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A mean-field theory of a class of isotropic, spatially frustrated lattice-model Hamiltonians is
constructed. Some general features of the mean-field equations are examined. Analytical tech-
niques for determining the paramagnetic phase boundary and the low-temperature phases in the
vicinity of this boundary are discussed. Finally, a numerical approach which has proved to be
helpful in solving the mean-field equations is outlined.

I. DEFINTION OF MODEL HAMILTONIAN &t ———,
' g cr „L„o„Hg—o „ (1.5)

(R)
L„cr„=gJ„„o'„ (1.2)

can be written as a polynomial in the lattice-difference
operator 6„,

R /2
L„=g a2 (b.„)t' .

p=0
(1.3)

Note that 6„ is the three-dimensional operator generali-
zation of

&„f„=f„+i 2f +f i, x =0,—+1,+2, . . . . (1.4)

That the linear operator L„satisfies the conditions out-
lined above equation (1.2), follows from the observation
that 5„ is invariant to all the lattice symmetries. To
make contact between this notation and some familiar
spin models we point out that ao, a2 finite, a2~ =0(p & 1)
defines the nearest-neighbor (NN) Ising model, while
ao, az, a4 finite, a2~ =0(p &2) corresponds to a recently
introduced' lattice model of microemulsions with NN
and next-nearest-neighbor (NNN), both linear (LNNN)
and diagonal (DNNN), interactions. This model has a
rich variety of spatially modulated phases and, within
mean-field theory and for certain regions of parameter
space, it reduces to the Bak —von Bohm axial NNN Ising
(ANNNI) model.

Thus, Hamiltonians of general form

We begin by defining a class of isotropic and periodic
Ising spin Hamiltonians which have finite-ranged two-
spin interactions on a simple-cubic lattice. By isotropy
and periodicity we mean that the energy can be written

mt= —,
' y o„J„„o„—H yo„, n=(x, y, z),

n, n'

o „=+1, x,y, z =0, +1,+2, . . . , +(l /2),
where, in the limit l ~oo, I J„„]= I J„„I is invariant
under all the transformations of the lattice. The range
of the interaction is defined to be that minimum number
of bonds R from any central spin o.„, beyond which cou-
pling constants are zero. The particular class of Hamil-
tonians which we shall study are those for which the
linear operator L„, defined by

can produce very rich phase diagrams due to the possi-
bility of spatial frustration or competing interactions, '

and one would like to understand some of their qualita-
tive properties. To achieve this we will construct a
local-density-mean-field theory.

For some systems of interest the mean-field theory is
not a good approximation. For this reason it may be
necessary to justify its application to spatially frustrated
lattice models.

There are many interesting problems in statistical
physics where, at the beginning of the study, it is not ob-
vious what general types of thermodynamic phases will
appear on the phase diagram. In these cases local-
density mean-field theory is the simplest statistical-
mechanical treatment which preserves all the symmetries
of the Hamiltonian. This is an important advantage
since one does not want to exclude some complicated
spatially ordered phase which may result from a spon-
taneous symmetry breaking of the Hamiltonian. Where
the interactions in the Hamiltonian cause a high degree
of spatial frustration Monte Carlo simulations may not
be reliable because of problems of metastability or anom-
alous finite-size effects and, in any case, are best under-
taken with prior knowledge of the mean-field phase dia-
gram. Mean-field theory becomes formally exact in the
limits of zero and infinite temperature, infinite range of
interaction, or infinite lattice coordination number.
However, the experience of many researchers with, for
example, the ANNNI model seems to indicate that a
properly constructed mean-field theory in three dimen-
sions gives a qualitatively correct and sometimes quanti-
tatively meaningful description.

Now, if one accepts that local-density mean-field
theory is a useful framework for initial studies, it may
still be di%cult to solve the equations for the order pa-
rameters. Most of this paper is devoted to the deriva-
tion and discussion of useful analytical and numerical
methods for studying lattice models with Hamiltonians
of form (1.1).

II. THE LOCAL-MEAN-FIELD THEORY

The mean-field free-energy functional is most easily
derived using the Gibbs-Bogoliubov inequality. Thus,
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one can show that the exact free energy 6, correspond-
ing to a Hamiltonian A satisfies

(2.1)

then [h„I can be treated as a set of parameters which
can be chosen to minimize G. It then follows that the
free-energy density can be written as a functional only of
s„=(o„)o,

Q(s„,a ) = H(S„—) + ,' (S„L„—S„)

+ ,'kT( I(—1+S„)ln[—,'(1+S„)]
+ (1 —S„)ln[—,'(1 —S„)]] ), (2.2)

where a stands for the set of coupling parameters in Eq.
(1.3) and

(x„)= lim [1/(l+1)'gX„1~ oo n

(2.3)

We will be interested in the global minima of the func-
tional (2.2) for every choice of a and T. The functional
Taylor series about a minimum with free-energy density
0'o may be written

0= Q, + g K„, „, „6S„,5S„, 5S„
r=1

(2.4)
6'9

n n, n t6S 6S 6Snl np n

The kernels E" contain much information about the
phase transitions of the system. For our purposes the
most important derivatives are

K"'= =L„S„+kTtanh 'S„H=0, —(2.5)

6 0KI"= =[L„+kT/(1 —S'„)]6„„.
6S„6Sn

(2.6)

For any set of local spin densities to correspond to a lo-
cal minimum of 0, it is necessary that

(K'„„' 5S„6S„)& 0 for all 6S„, (2.7)

or, if there is some choice I 5S„) for which this is zero
then K' ', E' ', or some higher derivative must be such
that

(K,'",'„, „5s„,6s„, . 5s„)&0 .

Thus, K' ' is positive semidefinite and can be written

K„'„'~ =+K;P;(n)P,*(n'), K; &0 all i

where the K s are the eigenvalues of

gK„„Q;(n')=K;P;(n) .

(2.8)

(2.9)

where G, is the free energy of the Hamiltonian Ao and

(X)0 means the thermal average of X with e 0~ as
weight factor. If one chooses

&o———g h„o.„,

A second-order phase transition occurs when at least
one of these eigenvalues (Ko) is zero. This means that
there is some choice, 5S„=$0(n), for which the left-
hand side of Eq. (2.7) is zero. One then checks that the
next nonzero term in the Taylor series is positive, in or-
der to ensure that the IS„] was indeed a stable solution
of Eqs. (2.5). If the critical phase is spatially homogene-
ous then the eigenfunctions P; are plane waves. In this
case it is possible to Fourier transform Eqs. (2.6) and ob-
tain a closed formula for the eigenvalues Kq. In general,
the equations which determine the critical hypersurface
in the parameters a are

E =0 with j=0, 1, . . . , t, Kz&0 with j&t (2.10)

where j =0, 1, . . . , t labels those eigenvalues which satis-
fy

min [K;]=0 . (2. 1 1)

When the critical phase is uniform (S„=MD for all n) we
have,

(2.12)

q=q, =oKq =min[Kq I ~VqKq (2.13)

Equation (2.12) expresses the fact that there is no change
in free energy [to O(A )) if the uniform solution
S„=MO is replaced by S„=MD+ & Pz

P~ =cos(q, x+a, )cos(qzy+az)cos(q3z+a3) (2.14)

L„s„ll
(2.15)

The second of these two equations ensures that the zero
eigenvalues lie at the minimum of the spectrum. The
matrix K' ' is positive semidefinite and if one then shows
that K ' ' or K ' ' are positive, then the solution for the
critical phase is at least a local minimum of the free en-
ergy at the phase transition. However, there remains the
possibility that if the uniform solution is not a global
minimum of the free energy, then solutions to Eqs. (2.12)
and (2.13) do not determine a true phase transition. In
fact, they would define a spinodal hypersurface which
divides parameter space into regions where the solution
Mo is a stable or unstable solution of the Euler equa-
tions. Such a circumstance arises when the second-order
phase transition we seek to study is preempted by a first
order transition. Well-known examples are found in cer-
tain mean-field treatments of the Potts model, and also
similar behavior has been observed in a model of mi-
croemulsions. Indeed, for lattice models with Hamil-
tonians of form (2.5) (a&~ ——0, p & 1) it is known that even
mean-field descriptions can result in first-order transi-
tions from disordered to ordered phases. However, the
following proof shows that this can happen only if H in
Eqs. (2.5) is nonzero. Local mean-field descriptions of
all two-body Hamiltonians with only finite-ranged in-
teractions and H =0 have only second-order order-
disorder transitions.

We define a norm of the bounded linear operator L, „
by
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The operator is Fourier transformed and its minimum
eigenvalue determined from

aZO gp
sinq sinq —P cosq 6

q; qz eq
(2.22)

L fq=A, z fz, q solution of V&Lq=O (2.16)

Now turn to the equations (2.5) and define f„
=(lkT)L„S„, where —oo & f„&oo. Taking the hyper-
bolic tangent of both sides of Eqs. (2.5) and then apply-
ing the operator L„ to both sides, we find

and one can verify that the wave vectors (0,0,m) and
(O,m., m) give local maxima unless P =0 and that (0,0,0)
and (m., m. , m) are local minima if P &0. The solution to
Eqs. (2.20) and (2.21) can thus be divided into three re-
gions. The equation

L„tanh 'f„= kTf—„, (2.17)
b

g b„eq ——0,
n=0

—3&eq &3 (2.23)

3

5„~2(e —3), e~= g cosq;, (2.19)

one can calculate K~(S„=O) from Eq. (2.6). The result
is a polynomial of order p in the function eq,

K~= g b„ez, —3&e~ &3, ba=kT+const .
P

n=0
(2.20)

We determine the critical surface from Eqs. (2.12) and
(2.13), the latter now expressed as

P—g nb„e& ' sinq; =Pzsinq; =0, i = 1,2, 3;
n=0

b

Pq ———g nb„ez
n=0

—m&q; &m. , —3&eq&3,
(2.21)

There are various ways in which the left-hand side of
Eq. (2.13) can become zero; the bracketed polynomial,
P(e~), of order p —1 may be zero, all three wave num-
bers may be zero or m, or some combination of these
possibilities. However, in the case where
(qi, q2,qi)=(0,0,m) or (O, m, vr) one can show that (2.13)
gives a local minimum only if P(ez)=0. Thus, the ele-
ments of the Hessian matrix of Kq are given by

which has a solution f„=0for all a and T.
Now take the norm of Eqs. (2.16) and, since

I
kT

I Ilf. ll
& IIL. II I

tanhf.
I

& IIL. II llf. ll

can be satisfied only for
I

kT
I

&
I

A,z
'"

I

unless f„=0
(all n), we see that they must have only the zero solu-
tions for

I

kT
I

&
I

A,z'" I—:kT, . Thus, above kT, one
has only the paramagnetic phase where S„=O. Note
that a wave vector q„which satisfies (2.16) is also a
solution of Eq. (2.13) and Kz Lz —k——T, =0. In addi-

tion, one can show that K' ' is zero and Eq. (2.8) for
r=4 is satisfied. Thus, the surface in parameter space
which is defined by (T„a) is actually a surface of
second-order transitions. Above and upon this surface
( T & T, ) the paramagnetic phase is the global minimum
of the free-energy density. Beneath it (T & T, ) the
paramagnetic phase is an unstable solution since some of
the eigenvalues Kq are negative.

There are some features of the critical hypersurfaces
of models defined by the operator in (1.3) which are
quite general. Thus, using the Fourier-transformed rep-
resentation of the lattice-difference operator,

where ez is given by P(ez) =0 is valid for the region
defined by —3 & eq & 3. The second-order surfaces divid-
ing paramagnetic from ferromagnetic and antiferromag-
netic phases are given, respectively, by

b

g 3"b„=O,
n=0

b

g ( —3)"b„=O .
n =-0

(2.24)

(2.25)

L„S„+(1—E)tanh 'S„=O,
k/2

L„=g a~~(b, „P, a2p ——a2plkT, .
P=0

(2.26)

It can be shown that solutions to these equations have at
most a regular singularity at c=O. In fact, by expanding
S„ in the series,

Above (T & T, or Kz &0) each of these surfaces the
C

paramagnetic phase is the only stable solution, while just
beneath (T & T, or Kz &0) the only stable solutions are,

C

respectively, the ferromagnetic and antiferromagnetic
solutions. However, the second-order surface described
by (2.23) is more complicated in a number of respects.
To begin with, the equation P(ez)=0 may have more
than one solution for which the Hessian (2.22) is positive
semidefinite. In this case one should choose the solution
e& which gives global minima of Kz [recall Eq. (2.13)].
Even when this choice is made there will, in general,
only be one relation to determine the three wave num-
bers q, =(qt, qz, q i ) in the region —3 &ez & 3. This
means that the precise nature of the solutions to the
Euler equations just beneath the paramagnetic-
modulated critical surface cannot be determined by Eqs.
(2.12) and (2. 13) alone.

For this reason we develop a perturbation expansion
for the solutions in terms of the small (positive) parame-
ter c.=1—T/T, . This method has been outlined briefly
in an earlier paper. ' It has two merits. The first is that
the analysis described by Eqs. (2.10) and (2.11) can be
placed in context, being merely the conditions arising
from the zeroth order in a perturbation expansion. The
second advantage is that the remaining symmetry in the
first-order solutions (2.14) is removed and the solutions
which correspond to the global minima of the free-
energy density are constructed.

The Euler-Lagrange equations (2.5) are first divided by
kT, and then written (H =0)
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S„=y .~+~S")
p=0

(2.27)

(I „+1)S"'=0;
(L +1)S'' =f'' f"'=S ' ——'(S' ')

3

(L + 1 )S(2) f (2)

f (2) S(1)+ 1(S(0))3 (S(0) )2S(1) 1 (S(0) )5
3 5

(2.28)

(2.29)

(2.30)

Equation (2.28) is solved by Fourier transformation.
Thus, either S' '=0 or Kq ——0 and

(where S')') —=S'„~' is the pth-order contribution from per-
turbation theory), one sees that f3= —,', the expected
mean-field order parameter exponent at a critical point.
Then, by expanding the nonlinearity in Eqs. (2.26) and
equating equal powers in c, one obtains an infinite set of
coupled equations which define the perturbation theory.
To O(e ) we obtain

following. In addition to ensuring Kq ——0 one must, by
virtue of the requirement that ICq &0, only includes q's
which satisfy conditions (2.13) or P(Ia2& I,eq)=0. The
other situations, q=(0,0,0) or (ir, ~, ~), are much simpler
(there is no degeneracy) and can be considered separate-
ly. We now make the following ansatz. Let S' ' be
represented by only one mode

3

S '= Aq Q cos(q;x;+a;), x, =x, x2=y, x3 —z
i =1

all integer values . (2.32)

We can now make use of the Fredholm alternative to
solve for the constants Aq and a; in Eq. (2.29). Thus,
one knowns that a nonzero solution to Eqs. (2.29) exists
only if f'') is orthogonal to every solution of the homo-
geneous equations defined by setting f'"'=0 in any of
the coupled equations (2.28) and (2.30). Orthogonality of
two functions p„and g„on a lattice means [see Eq.
(2.31)] (p„g„)=0. Thus, the requirement

S' '=g' A Pq5(Kq) with A arbitrary,
q

(2.31) ( S(0)f(1) )

where elements of IP~ I have the form given in (2.14)
and K is the Fourier transform of the operator (L„+1).
Note that it is related to Eq by division of the latter by
kT, . By the prime on the sum in Eq. (2.31) we mean the

in Eq. (2.29) may be written

((S"')')= -'((S"')')

Using the result,

(2.33)

1 /2

I, = (l+1) cos( qx +a )cos(q'x +P)

——2[5(q+q'+2nsr)cos(a+p)+5(q —q'+2nir)cos(a+ f3)]+O(1/l ), as l ~ ao with n =0, +1, . . . ,

along with (2.33), one finds

1+5(q, +2n 7r )cos( 2a; )A,2 =3&&43
3+46(2q;+2nir)cos(2a;)+5(4q;+2n7r)cos(4a; )

(2.34)

(2.35)

These results give the coefficients in first-order perturba-
tion theory in terms of phase angles appearing in the
function (2.32). In turn these can be determined by
minimizing the free-energy density with respect to varia-
tional parameters a;. To do this we must develop an ex-
pansion for the free-energy density.

Consider the functional (2.2) for H=0. Using Eq.
(2.26) the interaction term can be eliminated and then
expanding S„ in the series (2.27) we find

0/kT, ——ln2 ——,'E ((S' ')2)+O(E3) .

Equation (2.32) along with (2.35) becomes

(2.37)

0/kT, ——ln2 —
—,', E ((S' ') )

&3[ 1 ( (S(0))3S(1)) + 1 ( (S(0))6) ]+O( 4)

(2.36)
However, the O(E ) term can be further simplified with
the help of Eq. (2.33),

2

((S'0')

1+5(2q; +2n m. )cos(2a; )
r; =(3)'~ 2

3+45(2q;+2nir)cos(2a; )+6(4q;+2n~r)cos(4a; )

(2.38)
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= —g ng„eq ', P„=b„lkT, ,
C n

(2.39)

where P is the polynomial defined in Eq. (2.21). Now
imagine fixing the values b„and k T, [or a„ in Eq.
(2.26}]. When there is a solution to Eq. (2.39), eq lies be-
tween —3 and 3. However, one can always find

eq
——+3,+2, +1,0 using only the values q; =O, m/2, n.

Thus, in constructing first-order solutions (2.32) it is al-
ways possible to choose at least two of the q; to have
these special values which have an extra negative free-
energy contribution. The third value will then be fixed
by Eq. (2.39). One draws the conclusion that lattice

The free-energy density is minimized by finding the max-
ima of (2.38). There are clearly special values of q; for
which the phase angles contribute different amounts to
r;. The various possibilities are, after maximizing with
respect to a;,
(i) q;&O, n. /2, ~; r; = —,

'

(ii) q; =O, n", r; = —,
' (independent of a;),

(iii) q; =w/2; r; = —,
' (a; =m/4+nor/2, n integer) .

Thus, one seeks solutions (2.32) where as many of the
q; as possible are chosen from the set 0,~/2, and ~ con-
sistent with the constraint

1 1

2 3Kj]3
(2.40)

where K»3 means Kq evaluated at q &, q2, 3q3 and q &
and

q2 are 0, m/2, or vr. The different solutions are now ful-
ly determined and are listed below:

models of the class we are studying will have modula-
tions of maximum period four in two directions. In the
third direction, and depending on the point in coupling
parameter space, the modulation will have some period
between one and infinity.

However, to this order in perturbation theory one can-
not decide which combination of special values will be
selected at any chosen value of the coupling parameters.
To break this remaining degeneracy one must solve Eq.
(2.30). Note that the various solutions to Eq. (2.29)
which are degenerate at first order, each of which has q &

and q2
——O, n. /2, m, are not unique since one can always

add a function BS to the particular solution. However,
one can apply the expression of the Fredholm alternative
described beneath Eq. (2.32) to Eq. (2.30). In this way B
can be determined. The three types of solutions which
have to be considered are (i) q, =q2 O, n-, qi&——O, m. /2, m",

(ii) q i ——m. /2; q 2 O, vr; ——q i &O,m /2, rr; and (iii)
q i —q 2 —17/2 q 3 &0, 7r/2, ir. When the calculation out-
lined above is performed for each, one finds

3/2
(i) S„—2E'~ Pq+2e Bgq — P, +O(e'~ ) as e~O,

3K

Pq =cos(q, x )cos(gory )cos(q iz ); q ~, q2 ——0, rr, (2.41)

2&Ze'" 2&28'"
(ii) S„-2&2E' Pq+ Bgq P —

q
+O(e'~ } as e~O,

3K» 3K„
Pq

——cos(q ix + ai )cos(qzy )cos(qiz ); q i vr/2, q——z O, vr, at ——m.——/4+ n m /2, (2.42)

3/2
(iii) S„-4E' Pq+4e' Bpq — P i +O(E ) as e~O,'9 3K q l q23q3

77 7T' n &Pq=cos(q, x+ai)cos(q2y+a2)cos(qiz), q, =q2 ———,a; =—+2' ' 4 2 (2.43)

in Eq. (2.36), give

c c. 10/kT, ——ln2 ———— +1 +O(e'),
2 3 3K»3

(2.44)

which is valid for all of the states [(i)—(iii)]. These states
are degenerate at the level of first-order perturbation

Note that, since the original model was isotropic, one
can generate different solutions simply by interchanging
the x, y, and z axes in Eqs. (2.41)—(2.43). These formulas
along with Eqs. (2.33) and

(S' 'f"') =(S' 'S"')+—'((S ")")
3

I

theory. Now further degeneracies will be broken by the
term containing K»3. Recall that K

& &3 stands for
Kq q 3q where q ~, q 2

——0, ~ /2, m. To decide which
choice of these first two wave numbers yields the lowest
free-energy density, one miniizes K»3 over
q, , q2 O,n/2, vr with qi fi——xed by the constraint (2.39).
An example is given in Sec. III.

The formulas (2.12), (2.13), and (2.44) contain most of
the important conclusions of this analysis. From them
one concludes that it is possible to classify the local-
density mean-field solutions of any Hamiltonian of form
(1.5) for regions of parameters space near to the second-
order transition. This is done simply by locating the
transition using Eqs. (2.12) and (2.13) and then minimiz-
ing K&~& subject to the constraint (2.13). It is possible to
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show that, providing the single-mode ansatz is valid,
the remaining degeneracies can be broken by minimizing
Kq q ( 2/ + ] )q unless they are global degeneracies of the
mean-field theory.

Before turning to a specific example it may be worth
contemplating the physical significance of the series
(2.53). The eigenvalues Kz may be interpreted as the
cost in free energy of imposing a distortion (excitation or
density wave) of wave vector q on the critical phase at
the critical point. One is interested in determining
which phase develops just beneath T = T, . It is now nat-
ural to suppose that those perturbations with wave vec-
tor q, which minimize the appropriate eigenvalues at the
critical point indicate that the phase which develops
beneath T, will have wave vector q, . This is the essen-
tial content of the formulas (2.12), (2.13), and (2.44).

We now turn to some examples where the above
analysis has been a useful tool in constructing the phase
diagram.

III. APPLICATIONS OF THE PERTURBATION
METHOD AND COMMENTS ON NUMERICAL

METHODS FOR STUDYING LOCAL
MEAN-FIELD THEORY

Equations (3.3) and (3.4a) apply only between
—3 & —j, /4m, &3 and in this interval they describe a
segment of the ellipse

6j, + ( 12m, + 1) = 1 . (3.5)

For —j, /4m, & 3 and —j, /4m, & —3 the respective
solutions are q=(0,0,0) and (n, ~, rr). In these cases the
second-order lines separating the paramagnetic and fer-
romagnetic or antiferromagnetic phases are respectively
given by

j, +5m, = —,
' (3.6)

(3.7)

We can now follow the method described beneath Eq.
(2.43) to determine the types of phase which correspond
to global minima of the free-energy density beneath the
ellipse (3.5). This is necessary because, as was pointed
out in Sec. II, Eq. (3.4a) gives only one equation to
determine three wavenumbers (q],qq, q3). Our task,
then, is to minimize K»3 on the ellipse (3.5), subject to
the constraint (3.4a). Since

The simplest nontrivial example is defined by the
linear operator

and

(3.8)

Ln ——&4~n+a2~n+a p ~

A= —,
' go„L„o„.

(3.1) m, = —1/(6+ Y ), j, =2Y/(6+ Y ),
Y=2e; —6& Y&6,

(3.9)

(3.10)

Recall that if a4 =0 then (3.1) defines the nearest-
neighbor Ising model. The term in A„represents a sort
of bending energy in the same way that terms in (V' )

have been used to approximate curvature energy in con-
tinuum mechanics. Models having energy contributions
like those in Eq. (3.1) can be used to study microemul-
sions, biological membranes, and liquid crystals. ' The
choice of parameters,

a4= —M, a2= —(1+12M), a0 ———6(J+5M), (3.2)

corresponds to a lattice model of microernulsions intro-
duced by Widom' to which we have referred earlier. In
this case, J and M are related to the activities and in-
teraction energies of three types of molecules, oil, water,
and amphiphile. The interested reader should consult
the references for further details. "

From the arguments given beneath (2.15) we know
that the Hamiltonian defined by Eq. (3.1) must have a
second-order transition from the paramagnetic to all
other phases. Thus, after Fourier transformation of the
second-order derivatives defined by Eq. (2.6) (S„=O),
Eqs. (2.12) and (2.13) become, respectively, (3.3) and
(3.4),

one finds that

K]]3—
~ e, (e3 —1); e; =cosq;, i = 1,2, 3

64

(6+ Y')

(3.1 1)

q3
——cos 'e3,' e3 ———,

' Y—2: Region 1 (3.12)

is to be minimized subject to the constraint
Y= —j, /2m, . The results are most easily expressed in
the following way. For every fixed value of Y (or
j, /2m, ) we can now give those sets of values [e],ez, e3]
which label the wavelengths of the modulations in the
phases which minimize the free-energy density just
beneath T, . This allows us to construct a phase diagram
which accurately describes all the paramagnetic region
and some neighborhood of the second-order transition to
the other phases. " In Fig. 1 we have exhibited these re-
sults and have also drawn the important first-order lines
which separate the generic types of phase. Thus, for ex-
ample, [1,l,e3] labels states which are translationally in-
variant in two directions, but which have modulations of
wave number

or

—4me& —2je&+6m+1=0, —3&eq &3

e = —j, /4m, ,

(3.3)

(3.4a)

in the third direction. The symbol [1,0,e3] labels states
which are translationally invariant in one direction, have
period of oscillation four in the second, and are modulat-
ed with wave number determined by

(3.4b) e3 ———,
' Y—1 (3.13)
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ters S„. The parameters k and g are, respectively, a
coupling parameter (which couples the "heat bath" to
the objective functional F) and a random number. Of
course the functional I' is not known explicitly, but can
be calculated numerically by fast-Fourier transforrna-
tion. In essence, Eqs. (3.14) are merely being used to
sample the mean-field free-energy density in an efficient
way. They are solved iteratively by reducing the cou-
pling parameter in some logarithmic way. To under-
stand the relative success of this procedure one must re-
call that the spin densities of the phases are usually
represented by rather few terms in a Fourier series. In a
sense, therefore, one is transforming to coordinates S& in
which the global minima are represented by rather few
parameters which are relatively large. Finally, we note
that the functional F in Eq. (3.14) is not confined to
those which are from Hamiltonians of the type defined
in Eq. (1.5). We have been able to use it successfully in
investigations of lattice models with three-body interac-
tions and a magnetic field.

IV. CONCLUSIONS

The success of local-density mean-field theory when
applied to isotropic Hamiltonians is not assured. Even
in that region of the phase diagram, Fig. 1, which corre-
sponds to the ANNNI model, one must bear in mind
that, unlike the case of the ANNNI model, the planar
phases arose as a result of spontaneous symmetry break-
ing. Thus, the well-attested success of the mean-field
theory of the ANNNI model does not necessarily ensure
that isotropic models are well described by the method.
The fluctuations in a model which is intrinsically one di-
mensional are expected to be quite diferent from those
where the spatial frustration is three dimensional. For
example, the validity of mean-field theory for one exam-
ple of an isotropic frustrated lattice model has been dis-
cussed in Refs. 13. Preliminary Monte Carlo studies'
indicate that the qualitative nature of the phase diagram
of the model described in Sec. III is well described by
mean-field theory. There is, however, a marked decrease
in the transition temperature for a given layered phase
to the paramagnetic phase. Also, when the mean-field

solutions are infinitely degenerate the periodic phases do
not appear to be stable when used as initial
configurations in a Monte Carlo simulation. For exam-
ple, this would be true of the ( I ) phase in Fig. 1 which,
within mean-field theory, is degenerate at all tempera-
tures with an infinite number of nonperiodic structures.
However, it seems that the version of mean-field theory
described in this article is valid (in three dimensions)
whenever one obtains locally stable solutions to Eqs.
(2.5). If, as we believe, this is a general principle, then
the method has the important advantage of being self-
consistent. When, for certain values of the parameters,
the mean-field solutions are not locally stable we cannot
make any firm prediction about the nature of the ther-
modynamic phase. However, it is possible that, in the
example discussed in Sec. III, the paramagnetic phase
replaces the unstable periodic phases predicted by
mean-field theory.

In conclusion, then, we believe that since the local-
density mean-field theory is usually a worthwhile first
approximation it is important to be able to solve it prop-
erly. We believe that Eqs. (2.12), (2.13), and (2.44) al-
ready give much useful information about the theory. In
addition, they are useful in providing independent
checks on numerical procedures such as that outlined
beneath Eq. (3.14).
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