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We begin with a one-dimensional discrete microscopic model for the ripple phase which is based
on the packing competition between molecular head groups and hydrocarbon chains in the bi-

layer. This model leads to three distinct phases: (1) uniformly tilted chains, as in the low-

temperature phase Lp, (2) uniform chain spacing with zero tilt, which we associate with the high-

temperature phase L; (3) long-wavelength periodic density modulation like the Pp phase. The
minimum-energy configuration in the modulated regime is composed of pinched regions of closely
spaced chains separated by gaps. In the continUum limit, the bulk free energy of the pinched re-

gions is described by a frustrated P theory, and the gaps give rise to a defect term. The frustra-

tion may be thought of in two ways. It produces spontaneous splay of the hydrocarbon chains in

the bulk, and it makes a negative contribution to the energy associated with the defect. Viewing

the frustration the second way, we find that the modulated phase is preferred when the total ener-

gy of the defect becomes su%ciently negative.

I. INTRODUCTION

The smectic ripple phase PI3 is observed in hydrated
lipid bilayers between the low-temperature gel phase L&,
and the high-temperature liquid phase L ~

' These
three bilayer phases are illustrated schematically in Fig.
1. Molecules which form the ripple phase, for example
phosphatidylcholine (PC), consist of a hydrophilic polar
head group joined by a glycerol backbone to a pair of
hydrophobic hydrocarbon chains. For wide ranges of
temperature and water concentration the amphiphilic
nature of these molecules causes them to form bilayers.
In the high-temperature smectic-A phase L the chains
are flexible, and there is liquidlike ordering of the mole-
cules within each bilayer, while in the low-temperature
smectic-G phase L& the hydrocarbon chains are rigid
and tilted with respect to the bilayer normal. In the in-
termediate phase Pp, the layers are corrugated with
respect to an axis parallel to the mean bilayer plane, so
that a cross section of the bilayer along that axis forms a
sawtoothlike pattern. ' Experimentally, both freeze
fracture and x-ray diffraction measurements show this
phase is characterized by two-dimensional long-
wavelength asymmetric ripples (i.e. , one side of the
sawtoothlike corrugation is longer than the other side)
with a periodicity of approximately 120—160 A, corre-
sponding to 12—20 molecules. ' The first-order transi-
tion to L, referred to as the main transition, is well un-
derstood in terms of melting of some of the degrees of
freedom within the hydrocarbon chains. However, the
first-order transition to P~, often called the pretransi-
tion, which occurs at temperatures slightly below the
main transition, is much less well understood.

Current models for the ripple phase fall into three
main categories: (l) macroscopic theories, in which the
bilayer is treated as a continuous membrane, and its elas-
tic properties (e.g. , bilayer or monolayer curvature ener-

gy) are considered; (2) microscopic theories, which are
based on the packing properties of individual molecules
(e.g. , the head group chain packing size competition); (3)
completely different approaches (e.g. , the interaction be-
tween layers). A discussion of previous theoretical work
appears in Appendix A. What distinguishes our work
from other models is that in our model the minimum-

0
0

~ ~

23 C

Pp'

-I2 C

Lpi

FIG. 1. Thermotropic phases of dimyristoylphosphatidycho-
line (DMPC) in excess water. In the high-temperature phase
L, the chains are melted, and there is liquidlike ordering
within the layer. In the low-temperature phase L~ the chains
are rigid and tilted with respect to the bilayer normal. The in-
termediate P~ phase is characterized by long-wavelength asym-
metric rippling of the bilayers. Inset at right shows inter-
molecular ordering within a layer [due to Janiak, Small, and

Shipley (Ref. 18)).
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energy configuration in the modulating regime can be
described in terms of a regular array of defects, which
are places where the molecular orientation shifts abrupt-
ly. These defects may be responsible for the relatively
sharp peaks of the sawtooth pattern which is observed in
freeze fracture experiments. As we will show, the de-
fects are a natural result of the packing competition be-
tween head groups and chains. An expression for the
free-energy density which is based on the packing com-
petition gives rise to a modulation in the chain density in
one regime. Our model describes the limit in which the
low-density regions (the defects) shrink to the size of the
intermolecular spacing.

We begin with a discrete microscopic model for the
ripple phase, which is inspired by de Gennes s for pince-
ments de Skoullious, a modulating phase which was
thought to appear in columnar arrangements of certain
discotic molecules. De Gennes's model exploits the in-
herent competition which arises when molecules which
have two incommensurate length scales are packed to-
gether, to show that in one regime the column decom-
poses into a periodic sequence of pinched regions. Pack-
ing competition is also present in PC bilayers because
the effective head group area is greater than the total
cross-sectional area of the hydrocarbon chain pair.

In our model each lipid molecule is represented by a
head group attached to a single chain, which represents
the center of mass of the chain pair. The local packing
properties of a one-dimensional monolayer are described
in terms of pair interactions between nearest neighbors.
The separation h between adjacent head groups exceeds
the minimum-energy chain separation ro. This competi-
tion leads to three distinct phases: (I) uniform tilt of the
chains with respect to the normal to the head group lay-
er, as in the gel phase L~,' (2) uniform spacing with zero
tilt, similar to the high-temperature phase L; (3) long-
wavelength periodic density modulation like the P&
phase. The minimum-energy configuration depends on
the size mismatch h/ro and the strengths of the pair in-
teractions. In this paper we will compare the phase dia-
gram predicted by the model with a typical experimental
phase diagram. In both cases the modulation wave-
length is typically about I 5 molecules per period, the
wavelength increases linearly with increased hydrocar-
bon chain length, and the transition from uniform tilt
to modulation is first order.

The theoretical modulated phase is composed of
periodic sequences of closely packed chains, separated by
large gaps in the chain spacing, similar to the structure
found by Godreche and de Seze for de Gennes's model.
Clearly the most striking experimental feature of the P~
phase is the fact that the layers bend out of the mean bi-
layer plane in an asymmetric sawtooth pattern. Howev-
er, because we constrain the head group layer to be rigid
and Oat in our model and for simplicity assume that the
molecules are symmetric, the predicted modulation is a
symmetric one-dimensional density modulation of the
hydrocarbon chains. To draw a more direct connection
between the theoretical and experimental modulated
phases, we must consider what might happen if we were
to include additional degrees of freedom as small pertur-

bations to our model. Figure 2(a) is the predicted one-
dimensional symmetric modulated phase for our model.
In Fig. 2(b) we show how the modulation becomes asym-
metric when the asymmetry of the molecules is included
in our calculations. Figure 2(c) illustrates that if we also
include melting in our model, a few of the chains near
the gaps should melt because of the extra available
space. Finally, in Fig. 2(d) we illustrate the asymmetric
two-dimensional modulation we believe should result if
we were to include the second half of the bilayer, and al-
low the layers to bend. To minimize the empty space
between the monolayers, we speculate that the melted
(and hence thinnest) region of the upper monolayer
would roughly coincide with the region where the chains
are fully extended with zero tilt (the thickest region) in
the lower monolayer. When these bilayers are allowed
to bend, the peak of the corrugation should occur where
the upper layer is rigid (to bring the hydrocarbon chains
closer together thus gaining van der Waals energy) and
the lower layer is melted (because it does not cost much
energy to pull the melted chains somewhat farther
apart).

(b)

(c)

FICx. 2. The predicted modulated phase and possible results
of adding some of the neglected degrees of freedom as pertur-
bations to the model. (a) The minimum-energy configuration
in the modulated phase is composed of pinched regions of
closely spaced chains separated by gaps in the chain spacing.
(b) When the asymmetry of the molecule ($0&0) is included
the modulation becomes asymmetric. (c) We expect that when
chain melting is included a few of the chains near the gaps will
melt because of the extra available space. (d) When the second
half of the bilayer is included and the layer is allowed to bend,
we expect that the two monolayers will line up in a way that
will minimize the empty space between them, and that the
peaks in the corrugation will occur where the chains in the
upper layer are fully extended (so that bending brings the
chains closer together thus gaining energy), and the chains in
the lower layer are melted (in which case increasing their sepa-
ration somewhat costs only a small amount of energy).
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We have studied the long-wavelength limit of our
model, and find that the most important features of the
free energy in the high-density regions can be described
by a frustrated P theory (i.e., a P theory where the
minimum-energy gradient is nonzero), while the core en-
ergy associated with the gaps contributes a defect term.
Analytical results are obtained near the critical lines in
the continuum model. In the modulated phase, near the
phase boundary with the tilted phase, we find that the
minimum-energy configuration approaches a solitonlike
structure, in which the antisoliton counterparts are the
gaps.

In the continuum model, the frustration is associated
with a negative total divergence term (a term propor-
tional to the gradient of the order parameter) in the free
energy, and it may be thought of in two ways. First, it
produces a spontaneous inward splay of the hydrocarbon
chains in the bulk. Second, it can be integrated exactly
and makes a negative contribution to the energy at the
gap. Viewing the frustration the second way, we find
that the modulated phase is preferred when the energy
of the gap becomes suSciently negative.

Other frustrated liquid-crystal systems have similar
descriptions in terms of free energies with defect terms
and total divergences. Two examples are the blue
phases, which are observed in cholesteric fluids, ' and
the boojums, which are observed in tilted chiral smectic
films. " These systems also have exotic modulated
phases which are composed of regions in which the mol-
ecules are arranged in local low-energy configurations
(like the high-density region of the theoretical ripple
phase), separated by defects (like the gaps). These sys-
tems are frustrated because the local low-energy
configuration cannot fill space. We believe that there are
many other systems for which a similar description
would apply. The ripple phase provides a particularly
compelling example because the analysis is so straight-
forward.

H. DISCRETE MODEL

We propose a one-dimensional model which in one re-
gime produces a modulation in the hydrocarbon chain
positions. The model is based on what we believe are
the essential features responsible for the ripple phase in
lipid bilayers: the van der Waals attraction between hy-
drocarbon chains, and the packing competition between
head groups and chains. The following experimental re-
sults support our choice. First, the P& phase has not
been observed in phosphatidylethanolamine (PE) which
differs from PC only in its slightly smaller head group
size. ' Second, the pretransition temperature, like the
main transition temperature, increases as the hydrocar-
bon chain length is increased, which suggests that the at-
traction between chains is important. While the prox-
imity of the chain melting transition suggests that melt-
ing may play a role in the pretransition, we will not ex-
plicitly include melting in this model. Melting is an im-
portant feature for certain aspects of the problem. For
example, nuclear resonance experiments and diffusion
measurements indicate that both fluid and solid regions
exist in the P& phase. ' In addition, the latent heat of

the pretransition is roughly one-tenth the size of the la-
tent heat of the main transition, suggesting that a few of
the chains may be melted in the P& phase. However, we
believe that the packing competition, rather than melt-
ing, is the driving force behind the modulated structure.
A possible extension of our model which includes melt-
ing should explain the nuclear resonance and diffusion
data, indicate why all of the phase transitions are first
order experimentally, and give estimates for the relative
size of the latent heats.

Other molecular features which we have not explicitly
accounted for are the second hydrocarbon chain and the
interaction between adjacent head groups. However,
these merely alter the effective interaction between
chain-pair centers. For simplicity we have ignored inter-
layer interactions, thermal fluctuations, anharmonic in-
teractions between head groups and chains, and the pre-
ferred chain tilt angle Po. Strictly speaking, the asym-
metry of the molecule suggests that Po is different from
zero. Keeping $0&0 should break the symmetry of the
modulation, and make the transitions first order (al-
though we believe the transitions are first order because
of chain melting, rather than the asymmetry of the mole-
cule). Finally, we assume that the observed layer shape
distortion, or rippling, in the P& phase is a result of the
chain density modulation rather than a driving force for
the transition. This assumption cannot be made for the
micellar and hexagonal phases, where the curvature is
much larger. ' Figure 2 illustrates how we believe our
predicted modulated phase should change were we to in-
clude some of these additional degrees of freedom in our
model.

A short segment of a monolayer of the system is illus-
trated schematically in Fig. 3. The distance h between
adjacent head groups represents the effective head group
size, and the head group layer is rigid and flat ~ The sin-
gle chain associated with each head group represents the
average position of the chain pair.

As illustrated in Fig. 3, the nth chain makes an angle
O„with respect to the normal to the head group layer.
We say 0„ is positive when the chain tilts to the left of
the bilayer normal. The distance between adjacent

FIG. 3. A short segment of a monolayer of the model sys-
tem. The head groups are fixed a distance h apart, and the
chains have length g. The nth chain makes an angle O„with
respect to the normal to the head group layer. The average
separation of the nth and (n + 1)th chains is r„. Note that the
chains can get closer by tilting.
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chains is given by the length of the median of the tallest
isosceles trapezoid that can be drawn between them,

r„=h cos
0„+)+0„

2
—g sin

9„+)
—0„

2

where g is the hydrocarbon chain length. We chose this
elaborate form for r„ to describe the chain separation to
ensure that it had the important symmetries of the mod-
el. For parallel chains 0„+&——0„, and r„=h cos0„ is the
perpendicular distance between the chains.

The free energy is a functional of the scalar order pa-
rameter 0„,which describes the state of the system. It is
a coarse-grained free energy because each molecule is de-
scribed in terms of a single degree of freedom, which in
this case is the local tilt of the chains with respect to the
head group layer. In this picture, we imagine that we
have integrated over all other molecular degrees of free-
dom, so that only 0„remains. The other degrees of free-
dom give rise to phenomenological parameters, like head
size and chain length, which represent the average quan-
tities over true molecular configurations. Once this is
done, the free energy of the system is given in terms of
two pair interactions. ' The first, U(r), describes the
van der Waals interaction between adjacent chains, and
is illustrated in Fig. 4(a). U(r) has a minimum at r =ro,
with ro &h (competition plays a role in the free energy
through this size mismatch). The strength G of U(r) is
linearly proportional to the length g of the hydrocarbon
chains. ' The important nonlinearities in this problem
are contained in U(r), which may be particularly soft
due to the proximity of the chain melting transition.
The second contribution comes from the coupling be-
tween head groups and chains. For the nth molecule

this will be a function of 8„alone: E„=F(8„).Because
we have already accounted for the important nonlineari-
ties in U(r), we will assume this is given by a simple
harmonic interaction, which we write in the form

E„=—,
' &sin (8„—Po) .

The next step is to look for the structures which mini-
mize f.

III. TYPES OF ORDER

A. Uniform solutions

Uniform solutions are characterized by constant tilt of
the chains with respect to the head group layer 0=0
(F=h cos8), and the constant free energy density is

f(8)= U(r)+ —,
' W'sin 8 . (4)

As illustrated in Fig. 5(a), f(8) is an even function of 8

For simplicity we set go=0, in which case the free-
energy density is given by

Nf=—g U(r„}+—,'&sin 8„.
n =1

U(r ) (o}

(b)

( ) (b}
W

FIG. 4. The interaction between adjacent chains. (a) The
potential U ( r ) represents the van der Waals energy of neigh-
boring chains. For this model, the most important feature of
U(r) is that it is soft. (b) The force between adjacent chains,
o(r) =d U(r)/dr.

FIG. 5. Uniform solutions. (a) For certain ranges of the pa-
rameters, the free energy of a uniform solution, figi, will have
three local minima, two corresponding to the +Ol tilted solu-
tions, and one at 0=0. (b) Solutions r

~
and r2 of the zero-force

equation are determined by the intercepts of 8'/h with
o.(r)/r. If 8'/h & max{o. /r) the solutions do not exist. If r&

or r2 is greater than h, that solution is unphysical.
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and approaches infinity as 8~+ir/2 (r~0). The uni-
forin solutions are determined by the extrema of f(8).
Local minima are stable with respect to small changes in
0, and local maxima are unstable.

Letting cr(r)= U'(r) [Fig. 4(b)], the net force on each
molecule is zero when

oh sinO= 8'cosOsinO,

where o =o (r ). This has solutions of the form

(5)
Cl

o
L

and

o. /r = 8'/h

r=h .

(6a)

(6b)

C: l—
CL

O

As illustrated in Fig. 5(b), we may determine solutions r,
and rz (r, & rz) of (6a) graphically as the intercepts of
the horizontal line W/h with the curve o /r. Note that
r1 has tilt angle 01 and corresponds to a local minimum
in f(8), while rz, with tilt angle 8z, is a local maximum
and is thus unstable. The solution with r =h corre-
sponds to an extremum of f(8) at 8=0. For certain
ranges of the parameters 0=0 is a local minimum, and
there are three locally stable uniform solutions, at 0=0
and +01.

The transition between the tilted and untilted phases
occurs when f(8 ) goes from having a single global
minimum at O=O to having a pair of global minima at
+01, that is, when r1 ——h. The corresponding curve is il-
lustrated in the phase diagram (Fig. 6), which shows our
determination of the minimum-energy configuration for
a given chain length g, as a function of the ratio of
head-chain to chain-chain coupling strengths 8'/6, and
the size mismatch h/ro. The transition from the tilted
to the untilted phase is second order, because 01 ap-
proaches zero at the phase boundary. In the tilted phase
01 decreases as the coupling strength ratio 8'/6 is in-
creased, and increases as the head-chain mismatch h /ro
is increased.

When we include the preferred tilt angle $0&0 in our

head- chain size mismatch (h frp)

FIG. 6. Theoretical phase diagram for the discrete model,
plotted as function of the head-chain to chain-chain coupling
strength ratio ( W/G), and the size mismatch (h /ro) for fixed
chain length g/ro ——3. Solid lines indicate first-order transi-
tions, and dotted lines indicate second-order transitions. The
arrows indicate directions in which 6I increases in the tilted
phase, and A, increases in the modulated phase.

model, the transitions become first order, as observed ex-
perimentally. However, chain melting is the reason that
the transition is first order, rather than the asymmetry of
the molecule.

B. Modulation

For any given set of parameter values the minimum-
energy configuration can, in principle, be determined us-
ing Eq. (3) and the finite difference equation which re-
sults from the fact that there can be no net force on any
individual molecule. The zero-force equation takes the
rather complicated form

h0= —W sin8„cos8„+o (r„) —sin
0„+1+0„

2
g On+1 On

2
cos

2

h+cr(r„) ) —sin
On +On —1 g+ cos

0„—0„

When 0„ is a nonconstant function of n, finding solu-
tions becomes a difficult problem. In particular, for a
pair of boundary conditions, 0„1and 0„, there can be
as many as three choices for 0„+1 which are consistent
with the zero-force equation, two corresponding to local
minima, and one corresponding to a local maximum of
the three-particle free energy (with periodic boundary
conditions). If we only had three particles to worry
about it would be a straightforward problem to minimize
the free energy; however, as the number of particles, %,
becomes large, the number of configurations consistent
with the zero-force equation grows exponentially with N.

The free energy is translationally invariant [Eq. (3)

does not depend explicitly on n], so in the thermo-
dynamic limit the nonuniform solution is periodic. (For
integer wavelengths the solution is exactly periodic,
while for noninteger wavelengths the set of 0„'s will not
be exactly repeated on subsequent periods, but instead
will fall on the same smooth curve. ) In order to proceed
we must make certain assumptions about the symmetry
of the solution. First, we assume that the solution has
reflection symmetry, which is a symmetry of the model,
that is, invariance with respect to the transformation
0~ —0 and n ~—n. Second, we assume that the aver-
age tilt of the molecules in the modulated phase is zero
(this, combined with the first assumption, is equivalent
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to assuming that 0 passes through zero). Modulation
about some nonzero tilt angle will not take maximum
advantage of the softness of the chain-chain interaction
potential U(r).

Given these constraints, we found that in the modulat-
ed phase the minimum-energy configuration has the
form illustrated in Fig. 7(a). It is composed of pinched
regions of length k in which the hydrocarbon chains
splay inward so that their separation r is nearly r p.
These bulk regions are separated by gaps in the chain
spacing. The chain separation at the gap, r

g p is rela-
tively large, taking advantage of the soft part of U(r)

For our calculations we use a Lennard-Jones potential
of strength G,

P'p

U(r) =G —2
r
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FIG. 7. The minimum-energy configuration in the modulat-
ed regime when the wavelength is 20 molecules. (a) The hydro-
carbon chain configuration. (b) Numerical results.

to represent the interaction between adjacent chains.
This choice was made arbitrarily, and the qualitative re-
sults are relatively insensitive to the exact form of the
potential. ' The important feature of the potential is
that it is soft. As mentioned previously, the strength of
the chain-chain interaction is proportional to the chain
length (G ~g).

We determine the solutions numerically by choosing
the initial pair of boundary conditions Op Og p and
O 1 Ogzp corresponding to each side of a gap in the
chain configuration. To determine O2 numerically, we

IOO—
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distance along a line through the phase diagralTI

FIG. 8. The variation of the wavelength A, in the modulated
phase of the discrete model along a line in the phase diagram
which intersects the phase boundaries with both the 0=0 and
tilted phases. In the uniform phases X is trivially infinite. The
wavelength appears to diverge approaching the transition to
the 0=0 phase, indicating a second-order transition, while ap-
proaching the transition to the tilted phase k increases some-
what, but remains finite, indicative of a first-order transition.

find the roots of the zero-force equation, and select the
solution which corresponds to minimum chain separa-
tion r1 between the n =2 chain and its predecessor. We
proceed in a similar fashion, using O1 and O2 to deter-
mine O3, etc. , until O, changes sign, which is a signal
that we have just passed the halfway point of one period
of the modulation. Symmetry about O=O and periodici-
ty allows us to calculate the free-energy density in the
thermodynamic limit using only a finite number of O s.
Finally, we minimize the energy with respect to the
boundary condition Og, „, which is equivalent to minimi-
zation with respect to the number of molecules per
period, since each Og p corresponds to a unique value of

(Only one minimization is necessary; we do not have
to minimize with respect to O&, because we started at a
symmetry point in our solution. )

Figure 7(b) shows our numerical results when the
modulation wavelength is 20 molecules. As in the P&
phase, the density varies periodically. The high-density
pinched regions with r &h are energetically favorable.
However, the average interchain spacing must be equal
to h, so the high-density regions must be separated by
gaps, or defects, with r & h, which are energetically un-
favorable. Clearly the predicted modulation is non-
sinusoidal. Unlike the Pp phase, the modulated phase is
symmetric. When a preferred chain tilt angle go&0 is
included in our calculations, breaking the symmetry of
the model, the modulated phase becomes asymmetric.

Figure 6 illustrates the region of the phase diagram
where the modulated solution has lower energy than ei-
ther the tilted or untilted uniform solution. In Fig. 8 we
plot our numerical results for the variation of the wave-
length in the modulated phase as we approach each of
the phase boundaries. The transition between the O =0
phase and the modulated phase appears to be second or-
der: The modulation wavelength A, diverges at the phase
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boundary and O„approaches zero for almost all n, ex-
cept for a few of the chains on each side of the gaps.
The transition between the tilted uniform phase and the
modulated phase appears to be first order: As we cross
the phase boundary the solution goes discontinuously
from a constant nonzero tilt to nonzero, finite-
wavelength modulation about 0=0. Furthermore, in the
region of the phase diagram where the tilted phase is the
global minimum of the free energy, a modulated solution
exists and is a local minimum with somewhat higher en-
ergy than the tilted solution, while in the region where
the 0=0 phase is the global minimum of the free energy,
no finite-wavelength local minimum of the free energy
exists.

We studied the variation of k with the various param-
eters in our theory. Numerically we found that near the
phase boundary with the tilted phase when the wave-
length is relatively large (roughly 10 or more molecules
per period) the dependence of A, on the chain length is
strikingly linear. This result is in good agreement with
the experimental results of Wack and Webb. Using x-
ray di6'raction they measured the ripple wavelength as a
function of hydration for chain lengths ranging between
12 and 19 carbons. When the data is rescaled according
to a linear dependence of wavelength on the number of
carbons, the curves collapse onto a single curve of A,

versus hydration. In our model, the increase of k with
chain length follows intuitively because the chains can
splay inward less and still maintain the same average
separation. In addition, A, decreases as the head-chain
mismatch is increased, because the chains must tilt more
to maintain the same average separation. Finally, A, de-
creases as the coupling strength ratio 8'/G is increased,
because strain builds up more quickly moving away from
the center of the pinched region.

The variation of k with the parameters in our theory
can also be deduced from a "back-of-the-envelope" cal-
culation, for the free energy in the modulated phase. In
the pinched region the characteristic change in tilt for a
pair of neighboring molecules is

68=8„+,—8„=(h —ro)/g .

This is the change in tilt necessary when a pair of chains
with opposite tilt, 0„=—0„+&, have r„=ro. If we set
the zero of energy at the bottom of the chain-chain in-
teraction potential, them if all of the chains are separat-
ed by roughly ro, the main contribution to the free-
energy density from the bulk region comes from strain
of the head-chain interaction. Thus

fb„ik =—J —,
' W'(n 66) dn = —,', JV(b, O) A.

' . (10)

Furthermore, if r
g p is large, the contribution to the

free-energy density which comes from the gap is given
roughly by the depth of the chain-chain interaction po-
tential,

s&p

Hence the total free-energy density is

f =fbuik +fgap ~p
~(~~) ~ + (12)

This must be minimized with respect to A, , in which case
we find

1/3 1/3
G g

2

W(h ro)—
(13)

This gives rise to the same variation of k with the pa-
rameters that was discussed above. Because G ~ g the
wavelength is linearly proportional to the chain length.
In addition, this formula gives an estimate of k in the
modulated phase. Typical molecular dimensions suggest
that h/ro is approximately 1.1 to 1.2, and g/ro is rough-
ly 2.5 to 3.5. In the modulated phase we find numerical-
ly that a typical value is W/G =1. This leads to values
of k ranging between 10 and 20 molecules per period,
which is consistent with our numerical results, and
which is in good agreement with experiment. We sum-
marize our results in our comparison of the theoretical
and experimental phase diagrams.

IV. COMPARISON OF THEORETICAL
AND EXPERIMENTAL PHASE DIAGRAMS

Because the principal degrees of freedom (temperature
and concentration) which drive the transition do not ap-
pear explicitly in our model, we cannot make direct
comparisons between the phase diagram predicted by
our model and the experimental phase diagram.
Nonetheless, it is useful to compare the trends predicted
by our theory to the properties of the experimental sys-
tem. There are three relevant parameters in our theory
which determine the form of the minimum-energy
configuration: (1) the size mismatch between head
groups and chains, h /r„, (2) the ratio of head-chain to
chain-chain interaction strengths, W'/G, and (3) the
chain length g which can be scaled by another appropri-
ate length in the problem, say ro.

In the theroetical phase diagram (Fig. 6), we plot the
minimum-energy configuration as a function of the cou-
pling strength ratio, W/G, and the size mismatch, h/ro
for a fixed value of g. The theory predicts that the tran-
sition between the tilted and modulated phases is first or-
der, while the other transitions are second order. The
arrows indicate directions of increasing tilt in the uni-
form tilted phase, and increasing A. in the modulating
phase.

We compare these results with a typical experimental
phase diagram, illustrated in Fig. 9, which is plotted as a
function of temperature and hydration. Experimentally,
both the pretransition and the main transition are first
order, and both transition temperatures increase as the
hydrocarbon chain length is increased. As in the
theoretical phase diagram, in Fig. 9 the arrows indicate
directions of increasing tilt in the L& phase, and increas-
ing A, in the P~ phase. In the L~ phase, the tilt angle P
increases as the hydration is increased, and decreases as
the temperature is increased. ' ' In the P& phase, the
ripple wavelength increases approximately linearly as the
hydrocarbon chain length increases, and decreases as the



J. M. CARLSON AND J. P. SETHNA 36

40 ~L

IO-

0-
I

I5IO 20 25 30 35
Con centra tion ( /o Hz 0)

FIG. 9. Experimental phase diagram for DMPC, plotted as
a function of temperature and hydration. As in the theoretical
phase diagram (Fig. 6), the solid lines indicate first-order tran-
sitions, and the arrows indicate directions of increasing tilt in
the L~ phase, and increasing A, in the J'~ phase. The phase di-
agram is based on the results of Janiak, Small, and Shipley
(Ref. l8).

hydration is increased, but is relatively insensitive to
changes in temperature.

In both theory and experiment the increase in the
modulation wavelength is strikingly linear as the hydro-
carbon chain length is increased, and the modulation
period is typically in the range of 10—20 molecules. In
both cases the transition between tilted and modulated
phases is first order; however, experimentally the most
important feature making the transition first order may
be the melting of a few of the hydrocarbon chains.

In our theory both transitions to the 0=0 phase are
second order, while experimentally they are first order.
This is clearly a weakness of the theory. However, be-
cause chain melting is the driving force behind the main
transition, and we have not explicitly included melting in
our model, it is not surprising that some aspects of the
transition to L are not well described by our theory.
The coarse-grained free energy [Eq. (3)] which we pro-
pose is based on what we believe are the most important
microscopic features responsible for the L& ~Pp transi-
tion. An extension of this model which includes melting
should provide a more accurate description of the main
transition.

In addition, experimentally both the pretransition and
the main transition temperatures increase and approach
one another as the hydrocarbon chain length is in-
creased. While temperature does not appear explicitly in
our model, some of the parameters (e.g. , the ratio of the
interaction strengths) may depend implicitly on tempera-
ture. Nonetheless, this eAect does not show up in our
model. In fact, when the g dependence of the coupling

strength ratio is scaled out in our plot of the phase dia-
gram [W/G is replaced by W/(G/g) in Fig. 6], so that
the vertical axis might scale as some function of the tem-
perature independent of g, then the position of the phase
boundary between the tilted and modulated phases is
quite insensitive to g. Again, we believe that a more
careful treatment of the chains, including melting, is
necessary to see this eAect.

While we do not attempt to match the parameters in
our theory to the experimental parameters, we note that
there are some basic trends in the two phase diagrams
which agree. In each phase diagram there is an axis
along which the angle in the tilted phase increases (h /ro
and hydration) and an axis along which it decreases
( W/G and temperature). Along the axis for which the
tilt angle increases, A, decreases in both theory and ex-
periment.

In our theory, the modulated phase is symmetric and
flat while experimentally the layers bend out of the mean
bilayer plane forming an asymmetric sawtooth pattern.
As previously stated, in order to break the symmetry of
the modulation, we must break the symmetry of the
model, by, for example, including the preferred tilt angle
$0&0. In order to see rippling out of plane in the con-
text of our mode1, the rigidity of the layers must be re-
laxed (the rigidity of the layers will, for example, depend
on the interlayer interactions). If this is treated as a
small perturbation, and the energy of the other half of
the bilayer is also accounted for, then the layers should
bend at the gaps, forming a sawtooth pattern. Figure 2
illustrates how we believe these eFects as well as melting
should alter the modulated phase predicted by our
model.

V. CONTINUUM LIMIT WITH DEFECTS

In this section we look at the long-wavelength limit of
the free-energy density [Eq. (3)]. We recall that in the
modulated phase, the minimum-energy configuration is
composed of periodic sequences of spontaneous inward
splay of the hydrocarbon chains, separated by gaps. In
the long-wavelength limit, the discrete functions 0„
(which describes the tilt of the chains with respect to the
head group layer) and r„(which describes the chain sep-
aration) approach continuous functions except at the
gaps, where they are discontinuous. For this reason,
special attention must be paid to the term which ac-
counts for the energy of the gaps.

For convenience, in this section we wi11 redefine the
chain separation

t 2
L9. +]+L9.r„=Q —— —"

g2 2

(0„+)
—0„)

2
(14)

and the harmonic head-chain interaction will be replaced
by

E„=—,
' WO

We emphasize that formally we are not making a small-
angle approximation; instead we redefine these quantities
in a manner that will be convenient for our later use.
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n = —k/2

o'(ro) (Ar„) +(br„ i)
U(rp)+

2 2

We could just have easily used these forms for r and the
head-chain interaction in our earlier analysis and ob-
tained qualitatively similar results.

Next we rewrite Eq. (3) so that the reflection symme-
try of the model holds explicitly for each term in the
sum:

U(r„)+ U(r„, )=—XN 2
+-'8'02 .n

n=1

Because the solution is periodic, the average over N par-
ticles can be replaced by an average over one period A, .
We let n =0 correspond to the center of the bulk region.
From our numerical results we know that throughout
the continuous region hr„=r„—rp is small. Therefor|„. ,
in this region the soft part of the chain-chain interaction
is not important, and we may replace U(r) with a para-
bola centered at rp. Thus

solution) is the tilt right after a gap, then the chain spac-
ing at the gap is given by

rggp 6 +g Oggp o

Therefore the energy of the defect averaged over one
modulation period is

o '(rp)fderec,
———U(rS,~ ) —U(rp) (~"A/2 )

2

The last two terms in the above expression are the ener-

gy that the last chain before the gap would have had if
no defect were present, and must be substracted from
the interaction energy of the chains on either side of the
gap. While the nonlinearity of the chain interaction po-
tential is not important for the continuous part of the
configuration, it is a crucial feature of the defect energy.

Now we are ready to formally take the continuum
limit, in which 0„+1—0„ is replaced by a Taylor expan-
sion of a slowly varying continuous function 8(x) which
coincides with 0„ for integer values of x. Letting
8'=dg/dx, to second order in gradients r(x) is given by

+I~gn +fdefect (17)
h 0' 0"

r(x) =h ——8+—+
2 2 4

'2
gI g/ I

—g +
2 4

(20)

where fd f i is the energy associated with introducing a
gap in the continuous solution.

In order to calculate the energy of the defect we note
that if 8(A. /2)—=Os,„ is the tilt angle just before a gap,
and 8( —A, /2)—= —Os,~ (by the 8~ —8 symmetry of the

Next we substitute this in the free energy (17), again
keeping terms to second order in gradients. After in-
tegrating the second derivative term by parts (the sur-
face term is odd, and consequently does not contribute),
the free-energy density is given by

A, /2f= — dn(U(rp)+ —,'o '(ro) [[h(1—8 /2) rp]i —g[h(1 —g2/—2) —rp]g'

+-,'[g'+h(h —r, ) —-', h'8'](8')'I+, 8 g')+f„„„,. (21)

It is important to note that we cannot ignore the term
proportional to 0', which is a total divergence term.
This term can be integrated exactly, producing a term
which is evaluated on the surface (end points of integra-
tion). In many systems only the bulk terms contribute
to the free-energy density in the thermodynamic limit,
and surface terms can be ignored. However, because the
gaps correspond to non-negligible internal surface area
this term makes a nonzero contribution to the total
free-energy density.

The last term in the defect energy may also be ex-
panded to second order in gradients of 0 at the bound-
ary. The result is an expression similar to the one that
multiplies o (rp)/2 in the integral, except it is evaluated
at x =A, /2. In this expansion clearly 8'(2/2) is the gra-
dient of the continuum solution extended to x =1,/2,
and not the 6 function associated with the gap.

The free energy (21) is stable with respect to the addi-
tion of small gaps. When Og p is small the leading con-
tribution from the integral is the linear total divergence
term, which when integrated becomes

r'(rco )g (—h rp )Os,p—
However, this is exactly canceled by the linear contribu-
tion in the expansion of the defect core energy U(rs, ~).
Furthermore, we find that the quadratic contribution is
always positive. Hence the insertion of infinitesimal
gaps does not lower the energy, and it is safe to assume
the gaps are not small.

While Eq. (21) most accurately describes the continu-
um limit of the free energy associated with the discrete
model, it is more useful to analyze a simpler expression
which retains the most important physical features of
the system, and has the added advantage that we can ob-
tain analytical results. First, we ignore the 0 dependence
of the coefficients of the gradient terms. While these
terms are in no sense infinitesimal, in each case they are
substantially smaller then the gradient terms with con-
stant coefficients [for example, in the coefficient of (8')
the dominant term is g, since g /rp —3, while h /rp —1.2
so that the additional terms nearly cancel]. Second, be-
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f=—J [—,'m 8'+ —,'8'+ —,'(8' —8,')']dx+ I /k . (22)

cause the gaps are large we set the defect energy equal to
a constant fd f i —F/A, , which corresponds roughly to
the we11 depth of the chain-chain interaction potential.
After suitable rescaling of f, 8, and x, the free-energy
density becomes

that 0 satisfies the second-order difFerential equation

0"=m 0+0
When m ~ 0 this has an exact solution of the form

8(x ) = i/m tan( &m /2x ),
while when m & 0 an exact solution is

8(x)=&
~

m
~

tanh(&
~

m
~

/2x) .

(23)

(24)

(25)

The first two terms in the integrand will be minimized
when 8=0 for m &0, or when 9=+i

~

m
~

for m &0,
corresponding to 0=0 and the tilted solutions, respec-
tively. The gradient term is minimized when 0'=Oo, a
positive constant. The local low-energy configuration is
illustrated in Fig. 10. The first two chains splay inward
towards one another, so that the change in angle is
60=00. However, as one moves along the head group
axis away from this point, maintaining a positive gra-
dient in 8, strain builds up as 8 gets large. (In addition,
much later one runs into the topological constraint, that
9&m. /2: i.e., the chains cannot pass through the head
group layer. ) Because the local low-energy configuration
cannot be satisfied everywhere, we say the system is frus-
trated. However, gaps can act to relieve the strain. Re-
scaling has allowed us to set the core energy of the de-
fect equal to a constant, so for convenience in Eq. (22)
we have set this energy equal to one. Therefore this sim-

ple theory has only two parameters, m and Oo, which
will be the axes for the phase diagram for this model.

The frustration is associated with the total divergence
term, —OoO', which is the cross term of the gradient
term in the free energy, and it may be thought of in two
ways. First, as previously stated, it produces a spontane-
ous splay in the hydrocarbon chain positions in the bulk.
Second, when integrated this term becomes the surface
term —2000g p

which makes a negative contribution to
the free-energy density at the defects. Viewing the frus-
tration the second way, we find that the modulated
phase is preferred when the net energy cost of introduc-
ing a defect becomes sufficiently negative.

We now proceed with the analysis of the free energy
(22). In the bulk, the Euler-Lagrange equations tell us

However, for given values of the parameters m and 00,
these will not in general be the minimum-energy solu-
tions. We would like to be able to construct an explicit
analytical solution to (23) in terms of an arbitrary pair of
boundary conditions, and then minimize with respect to
the boundary conditions. However, because (23) is non-
linear this cannot be easily done. Instead we use the fol-
lowing trick, which allows us to convert the bulk contri-
bution to f [i.e., the integral in (22)] to a total diver-
gence.

By analogy with Lagrangian mechanics, because the
integrand in Eq. (22) does not depend explicitly on x, the
timelike variable, there is a formal energy E, which is
conserved (i.e., it has the same value for all x),

E = —,'[(9') —(9O) ]——,'m8 ——,'8 (26)

E is not the free-energy density, which in the modulated
phase is clearly a nonconstant function of x. It turns out
that —E is the free-energy density in the uniform
phases.

%'e can rewrite the free-energy density in terms of the
constant E,

(27)

where

Using E again, we solve for 0' in terms of E and 0, to
convert the integral over x to an integral over 0

f=—f (2E+(8') +m8 + —'8 )' 18-'s v
0

2000gap 1

defect

'sr d0
~s i (2&+(8t)'+m8'+ —'8')' '

2

(29)

x = C M: QC QC

in

What remains is to minimize the free-energy density
with respect to two boundary conditions.

For convenience, we choose these boundary conditions
to be the tilt angle at the gap, Og p and the derivative of
8 at zero, 8'(0). Now E has the same value for all x,
and at x =0, it takes the simple form

locaI low
energy
configuration
z e™e,'

FIG. 10. The molecules on the left are in the local low-

energy configuration. However, if we move to the right of
these molecules while maintaining a positive gradient in 0,
strain builds up as 8 becomes large. Gaps can act to relieve
this strain.

E = —,
'

[ [8'(0)] —(9O)~) (30)

Consequently our minimization with respect to Og p and
9'(0) can equally well be thought of as a minimization
with respect to Og p and E.

We studied this model numerically, and found that all
of the phase transitions are second order: In the modu-
lated phase the wavelength A, diverges as we approach
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the phase boundaries. The minimum-energy config-
urations near the phase boundaries are shown in Fig. 11.
First, as illustrated in Fig. 11(a), near the phase bound-
ary with the 0=0 phase most of the chains have 0=0,
and only a few chains near the gaps have a substantially
larger tilt angle. In this case, 8'(0) goes to zero as we
approach phase boundary. Second, as illustrated in Fig.
11(b), near the phase boundary with the tilted
phase, the minimum-energy configuration approaches a
solitonlike structure (in which the antisoliton counter-
parts are the gaps), where almost half of the chains have
0= —&

~

m ~, and the other half have 8=&
~

m ~,
where 8=+&

~

rn
~

is the tilted solution. In the second
case, the minimum-energy solution approaches (25), and
8'(0) becomes asymptotically equal to

~

m /&2. In
each case these special values of 8'(0), and the corre-
sponding values of E, make the integrals in (28) and (29)
particularly easy to evaluate, and consequently, we ob-
tain the phase boundaries analytically. We give only the
results here. The details can be found in Appendix B.

In the phase diagram (Fig. 12), we plot the critical
lines separating different types of order. The vertical
axis is the coefficient of the quadratic term in free ener-
gy, m, and the horizontal axis is the preferred gradient
00. For sufFiciently small values of Oo a uniform phase
will be preferred, and the transition between the uniform
phases 0=0 and the tilted phase occurs along the line

I 1
f

~ I ~

PHASE D I AGRAM

I
I I

FIG. 12. Phase diagram for the continuum model, plotted
as a function of the coefticient of the quadratic term m, and the
preferred gradient 80 [Eq. (22)]. All transitions are second or-
der, and the results are obtained analytically.

m =0. The transition between the 0=0 phase and the
modulated phase occurs along a curve which satisfies

(31)

where

(32)

2
X

12

I+

The phase boundary separating the tilted phase from the
modulated phase satisfies

&2( —
~

m
~ Os,p+ —,'Os, p+ —',

~

m
~

) —20o8s,p+ 1=0,
(33)

where

8s p=(
I

rn
I

++28o)'~ (34)

(b)

These two curves are illustrated in the phase diagram.
They intersect at the point

32/3
m =0, 00 —— (35)

r
-g-m ~—

I

I

I

~i
2I

I

~l

FIG. 11. Minimum-energy configurations in the modulated
phase near the phase boundaries in the continuum model. (a)
Near the phase boundary with the uniform 0=0 phase most of
the chains have 0=0 except for a few of the chains near the
gaps. (b) Near the phase boundary with the uniform tilted
phase approximately half of the chains have 8= —&

~

m
~

and
half of the chains have 8=&

~

m ~, forming a solitonlike struc-
ture in which the antisoliton counterparts are the gaps.

Oo=-, m 1/4 (36)

whereas, when m becomes large and negative, the phase
boundary separating tilt from modulation approaches a

where they also meet the boundary between the tilted
and 0=0 phases. Hence this is a multicritical point for
this model. It is interesting to note that near the mul-
ticritical point the tilted phase is reentrant (i.e., for fixed
Oo, as m increases, there is a transition from tilt to
modulation, followed by a transition back to tilt before
the 8=0 phase is reached). Asymptotically, as m gets
large and positive the critical curve between the 0=0
phase and the modulated phase approaches
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line Oo~m.
In Fig. 13 we plot the variation of the modulation

wavelength for a fixed value of m as we approach the
phase boundary. Near the phase boundary our numeri-
cal results are in good agreement with the asymptotic
analytical results, which are given in Appendix B.

VI. DISCUSSION

%e began with a one-dimensional discrete model for
the ripple phase based on the packing competition be-
tween head groups and chains, and found that in one re-
gime the minimum-energy configuration was periodic,
composed of high-density regions in which the chains
splay inward, separated by gaps in the chain spacing.
We then studied the continuum Hrnit of this model, and
found that the most important features were contained
in a frustrated P theory with a defect term. Like the
discrete model, the continuum model gave rise to three
phases, L9=0, tilted, and modulated. If we make a sim-
ple association between the constant coefficients of the
gradient terms in the continuum limit (21) of the discrete
free energy and the parameters in the P free energy (22),
we may obtain a phase diagram for the P theory in
terms of the old parameters. We find that it is in rough
agreement with phase diagram for the discrete model
(Fig. 6). (Recall that the 8 dependence of the coefficients
of the gradient terms has been ignored in the P theory.
At a minimum we expect these terms to renormalize
some of the constants, so an exact association is not ex-
pected. ) In both cases the phase transitions to the 8=0
phase were second order.

The most significant discrepancy between our two
theories is the fact that the transition between the tilted
»d modulated phases is first order in the discrete mod-

Divergence of X near the phase boUndarY
IO—

0)
0)
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distance from the critical line (a)

o.20

FICz. 13. Variation of the wavelength k in the continuum
model approaching the phase boundary for fixed rn =1. The
dotted line is our numerical results, and the solid line shows
our asymptotic analytical results as we approach the phase
boundary.

el, but second order in the continuum model. This is the
result of terms we ignored when we went from the con-
tinuum limit to the simplified P theory. Experimental-
ly, the most important feature making both the main
transition and the pretransition first order may be the
melting of the hydrocarbon chains. The fact that the
pretransition is weakly first order could be a result of the
melting of only a few of the hydrocarbon chains near the
gaps. The latent heat of the pretransition is only one-
tenth that of the main transition, so if the modulation
wavelength is 20 molecules, this is consistent with melt-
ing of the hydrocarbon chains on each side of the gap.
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APPENDIX A

In this appendix we give a brief summary of some of
the other models which have been proposed for the rip-
ple phase. These fall into three main categories: (1)
macroscopic theories, in which the bilayer is treated as a
continuous membrane, and its elastic properties are con-
sidered; (2) microscopic theories, which are based on
properties of individual molecules forming the bilayer;
(3) completely diff'erent approaches, for example the in-
teractions between adjacent bilayers.

The idea of spontaneous curvature has played a large
part in many of the existing macroscopic theories. Tar-
dieu originally suggested an alternate accumulation and
release of strain as an explanation for the layer corruga-
tion. ' In response, Helfrich proposed spontaneous cur-
vature as the specific mechanism which may lower the
total elastic energy of a bilayer. Curvature energy is
an important consideration in many related phases, like
micellar and hexagonal phases. However, in these sys-
tems the curvature is much larger.

In many of the microscopic theories the packing hin-
drance imposed by the head groups is an important
feature. Larsson first pointed out the importance of the
head-chain packing competition. In his model the rip-
ple phase is represented by a folded lamellar structure
which results from alternating tilted and untilted re-
gions. Hawton and Keeler numerically evaluated the
van der Waals energy of a spatially modulating layer,
and showed that in one regime the free energy is lower
than that of a Oat layer. Because the pretransition
occurs at a temperature near that of the chain melting
transition, Falkovitz et a/. ' have postulated that
chain melting is the driving force behind the pretransi-
tion as well.

Both Doniach and Falkovitz et al. studied continuum
theories which are based on the competition between
macroscopic curvature energy and microscopic proper-
ties of the bilayer. In Doniach's model, as in our
work, the local order parameter is the tilt of the chains
with respect to the head groups. However, unlike our
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model Doniach assumes that the chains are frozen, with
constant separation, in a tightly packed crystal structure,
and the head group layer is allowed to bend. The pre-
transition is driven by spontaneous local bilayer curva-
ture, which arises from the electrostatic coupling be-
tween water and the head group layer. Doniach begins
with a discrete free energy based on two competing in-
teractions (the preferred tilt angle competes with the
preferred layer bend). Next he considers the long-
wavelength limit, and finds that in one regime periodic
modulation in the order parameter lowers the free ener-
gy. One of the interesting features of this model, is that
like the experimental system, it predicts ripples of two
distinct periodicities. However, unlike the experimental
system, the modulation is very smooth.

Falkovitz et al. and Marder et al. stress the im-
portance of the proximity of the melting transition. In
their continuum model the ripple phase is composed of
alternating regions of fluid and solid chains. Because
melting reduces the layer thickness, modulation results
in out-of-plane rippling. The free-energy expression they
propose is formulated in terms of the local layer thick-
ness. Three terms contribute: a temperature-dependent
term favoring either fluid or solid chains, a term propor-
tional to the square of the curvature, and a term which
couples the thickness and the curvature. For certain
ranges of the coupling strength, they find that between
the fluid and solid states, an intermediate modulated
phase is favored. As in Doniach's model the modulation
in the ripple phase is extremely smooth (in fact,
sinusoidal). However, in this model roughly half of the
hydrocarbon chains are melted in the modulated phase.
This is inconsistent with the fact that experimentally the
latent heat of the pretransition is roughly one-tenth that
of the main transition, indicating that only a few of the
chains are melted in the ripple phase. A better picture
would have melted chains only near the peaks and val-
leys of a sawtoothlike ripple. This sort of configuration
may result if chain melting is included in a free-energy
expression like the one we propose, which includes de-
fects.

Pearce and Scott studied a model based on the same
microscopic mechanisms we base our model on: the
competition between the van der Waals attraction be-
tween hydrocarbon chains and the packing hindrance
imposed by the head groups. In their description, each
molecule is treated as a rigid L-shaped object, and in-
teractions between nearest and next-nearest neighbors
are taken into account. The Hamiltonian is formulated
in terms of the packing configurations of the L's, and in
one approximation reduces to the Hamiltonian for the
axial nearest-neighbor Ising model (ANNI). This model
exhibits a rippled phase between a high-temperature
disordered phase and a low-temperature ordered phase.

Other models have also stressed the importance of the
size mismatch between head groups and chains. Sack-
man et al. proposed that the ripple structure was the re-
sult of a tightly packed chain configuration. ' Modeling
each hydrocarbon chain as a rigid zigzag object, they
postulate that adjacent molecules in the bilayer can only
shift an integer number of zigzag units with respect to

one another, and that this gives rise to an asymmetric
rippled structure. However, experimentally it is unlikely
that the chains are sufficiently tightly packed for the zig-
zag shape of the hydrocarbon chains to provide a
sufficient packing restriction for this picture to be applic-
able.

Other models have stressed the importance of interac-
tions between bilayers. Cevc, Zeks, and Podgornik sug-
gested that the pretransition is driven by water-mediated
bilayer-bilayer interactions. This may explain why a
transition between the Pp and L& phases occurs as the
concentration is varied at fixed temperature. Goldstein,
Leibler, and Lipowsky have shown that at fixed tem-
perature, interlayer interactions can drive the main tran-
sition.

Gebhardt et al. proposed a model based on the com-
petition between monolayer curvature energy and the
compression energy of a bilayer. Chan and Webb sug-
gested that the ripple phase may be the result of a novel
type of Martinsitic transformation resulting from
molecular-conformation changes.

While in each of these models the proposed micro-
scopic mechanisms responsible for the transition may be
different, and lead to different pictures of the ripple
phase, the basic philosophy behind most of these calcula-
tions is very similar. The authors write down an expres-
sion for the free energy of the system in terms of a scalar
order parameter (e.g. , local chain tilt or layer thickness)
which describes the state of the system. This free energy
reflects what are believed to be the most important
features driving the transition, and should agree with the
most general free energy in some appropriate limit. The
relative success of each individual theory is measured by
how well it agrees with experiment, and depends on how
well the model captures the essence of the true driving
mechanism.

In principle, one could write down an expression for
the free energy in terms of the three-dimensional molec-
ular density which would encompass all of the interac-
tions. Upon integrating over all of the degrees of free-
dom except for one, one is left with a completely general
expression for the course-grained free energy in terms of
a single scalar order parameter, which in our model cor-
responds to 0. A general expression of this form has
been derived by Leibler and Andelman ' for membrane
curvature in the low-amplitude limit. Our free energy
agrees with the genera1 expression in an appropriate lim-
it, as do the similar free-energy expressions proposed by
Doniach, Falkovitz et al. , and Marder et al. Viewed in
this light, the main difference between our model and the
others is the fact that our modulated phase has defects
(places where the order parameter changes abruptly),
while the others do not. In terms of the more general
formulation, our model studies the limit in which the
length scale for low-density regions shrinks to the size of
the lattice spacing.

A model which is very similar to ours was proposed
recently by Safran, Robbins, and GarofF to describe
surfactants on a surface. Fixing the molecules a con-
stant distance apart from one another, they integrate the
chain-chain interaction along the length of each of the
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chains and obtain results quite similar to ours. The con-
nection between the two methods is clear. Their in-
tegrated interaction may be represented by an effective
pair interaction, which is a function of some characteris-
tic chain separation, and the strength of which increases
with increased chain length, combined with a harmonic
restoring force, which is independent of the chain
length, and which arises because the total overlap region
decreases when chains are tilted.

—inc+0(1) .
I

&m
(B6)

Therefore, the free-energy density is given asymptotical-
ly by

We find that when e is small and 6 has the form
specified above, to leading order the first integral is O(1)
while the second diverges logarithmically as e ap-
proaches zero. Hence we find

APPENDIX B

In this appendix we give details of the analytical cal-
culations of the phase boundaries which separate the
modulated phase from the uniform phases, and the
divergence of the wavelength as we approach the phase
boundaries, in the simplified continuum model ~ Near
the phase boundary with the 0=0 phase, most of the
chains have 0=0, except for a few chains near the gaps,
as illustrated in Fig. 11(a). Approaching the boundary
with the tilted phase, the minimum-energy configuration
approaches the solitonlike structure illustrated in Fig.
11(b), and 0(x) is given approximately by (25). The
free-energy density is given by Eq. (28), and the modula-
tion wavelength is given by Eq. (29). Special care must
be taken, because A. diverges on the phase boundaries.

As we approach the boundary between the 0=0 phase
and the modulated phase, m is positive and the gradient
of 0 in the center of the bulk region, 0'(0), becomes
small. Consequently the constant E [Eq. (26)] can be
written

ne

+1—Ae][1+0( ln 'e)], (87)

(89)

while the second is satisfied in the limit a~0 only when

where A is a rather complicated constant which depends
on m and gs,p. The first term in (87) is just the energy
of the 0=0 solution, so that when e=o, f becomes equal
to the energy of the uniform solution. When e&0, f
must be minimized with respect to the boundary condi-
tions Og p and e. This requires that

df df=0 and =0 . (88)
aO...=

a~
=

(Positivity of the second derivative verifies that we have
indeed located a minimum. ) Thus solving self-
consistently for small e, the first condition is satisfied
when

E= ——,'(00) + —,'e, (81)

where we assume e is small. Substituting this into the
free-energy density (28), we find

'op 2 4 1/2 0 g~pf ~ " (~+m g2+ i g4)1/2dg s~P

~gap

+ —'( 00)' ——+—
2

(82)

2&m
(84)

Similar analysis is necessary to evaluate k. Again we
split the integral into two parts:

A, =2 dO
6 1

0 (&+m g2+ i g4)1/2
2

'up+2 d1
(~+m 0'+ ' g')'/'

2

(85)

When e =0, the integrand has a branch point at 0=0, so
we rewrite the integral (which we refer to now as I) as

I =2 f (e+m0 + —,'0 )' dg

+2 f (e+mg + —,'0 )' dg, (83)

where 6 is assumed to be small. To leading order only
the second integral contributes, so that for
5=[m —(m —2E)' ]' =&@/m +O(e' ),

(810)

The first of these equations can be used to eliminate Og, p

from the second, and the resulting equation determines
the phase boundary between the modulating phase and
the 0=0 phase.

To determine how k diverges as we approach the
phase boundary we need to consider the corrections to
the free energy which are higher order in e. In a previ-
ous calculation we obtained the variation of A, with e

[Eq. (86)], which is related to the effective energy E by

(8 1). However, this tells us nothing about how A. varies

as, for example, 00 approaches its critical value, 00', for a
fixed value of m (i.e. , approaching the phase boundary
from the right-hand side). We define a=go —00. Re-

taining terms to order in e/in@ and a/inc in the free

energy [Eq. (87)], we perform the necessary minimiza-

tions [Eq. (BS)], and find that to leading order minimiza-

tion with respect to gs, P
again results in Eq. (89). Using

this equation we solve for the leading correction in cx to

Ogp

0. =0', +
00'e

(811)
S~P SaP gc [(gc )2+m ]

where 0', =[—m+(m +200 )' ]', is the value of
Og p along the critical line. Substituting this into the free

energy, we find that minimization with respect to e to
leading order in e and a yields
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20'„&m a
inc e ln 6

This is satisfied when

(812)
This time, when @=0, the square root has a branch
point at 0=+&

I
m I, the angle of the uniform tilted

solution. We find that to leading order the integral
(again called I) is given by

e in@=~a, (813) I=&2( —
I

m
I Og,p+gg, „/3+ —',

I

m
I

r
)

where ~ is a positive constant which depends on m and
(Oo) . These equations, combined with Eq. (86), impli-
citly determine A. as a function of a

CX =Kkc —&ma

—+2/
I

m
I
zine+0(e) .

To evaluate the integral for A.

(816)

The results for m =1 are illustrated in Fig. 13.
We proceed similarly for the phase boundary between

the modulated and tilted phases. In this case, m &0 and
0'(0) approaches

I
m

I
/&2, so we can write

g~P dO

o [e+ 1
(

I

m
I

+02)2]1/2
(817)

E = —,'m —
—,'(Oo) + —,'e, (814)

where again e is presumed small. When E is substituted
into the free-energy density, we have

we break the interval in to three pieces,
[0, &Im

I

—5/2], [&Im
I

—5/2, &Im I+5/2], and
[&

I
m

I
+5/2, gg, ~], where 5=0(&e), and again find

that as e approaches zero the wavelength diverges loga-
rithmically

&= —&2/
I

m
I

lne+O(1) . (818)
2m 6 1+ —(Oo) — ——+—

2 4 2
(815) This leads to the following asymptotic form of the free-

energy density:

2

f = —,'(go) — — — [t/2( —
I

m 0, + —,'0,. + —',
I

m
I

) —20ogg, „+I+O(e)][1+0(ln 'e)] .
4 &2 lne

(819)

Now the first two terms are equal to the energy of the
tilted solution, so that f is equal to the free energy of the
uniform solution when e approaches zero. As before,
when a&0 we minimize f with respect to the boundary
conditions. This yields the following set of equations
(which are self-consistent for e small):

&20'= —
I

m
I +0„„, (820)

and in the limit @~0

&2( —
I

m
I Og, + —,'Og, p+ —',

I

m
I

'~
) —20og, +1=0,

(821)
which determine the phase boundary. Again, retaining

corrections to the free energy which are higher order in
e allows us to determine the variation of A. in the phase
diagram as we approach the phase boundary with the
tilted phase.

It is interesting to note that Og p does not asymptoti-
cally approach the uniform tilted solution &

I

m
I

as we
approach the phase boundary. Instead, close to the
phase boundary, moving out from a central molecule to-
wards the gaps, the minimum-energy configuration has
an increasing number of chains with tilt nearly equal to
&

I

m I, followed by a few chains with a larger tilt, until
the Og, which satisfies (820) is reached. At the phase
boundary, the number of chains with tilt near v'

I
m

I

diverges, and the gaps are pushed out to infinity.
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