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An overdamped chain of balls connected by ideal springs in a sinusoidal potential is examined
and the response to periodic forcing is discussed from the viewpoint of dynamical systems theory.
Discrete multivariate mappings are derived from the coupled differential equations that describe
the motion, and the behavior of these mappings is discussed.

I. INTRODUCTION

Systems with few nonlinearly interacting degrees of
freedom have been intensely studied recently, and many
aspects of their behavior are well understood. Studies of
discrete mappings have provided much insight into the
behavior of physically relevant continuous nonlinear
differential equations.! However, many nonlinear sys-
tems cannot be described using just a few “‘effective” de-
grees of freedom. Attempts to study the behavior of
many interacting degrees of freedom by examining sys-
tems of many coupled nonlinear mappings have revealed
a bewildering array of not easily classifiable behaviors.?
This complexity is a serious obstacle to the elucidation
of simple features that may have broad interest.

This paper discusses the dynamic response of a physi-
cally realizable nonlinear system with many degrees of
freedom, an overdamped chain of balls connected by
identical springs of random length in the presence of a
strong sinusoidal potential, and a time-dependent forc-
ing. This system has interest with connection to the dy-
namics of sliding charge-density waves,® but here it will
be considered as a simple example of a dynamical system
with many nonlinearly interacting degrees of freedom.
The behavior of this system is simple enough that one
can hope to characterize the nature of the
asymptotically-long-time orbits, though several features
of the dynamics are not easily describable using a map-
ping with one degree of freedom.

The equation of motion that we consider describes a
one-dimensional chain of balls connected by harmonic
springs of random length, all with spring constant k, in a
sinusoidal potential. Let the unstretched length of the
Jjth spring be a;, where the a;’s are chosen from a
bounded distribution with mean a,. The energy func-

tional in terms of the position of the jth particle, X;, is
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if the B’s are chosen to satisfy fB;,,,—fB;=ao—a;.
Periodic boundary conditions are employed. The dy-
namics are taken to be purely dissipative, and the system
is driven by a spatially uniform but time-dependent force
F(t). One can view F(t) as arising from a tilting of the
potential for equal-mass balls, or equivalently, one can
imagine that the particles have equal charge and a time-
dependent electric field is applied to the system. In this
paper, F(t) will always be a series of identical well-
separated square-wave pulses of magnitude F and dura-
tion t,,. The equation of motion for the jth particle is

xj=—Vsm(xj—/3])+k(xl+1—2xj+xj_1)+F(t) .
(1.3)

This paper will concentrate on the limit of strong pin-
ning ¥V >>k. However, scaling arguments similar to
those used by Fukuyama, Lee, and Rice* indicate that
on long length scales, effectively the pinning is strong,
even if the microscopic value of k is large. They show
this by considering the elastic energy cost of a distortion
on a length scale £ and comparing it to the gain in pin-
ning energy. In one dimension the elastic energy cost
per unit length is ~k /£2, while the V'N fluctuations in
the pinning lead to an energy gain per unit length
~V /€Y% For fixed k and V, the long-wavelength dis-
tortions are effectively strongly pinned since £ 172 > £ 72
as £— oo. Therefore, understanding the limit of strong
pinning provides insight into the weak-pinning limit
also, if one considers long enough length scales. One
merely considers effective degrees of freedom coupled by
effective springs in an effective potential. However, we
will not concern ourselves with this question here, and
instead ask about the behavior of the model in the
strong-pinning regime when a periodic sequence of force
pulses is applied.

The considerations in this paper are relevant to three
previously published works which stress different aspects
of the problem.>~7 Reference 5 addresses the question of
mode locking. If repeated identical square-wave force
pulses are applied to the balls (e.g., if the potential is
periodically tilted), there is a tendency for the
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configuration to be displaced by integral or rational
numbers of well periods per pulse.® Numerical work on
finite systems reported in Ref. 5 indicated that mode
locking occurs, and that there is no apparent tendency
for the locking to diminish as the system size is in-
creased. Here it will be shown that for sufficiently
strong pulses and weak springs, the chain moves an in-
tegral number of periods for a range of pulse lengths.
This result demonstrates that true harmonic mode lock-
ing occurs even in the limit of infinitely large systems.
The arguments complement those of Ref. 5 because they
are valid for all system sizes but do not address the ex-
istence of subharmonic mode locking, which the numeri-
cal work demonstrated.

References 6 and 7 concerned with a refinement of the
mode locking question. If one starts from a “typical” in-
itial configuration, given that the system eventually
reaches a state that is invariant under application of a
pulse (except for a translation by an integral number of
periods), what can one say about the state that is
reached? In those papers it is shown that the eventual
state is not a typical mode-locked state, but is rather a
configuration that yields an anomalous proportion of
particles very near maxima in the potential at the instant
the pulse is turned off. The ideas were illustrated using
heuristically introduced discrete mappings. Here we
derive discrete mappings by analytically integrating the
coupled differential equations and demonstrating that
the errors are bounded and can be made as small as
desired by adjusting model parameters. The simplest
form of the mapping, described by Eq. (3.7) and (3.8), is
closely related to the heuristic map of Refs. 6 and 7, and
generalizations, such as those presented in Egs. (3.3),
(3.9), and (3.10) are also obtained. The procedure yields
insight into the physical limits that can be described ade-
quately by the maps. The mappings can then be used to
investigate numerically subharmonic mode locking in
very large systems, as discussed in a companion paper.

Thus this paper has two main purposes. The first is to
demonstrate using fairly rigorous arguments that even
infinitely large systems can display true mode locking.
The second is to show that discrete coupled mappings
can be derived for this system in a controlled fashion.

The paper is organized as follows. In Sec. II the mode
locking behavior of the system is considered. It is
shown that in the limit of weak springs and strong forc-
ing, states exist for which each ball moves exactly an in-
tegral number of periods of the sinusoidal potential dur-
ing a force pulse. Sec. III discusses the discrete time
mappings that can be shown to describe the behavior of
the differential equations and so correspond to an expli-
cit, physically realizable system. Sec. IV is a discussion
of the results and of open questions. In a companion pa-
per, we will describe numerical investigations of the
mappings that focus on the mode-locking features ob-
served in the large systems and compare them to those
found in single-oscillator systems.

As mentioned above, this work is related to previous
work relevant to sliding charge-density waves. However,
mathematical aspects of the problem that do not bear
directly on experiments are stressed here.
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II. RESULTS FOR THE COUPLED
DIFFERENTIAL EQUATIONS

A. Properties of metastable states

We first consider the metastable states in the absence
of a driving force (F =0). We show that for those meta-
stable states which have small distortions (where a
bound can be put on the ball separations, and hence the
spring forces), the balls are all found within a distance of
order k /V from a minimum of the potential.® The argu-
ment is identical to that used in an investigation of the
Frenkel-Kontorova model,'® and proceeds in two steps.
First, one uses a necessary (but not sufficient) condition
for stability that the second derivative of the energy with
respect to small changes in any one ball position must be
non-negative:

2
0U o0, @.1)
an
or
cos(x; —B;) > o . 2.2)

Second, one notes that in order for the force on each
particle to be zero, ome requires sin(x;—fj;)

=£(xj_1—2xj+xj,]), or |sin(x;—B;)| <2kL/V, if

%
the particle separations are bounded by L. As
kL /V —0 these two bounds can be satisfied simultane-
ously only if each particle’s distance from a well bottom
is less than 2kL /V +0O((k /V)?). Thus, we have shown
that for this type of metastable state, the deviation of
each ball position from a well bottom |8x; |
=ftrac((x; —B;)/(27)) | <KL /7V, where Frrac(y)
denotes the fractional part of y.

Although it is intuitively clear that metastable states
such as these exist, we have not proven their existence.
However, one can do a perturbative analysis in the pa-
rameter k /V which provides fairly convincing evidence
that such states do occur. One starts the calculation by
setting k =0 and choosing ball positions so that all the
ball separations are within the range —(L —4m) to
(L —47). In zeroth order of perturbation theory (k =0)
each particle is at the bottom of a well, so (x;=B;)/2m
is an integer i;, where 27 |i; —i;| <L —2m. Now
define z; to be the deviation from the nearest well bot-

tom: zjzxj~,3j—27rij. The z;’s satisfy

(2.3)

where hy=[2m(i; =20+, _1)4+B; 1 —2B,+B;_1]
obeys h; <2L.

If one writes z; =3 _ z}'”, where z}’” is the contribu-
tion of the nth order of perturbation theory, then one
wishes to show that the high-order terms are small
enough so that the sum converges. Suppose that it has

been shown that 8 =371 z/™ obeys

0=k(zj+,—221+zj_1)—VSlan—kh] y

k : k
(B —28)" 48] ) —sind; — h; = A"

<|®

(2.4)
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where each | A" | < A, that |z =1
<B, _(8k/V)"~!, and that cos8\"”>1, where 4, ,
and B, _, are constants of order unity. It will now be
shown that a consistent solution is obtained with
|zj”"| <B,(8k/V)",and B, and 4, < 4, _.

The nth order of perturbation theory yields an equa-
tion for z;" for n > 1:

k .

7@ =22 42" ) —sin(8) +2)") =0 .
Since it is assumed that |z}") | << 1, this equation can be
expanded to yield

k (n) (n) (n)

)
7(z]+1 —2z" 42" )—z;

(2.5)

cosd”

=A" Bk /V)"+0((z;")?) . (2.6)

The consistency of this expansion is assured if z}”) obeys
the bound |z;"’ | <B,(8k /V)", with B, of order unity.
If one chooses z,"'=— A;"(8k /V)"/cos8", then direct
calculation yields B, < A4,/4 and A4,,,<A,. The
first-order term in the expansion z;'"=h;k /V obeys the
conditions required by the induction argument and it is
easily seen that 8/’ is of order k /¥, so that the condi-
tion cos&}") > 1 is obeyed for all n. Therefore, the induc-
tion argument shows that the coefficient of each term in
the expansion is bounded by a constant independent of
n. For 8k /V << 1, the perturbation sum converges, so
the expansion is well-behaved. Therefore, it is consistent
that metastable states with bounded ball separations do
indeed exist.

A slight modification of this argument can be used to
show that the number of metastable states grows at least
exponentially with the number of particles N when F =0
and ¥V >>k. This result is important because it means
that the number of states that are invariant under a
well-defined time evolution and stable to small perturba-
tions is extremely large, unlike the situation for most
one-particle equations of motion.

To show the result, one again starts with a metastable
state for which all the spring distortions are less than
some bound L. Another metastable state is constructed
by moving the jth ball by one potential period, keeping
the other balls basically fixed. Because k <<V, the po-
tential barriers are high enough so that this process is
possible, and there will be another metastable state with
that one particle moved forward by 27 (up to correc-
tions that tend to zero with k/V). Again, one can im-
agine doing the perturbation theory in k /V for this new
assortment of wells to verify that the new configuration
does correspond to a metastable state. This procedure
can be done with each particle independently, so long as
one requires that each degree of freedom remains within
~2m of its position in the original configuration. This
process can be viewed as forming a bit sequence where
each degree of freedom is in one of two states (either the
original position, or displaced forward by 2), so the
number of possibilities in this restricted situation is
2N _1, where N is the number of balls in the chain. (The
state with each particle displaced by one well is
equivalent to the original configuration.) Clearly, this
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number is a lower bound on the number of metastable
states.

In other words, one can start with k =0 and construct
explicitly an exponentially large set of configurations,
each of which has ball separations bounded by L. Given
a configuration in this set, the perturbation theory in
k /V outlined above can be used to find a metastable
state where each ball is in the same potential minimum
as when k =0.

B. Existence of harmonic mode locking

Here it is shown that harmonic mode locking occurs
even in the infinite size limit in the limit of very strong
pinning (¥ >>k) and very strong driving pulses (F >> V).
By this it is meant that application of a square-wave
force pulse of a given amplitude leads to motion of the
system by an integral number of potential wells for a
range of pulse lengths.

We consider the effects of very short but intense
pulses, so that F >>1 but Ft, is of order unity. Here we
show that this model displays harmonic mode locking in
that states exist in which every particle in the chain
moves exactly an integral number of potential periods
for a nonzero range of pulse durations f,,. By hy-
pothesis, the starting metastable configuration is chosen
to be one where the particle separations are bounded by
L. When the pulse is turned on, the system is in a meta-
stable state with each particle within a distance 2kL /V
from the bottom of a well, as shown above in Sec. I A.
The force is applied, and the motion is governed by Eq.
(1.3). In Sec. III A it is shown that for F>>1 and
Ft, ,=0(1) the ball separations remain bounded during
the entire pulse by L', where L'~ L. This result is intui-
tively reasonable because 7, is so short the configuration
does not have time to change much. If F>>V >>k, then
the applied force, which does not change the ball separa-
tions, always dominates.!! Since by assumption
F >>V >>k, after time ¢,, in the presence of the force,
the jth particle’s position is bounded by x™(¢,,)
=x;(t =0)+Ft,, +(V+2kL')t,, and below by x™"(¢,,)
=x;(t =0)+Ft,, —(V +2kL"')t,,. Since x;(t=0) is
within 2kL /V of a well bottom, given a 8 >4kL'/V, if
Ft,, is chosen in the range m+€ to 3m—e€, where
€>(V+2kL")to, +2kL /V 438, then x;(t,,) —x;(t=0)
is between 7+8 and 37 —3& for all j. This condition
clearly can be achieved for small enough ¢, and k /V.

Now consider the motion of the jth particle after the
force is turned off. Eventually the system will reach a
new metastable state, and if the ball separations are still
bounded by L’ each particle will end up within a dis-
tance ~2kL’'/V from a well bottom. Just as the pulse is
turned off each particle is not too close to any well top,
and it is intuitively reasonable that each particle merely
falls down towards the nearest minimum.

To demonstrate that this is so, suppose that a particle
jumps over a well top during the relaxation process. In
order to do this, it must first pass a point where
| sin(x; —B;)| >4kL’/V. Consider the first ball to
reach such a point, and denote its position x;. Once
again, x; obeys (1.3), with F=0. Since x; is the position
of the first particle to reach a potential zero, the spring
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force is still bounded by 2kL’, so the force on the I/th
particle must have the same sign as — F sin(x; —f3;).
Therefore, the particle moves in the same direction as in
the absence of the springs, and it remains in the well it
was in just as the pulse was turned off. Thus, each parti-
cle moves the same number of potential periods, and the
system exhibits harmonic mode locking.

Thus, we have shown that in the limit where
F >>V >>k, metastable states exist for which application
of a force pulse causes each particle to move by exactly
an integral number of wells, no matter how many parti-
cles are in the system. Although the argument applies
for only a limited range of parameters, it answers in the
affirmative the question of principle of whether harmon-
ic mode locking can ever occur in an infinite system with
randomness.

III. CONSTRUCTION OF THE MAPPING

A. Integration of the equations of motion

In this section the differential equation (1.3) is in-
tegrated to derive discrete time-coupled maps that can
be used to facilitate investigation of the system. The in-
tegration over the time variable can be performed when-
ever the force F is very large and Ft, is of order unity,
but the map simplifies considerably when one also con-
siders the limit ¥ >>k. The errors introduced in the
procedure are of order k/F and k/V, so they can be

_
4 —1 .;tOn —1
uj(tog)=2 -E+tan a; tan a;+tan
J
+27 fint 5 fon + O (kt 8¢ max ) »
where

F/=F+k[cjo(n)—d;], a;=(1—=V*/F}?1'?, fin ()

denotes the largest integer not greater than y, and the
tan~! is defined to be in the first or second quadrant.
Now we show that a 6cp,, of order unity can be
found. Suppressing the pulse label n, we examine &¢;(?),
which obeys the equation of motion
d

ESCJ(I):]([CI+[(t)—2C](t)+Cj_l(t)]

—k(d; 1 —2d;+d;_,)

—V(sinu; | —2sinu; + sinu; ) . (3.4)

Since 8¢ yax(t) is the largest | 8¢;(¢)| and each d; is less
than 87, one has

d
dt

Therefore,

|Cmax(t)’ S4{V+k[cmax(t)+87r]] . 3.5
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made small by setting the model parameters appropriate-
ly. This step is extremely useful if one wishes to study
the behavior of large systems numerically.

The construction relies on the fact that when F >>k
and Ft, is of order unity, then the changes in the spring
forces during any given pulse are small, even though
many pulses can induce large excursions and cause large
changes in the spring forces. Thus, one can integrate
the equations of motion assuming that the spring forces
are constant during a given pulse and make errors that
are proportional to k /F.

First assume the configuration {x;(n)} at the start of
the nth pulse is known, and define t =0 as the start of
the pulse. Now consider the equation of motion during
the period that the pulse is on:

)'cj=k(xj+l—2xj+xjﬁ1)—Vsin(x,~—/3j)+F, (3.1)
or
12j=k(uj+1——2uj+uj_1)—Vsinuj—kdj+F, (3.2)

where u;=x;—pB; and d;=—(B; ., —2B;+B;_1). If k
were zero, then the equations would decouple and each
one could be integrated analytically [using the substitu-
tion z;=tan(u;/2)]. In fact, if one writes ¢;
=u; 1 —2u;+u;_y=cjln)+0c;(t), where c;o(n) is the
value of ¢; at ¢t =0, then if | 8¢;(¢)| is less than a bound
8¢ max» the equation of motion can be integrated to yield

itan[%uj(t:O)]—V/Fj’ ] } H

J

(3.3)

Sco (1)< ~k’5+8w+cmax(t=0) (e _1) | (3.6)

Since it has been assumed that Ft,,=M =0(1) and
k <<F, kty,<<M. Thus, exp(4kt,,)—1=4M(k/F)
+O(k /F)®. Also by assumption, at ¢t =0 the system is
in a metastable state, SO Cpn.(t=0)<V/k (since
| sinx | <1). Since V SF, these bounds imply that
8Cmax(t) <8M +O(k /F). Therefore 8¢, is of order
unity and the discrete form (3.3) is accurate up to
corrections of order k /F.

If one considers the limit F >>V, then (3.3) can be
simplified considerably. To lowest order in V/F, one
finds
u;(ton)=u;(t =0)+Fjty,

+F—V,{cos[tho,,+uj(t =0)]—cos[u;(t =0}1} ,
J

(3.7)

where, once again, F/=F +k[u; (t=0)—2u;(t=0)
+u;_(t =0)—d;]. Strictly speaking, these approxima-
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tions are all valid simultaneously only in the limit
V2/F*<«<k/V, so that it is consistent to include the
spring terms and to neglect the corrections that are
second order in V.

Now that {u;(¢,,)}, the configuration just as the pulse
ends, is known, one needs to find {u;(t— )}, the meta-
stable state reached when the field is turned off and the
configuration relaxes. This state can always be found by
searching numerically for zeros of the force equations,
but substantial simplification occurs if ¥ >>k. Once
again the u;’s obey (3.2), but now with F=0. If the
uj,1—2uj+u;_; can be bounded by 2L, then as
k /V —0 the potential term dominates the spring term
except within a region of width X2kL /V near the tops
and bottoms of the wells. Therefore, for most possible
ball locations, the spring forces can be neglected. It is
clear physically that each particle just rolls down to the
nearest well bottom, and arguments similar to those in
Sec. IT A can be applied to show this as long as no parti-
cles are too close to a well top. Since the ball separa-
tions are still bounded after the pulse, after relaxation
each particle will be within 2kL /V of a well bottom.
Therefore, it is reasonable to take

uiln=1=u;(t — o0 )=2mfin [u;(t =t,,)/2m+1/2] .
(3.8)

We have assumed that not too many particles are very
near well tops just as the pulse ends at ¢t =¢,,. However,
as shown in Refs. 6 and 7, the process of applying re-
peated pulses to the system tends to cause an accumula-
tion of particles at well tops at the end of the pulse, so it
is desirable to improve the approximation by explicitly
accounting for the behavior near the well tops. Once
again, we use the fact that the changes in the spring
forces in the course of one pulse are very small, so up to
O (k /F) corrections, the jth particle rolls forward at the
end of the vpulse if fj=k[u; (150)—2u;(t,,)
+u;_1(toq)] —Vsinu;(t,,)—kd; >0. Since the springs
only play a role very near the well tops and bottoms, the
sine can be expanded to yield a mapping of the form

uj(ton)
2w

uj(n —{-I)Euj(t—)oo):Z’leim +e(fj)

k
+7[uj+1(ton)”2uj(ton>

+u;_(ton)—d;], (3.9)
where
fi=kluj1(ton)—=2u;(t o) +u;_1(t,)]
v f uj(ton) . kd
+ frac 27 N J

and ©(x)=1 if x >0 and O otherwise.

This mapping is valid even for particles that are very
near the well tops unless the f;’s are so small that the
difference in spring forces on a particle between 7 =¢,
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and t— o [which is bounded by 47k /V rather than
2mkL /V for the integer function (3.8)] is sufficient to
change the well into which the ball rolls. A metastable
state with bounded ball separations that has not been
specially selected will have almost every ball in place
where (3.9) describes the ensuing metastable state.
Whether the atypical states reached by applying repeat-
ed pulses to a given configuration are adequately de-
scribed by (3.9) is an issue that has been investigated nu-
merically, with results that are described in the com-
panion paper. Certainly the subharmonic mode-locking
behavior of (3.9) corresponds more closely to that of the
coupled differential equations (1.3) than that of (3.8).

When numerical work is performed, it is useful to
have a mapping with a quadratic maximum for which
numerical errors do not propagate between steps. A
simple way to achieve this is to allow for quadratic max-
ima but not quadratic minima (e.g., one can imagine a
potential with cusps at the well bottoms but not the
tops), so that each u;(t — oo ) is still an integer:

ujn +)=u;(t - 0 )=27fin(u;(ton) /2m)+O(f;) .
(3.10)

Since a truncation is performed at each step, the numeri-
cal errors do not propagate. The mode-locking behavior
of this type of mapping will also be discussed in the
companion paper.

In order for the derivation of these mappings to be
valid, one must place bounds on the ball separations (so
the eventual metastable state has each ball very near a
well bottom) no matter how many pulses are applied.
We have shown that if the ball separations are bounded
at order unity when a given pulse starts they remain
bounded at the end of that pulse, but we have not ex-
cluded the possibility that many pulses could cause large
distortions to build up. Here we show that for our sys-
tem with random spring lengths, if one starts from a uni-
form configuration, the particle separations do remain
bounded at order unity.'?

The argument uses the fact that if X were O, then the
equation of motion for every particle would be the same.
Since k/V and k /F are small, the kd; are all small and
each particle is within 2kL /V of a well bottom at the
start of the pulse. The randomness causes the particles
to move at different velocities, so that distortions build
up. Since the distortions cause the velocity to become
more uniform, if the d; are bounded we expect the dis-
tortions to be bounded also.

For simplicity, consider the limit V <<F, so that (3.7)
applies. (The argument for V' ~F is much more compli-
cated, but the physical reasoning is identical.) Note
that, up to order (¥ /F)*> and (k/V)? corrections, the
quantity 8F; =k (u; . ;—2u;+u; _;—d;) obeys

8F(14y) =8F;(t =0)+kt o, [8F; , (1 =0)—28F;(t =0)
+8F;_ (1 =0)] . (3.11)

Let 8F; be the 8F; with the largest absolute value. If
8F; >0, then by hypothesis, 8F, | —28F, +8F,_; <0, so
O0F, must decrease during the pulse. Similarly, if §F; <0,
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then it must increase between ¢ =0 and ¢,,. Therefore,
8F; must remain bounded and of order k, implying the
ball separations stay of order unity.

Now consider the period after the force is turned off
and the particles fall into the nearest minimum. Al-
though fi,(x)— fin:(¥) can be greater than x —y (e.g., if
x =0.9 and y=1.1), here we know that at the start of

the pulse, each x; is within O (k /¥) of being an integer,
|
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and that each particle moves the same distance, up to
O (k /F) corrections, during the pulse. These facts en-
able us to show that |8F;(n 4-1)| < [8F;(n)|.

Since the d;’s are bounded, problems can arise only if
the quantity |u;,;—2u;4u; ;| becomes large, so con-
sider that limit. For simplicity consider the simplest re-
laxation (3.8). Say 6F; >>1, so that while the pulse is on
OF; decreases. Since

fint(xj+l)_2fint(xj)+fim(xj~1):fint(xj+l“2xj +xj—])_'fint(ffrac(xj+l)_szrac(xj)+ffrac(xj—l))

and since

Xj o i(ton)—2x(ton)+X; _1(2oq) <x;41(0)—2x;(0)+x; _,(0)

(if they are equal than the particles have translated rigid-
ly with respect to each other and the fractional parts
must be equal), problems can arise only if

ffrac(xj+l(t0n))_szrac(xj(ton))+ffrac(xj—l(lon)) <—1.
(3.12)

This could happen for, e.g., x;,;=x;_;=0.1 and
x;=0.9. However, f,.(x;)=0 at t =0, and since 6F} is
decreasing, x; increases faster than +(x;_;+x; ). This
fact implies that (3.12) holds only if x; , ;—x, is large
for at least one of the two cases k =j and kK =j —1.
Direct examination of (3.7) shows that the change in
xj1—x; during any pulse is of order k /F, so (3.12) can
never hold. Thus, the ball separations remain bounded
at order unity even if infinitely many pulses are applied.
Generalizing these arguments to the case (3.9) is more
complicated, but the physical principles are the same.
Thus, if one starts the iteration process with a metasta-
ble state with bounded ball separations, the ball separa-
tions remain bounded no matter how many pulses are
applied. This step completes the demonstration that the
coupled differential equations (1.3) can be integrated to
yield discrete coupled maps, with controllable errors.

B. Modifications of the model leading
to other mappings

So far only the model described by (1.3) has been con-
sidered. An obvious question is whether the mapping
constructed above is robust in the sense that the con-
struction can be performed even if the model is general-
ized. For instance, one could allow the spring constant
k, the potential strength V, or applied force F to depend
on j, so that the equation of motion is now

Xj=ky(xj i =x;)—k; _y(x;—x; )

— I/J Sin(Xj —Bj)+Fj .
Physically, these variations would correspond to a distri-
bution of spring constants and of ball masses and/or
charges. These charges do not affect the underlying
symmetry of the metastable states under rigid translation
by 2m. We assume here that the variations in, say,
V(6V) are bounded and of order V. In this section it is
shown that the time integration can be performed for

—

many variations of the original equations of motion.
However, the metastable state reached after the
configuration is allowed to relax sometimes cannot be
described by either (3.8) or (3.9), because the spring
forces become comparable to V after many pulses.

The key to integrating the equations of motion to ob-
tain the first step of the mapping is that the change in
the spring forces during a given pulse must be small
compared to the total force acting on the system. As
long as t,, is kept small and F correspondingly large,
while it is on, the applied force will always be by far the
largest force acting on each particle, and neglecting the
changes in the spring forces is valid, if k/F is small.
The arguments presented above that yield (3.3) can be
generalized easily to handle spatial variations in k, V,
and F in the limit of small k.

However, in order for the second step of the mapping
to be describable using (3.8) or (3.9), the ball separations
must remain bounded no matter how many pulses are
applied. Otherwise, the spring forces can grow to the
point that the metastable state no longer has every parti-
cle very close to the bottom of a well.

No matter how large V /k is, even if there is no ran-
domness, one can always find a configuration in which
the springs are stretched so much that the spring force is
of the same order of magnitude as the force from the po-
tential. However, if one were to start with a uniform
configuration and apply pulses to it, for some types of
randomness the distortions grow up to a bound of order
unity, and for some models the distortions grow up to
bounds of order ¥V /k. In the latter instance, the simple
integer function mapping (3.8) and the quadratic expan-
sion (3.9) are not valid.

If all the randomness is in the springs, then the small-
ness of k ensures that arguments analogous to those in
Sec. IIIA can be used to show the ball separations
remain bounded at order unity. However, when one at-
tempts to generalize these arguments to the cases where
either F or V have random components, then they break
down. Although the analogously defined 6F; can be
shown to decrease from pulse to pulse, the random com-
ponent analogous to kd; is no longer of order k so that
the distortions are not bounded at order unity.

A simple example of the process by which the ball
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separations can grow to O (V /k) is the case where ; (or
d;) is zero for all j, V;=V, for odd j, and V;=V, for
even j. If one starts from a uniform configuration, then
by symmetry x;(n)=x;(n) for all odd ; and
xj(n)=x,(n) for all even j. If V>V, and V;/F <1,
then using (3.7) and (3.8), it is straightforward to show
that the fixed point configurations have x, —x, of order
V /k for ranges of Ft,.

Thus, when one attempts to generalize the model, one
finds that the balls are often relatively far from the well
bottoms in a metastable state, so that the second step of
the map (3.9) may not be valid. Nonetheless, even if the
map can no longer be derived from the differential equa-
tions, it still embodies the essential physical features of
metastability and feedback.

C. Relation to previous heuristic mappings
A phenomenological mapping
yitn)=x;(n)+t,, {k[x; (n)—2x;(n)

+x; _(m))+F—d;} , (3.13)

and

xi(n+1)=fin(y;(n)+1/2) (3.14)

is used in Refs. 5 and 7. (In Ref. 7, d; is taken to be O
for all j). This map clearly is closely related to the map
defined by (3.7) and (3.8), the major difference being that
there is no V' /F term in (3.13). The physical reasoning
behind this simplification is that the potential wells in-
duce an oscillation in each particle’s velocity but do not
cause systematic changes in the configuration, whereas
the changes in the spring forces from pulse to pulse are
vital to mode locking, since they cause the strongly
pinned regions of the chain to be pulled forward and the
weakly pinned regions to be held back. In other words,
the spring forces provide systematic feedback that causes
the velocity of the chain to become more uniform, a vital
feature of the physics. The potential wells are necessary
to obtain many metastable states (indeed, they are the
only source of nonlinearity), but it is assumed that they
play a vital role only when the pulses are off.

The mapping used in Ref. 6 also differs from those de-
rived here because the random forces d; were allowed to
be of order unity rather than of order k. As discussed
above, this difference means that the integer truncation
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(3.14) can no longer be derived from the differential
equations.

IV. DISCUSSION

This paper has examined the response of an over-
damped chain of particles connected by springs in a
sinusoidal potential to square-wave force pulses. It was
shown that mode-locking behavior is observed in the sys-
tem even in the limit of infinite size. In addition, it was
shown that discrete time multivariate mappings can be
derived in a controlled fashion from the differential
equations describing the motion. Numerical investiga-
tion of mode-locking behavior of very large systems is
made possible by use of the map.

A major advantage of this work is that the dynamical
properties of the chain can be examined using controlled
approximations. Both the demonstration of mode lock-
ing and the construction of the discrete dynamical sys-
tems are put on a firm footing, since the errors are
bounded and can be made as small as desired by adjust-
ing the model parameters. However, one may hope that
the work has more general applicability, which would be
the case if the system considered here has properties that
are typical of large classes of nonlinear systems with
many degrees of freedom.

Aside from the results already obtained on this system
that are discussed in Refs. 5—7, many promising avenues
remain to be explored. The mode-locking behavior of
the different maps derived here is discussed in a com-
panion paper. In addition, a very appealing feature of
the mappings is that there is some control on the
amount of complexity. For the parameter ranges of the
mapping considered in this paper, as well as for the con-
tinuous time equations of motion (1.3), only fixed points
and periodic orbits are observed for any initial
configuration. However, if the “feedback” parameter k
is increased, then more complex behavior (including ap-
parent chaos) is observed. This issue will be discussed in
greater detail in the companion paper outlining the nu-
merical results.
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