. The number of parti-
cles absorbed in time t is found by integrating Eq. (6)
over time. From the above results it immediately fo1-

lows that at short times this quantity is proportional to t
and at long times to t'~ . This last result confirms our
expectations that at long time the DE description pre-
vails except where there is an a priori conAict as in the
preceding example.

IV. ABSORBING BOUNDARY LIMIT

w2(x, s)=w(O, s)e
—q, )x

) (7a)

Our primary purpose is to use the known solution,
Eqs. (4), to demonstrate a limiting process that can be
used in conjunction with a more tractable problem to
provide the solution to the absorbing boundary problem.
Our hope is that in the case of the FPE this will lead to
a simpler form of solution than those obtained so far. '

Consider the identical problem as studied above ex-
cept, for x &0 we set P=Pi and the particles can enter
the region x &0 in which P=P, ; the initial condition
remains the same. This is the reference problem, and in
this context the "missing" boundary condition is no
longer a complication. The solutions for x & 0 are
completed by matching at the boundary, which theo
eliminates any need to further consider the boundary
value in the solution process. At this point we then take
the limit in which the diffusion coefficient for x ~0 be-
comes infinite, here p2 ——0 (friction coefficient g2

——0 in

the case of the FPE). In this limit the particles "diffuse"
to x = —ac when they cross from x & 0 to x & 0 and they
do not return, i.e., they are absorbed.

It is a simple matter to show that in the case of the
DE the limit described above reproduces the known re-
sult. We now show that our earlier result, Eq. (S), also
follows from this limiting process. For the reference
problem Eq. (4) will provide the solution for x &0, with

P replaced by Pl, and the solution for x & 0 follows as

(() ) (s +2P) i/2[s i/2+ (s +2P ) i/2] —i2up

s
(U, x)s= —w(O, s)s'/ (s +2p2) ' e (7b)

ol

wp(0) =2u ps
' '[s ' '+ (s + 20) '"]

where q;=q(P;). Matching the solutions for U; at x =0
we find

w(O, s)=(s+2p2)' [(s+2p2)'
which provides the "missing" boundary condition. Note
that at x =0 Eq. (4a) reduces to an identity.

In the remainder of this section we digress from our
+(S+2P, )i/2 2up
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so that for pz~O we recover Eq. (5). Although the
reflecting boundary is not of special interest we note that
the limit corresponding to that boundary condition is
p2~ bc for which Eq. (8) reduces to the initial uniform
value.

The absorbing boundary limit approach appears to
offer a relatively simple methodology for attacking the
absorbing boundary problem. We have absorbed much
of the literature related to such problems in radiative
and neutron transport theory as well as the recent work
cited earlier and did not enounter any mention of a simi-
lar method.

V. CONCLUDING REMARKS

has been obtained, and we have confirmed that only pos-
sibly at long times can agreement with the DE be ex-
pected. Our main interest has been to use the model to
demonstrate a limiting process that we believe will pro-
vide a new approach to absorbing boundary problems
and possibly simplified forms for their solution.
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APPENDIX

We have studied a model for particle diffusion which
offers insights into boundary value problems not proper-
ly described by the DE. An exact solution for the model

For completeness we include the solutions of Eqs. (4)
that follow directly by standard methods after some
preliminary manipulations. For t & x /a

I, (Pz'")
W(x, t)= Wo(t —x/a)e ~" +(px/a) J

'
dw Wo(t w)e—

wI, (Pz' )
v (x, t) = Wo(t —x /a)e —P dw Wo(t w)e ' —Io(Pz )—

x/a 1/2

and for t &x/a, W(x, t)=v(x, t)=0. Here I„ is the standard modified Bessel function and z=w —x /a . Note that
the boundary effect propagates with a finite speed in contradistinction to the infinite signal speed that is a characteris-
tic of the DE.
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