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Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification
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We study, within a WKB approximation, the evolution of time-dependent deformations of the
needle crystal solution of the two-dimensional symmetric model of solidification. We find that per-
turbations with fixed small frequencies are initially amplified as they propagate from near the tip
down the dendrite but ultimately decay. Localized wave packets behave rather differently; the
packet continues to grow exponentially as it moves to arbitrarily large distances from the tip. The
relevance of these results to sidebranching of dendrites is discussed.

I. INTRODUCTION

Considerable progress has been made in the last few
years in understanding the mechanisms of mode selec-
tion in dendritic growth of a pure solid from its under-
cooled melt. (For a recent review, see Langer. ') Recent
work has established that surface tension acts as a singu-
lar perturbation in this problem. In the absence of sur-
face tension, an infinite continuous family of needle crys-
tal solutions —the Ivantsov solutions —exist for any
given undercooling. Inclusion of surface tension leads to
the selection, via a solvability condition, of a particular
steady-state solution that deviates slightly from an
Ivantsov solution. This mechanism was first discovered
in simpler local models. ' ' ' Subsequently, it has been
confirmed both numerically ' and analytically ' '"' in
more realistic nonlocal models, in particular the so-
called symmetric model, " which contains a completely
realistic description of the thermal field.

In this paper we extend the analytical techniques of
Barbieri et al. ' for the steady-state selection problem to
the dynamic problem of sidebranching of the steady-
state needle crystal solution of the two-dimensional sym-
metric model. A numerical study of this problem has
been reported recently by Kessler and Levine. ' We are
able to reproduce quantitatively many of the features
found in the numerical solution by a WKB solution.
The numerical solution refers to the propagation of a
perturbation of fixed frequency. Using the WKB solu-
tions we are able to go further and consider the evolu-
tion of a localized (in space) wave packet as it moves

along the dendrite. We find that the behavior of such a
packet is qualitatively different from that of a single
mode. In particular, we recover the same behavior as
found by Pieters and Langer' in the local boundary-
layer model.

The paper is arranged as follows. In Sec. II, we first
briefly review the formulation of the symmetric model to
establish notation and then derive a linearized equation
of motion for (small) time-dependent perturbations of
the steady-state solution. Section III contains the solu-
tion of this equation by a WKB technique. This solution
is compared quantitatively with the numerical solution
of Kessler and Levine in Sec. IV. In Sec. V, we discuss
the motion of a wave packet and compare with the re-
sults of the boundary layer model. The paper closes
with an overall summary in Sec. VI, where we also com-
ment on the relation of our calculation with recent simi-
lar work, in particular that of Bensimon et al. ' and
Caroli et al. '

II. TIME-DEPENDENT PERTURBATIONS
IN THE SYMMETRIC MODEL

We consider the symmetric model in two dimensions
and let g=g(x, t) be the instantaneous position of the
solidification front, which we assume to be moving in the
positive z direction with velocity v. As usual it is con-
venient to measure lengths in units of p, the radius of
curvature of the tip, and times in units of p/U. The evo-
lution equation for the front is standard" and in our
scaled units can be written

tr[t, (x, t)]=p f f dx'[1+/( tx—r)]exp — I(x —x') +[/(x, t) —g(x', t —r)+r] I
P 0 2777 27

(2. 1)

where /=de/dt and

a'g/ax'
[1+(ag/ax )']'" (2.2)

is the curvature. The other quantities in (2. 1) have their
usual meanings. Specifically, p =vp/2D is the thermal
Peclet number with D the diffusion constant, which is
equal in both phases, b, = ( TM —T ) /(I. /c) is the di-
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mensionless undercooling, where TM is the melting tem-
perature, T„ is the temperature infinitely far from the
front, L is the latent heat, and c is the specific heat. The
Gibbs-Thomson correction, " doK/p, is determined by
the capillary length do ——yTMc/L, where y is the sur-
face tension. It is this term that is the singular perturba-
tion. Physically, the left-hand side of (2.1) is thus the lo-
cal equilibrium expression for the dimensionless temper-
ature along the solidification front. The right-hand side
of (2.1) is this same temperature obtained by directly
solving the diffusion problem with the front acting as a
line source of differential strength (I+/}dx, the kernel
being the Careen's function for two-dimensional diffusion.

At zero surface tension, the steady-state solution of
(2.1) is the Ivantsov parabola'' '"

g;„(x)= —
—,'x (2.3)

0 =do /pp (2.5)

However, as discussed in detail in Refs. 10 and 11, this
correction only exists if o. takes a special value o' deter-
mined by a microscopic solvability condition. Anisotro-
py plays a crucial role in this steady-state selection. We
shall, however, assume that anisotropy is no longer
essential for a discussion of time-dependent perturba-
tions, such as sidebranching, of the steady-state solution
once this has been selected.

where p and b, are related by

b, (p)=2 /ape tf e ~ dy=i/mp, p~O . (2.4)
v'p

In the presence of nonzero surface tension this solution
is modified by a shape correction go(x) which is formally
small in terms of the dimensionless parameter

Experimentally, o. is of order 0.02 so that the exact
steady-state solution is very close to the Ivantsov solu-
tion. Thus we linearize (2.1) about g;, by writing

g(x, t) = ——,'x +go(x)+pi(x, t), (2.6)

where both go and gi are small for small o. . We assume
that with the correct choice of o. as discussed above, the
smooth shape correction go cancels out of the lineariza-
tion of (2.1). The result is a homogeneous equation for
g&(x, t) linear in 8/r)t. It is natural then to Fourier
transform, where we define

gi(x, cv) = f e '"' (,(x, t)dt . (2.7)

Physically, this definition of the frequency as tv/i/cr
implies that the characteristic timescale for motion of g,
is of order Vo. We shall see later that mathematically
this is the appropriate timescale. However, it is useful,
at this point, to briefly consider the physically relevant
timescales. From the diffusion Green s function in (2.1),
we observe that the characteristic time of the thermal
field is p or, in dimensional units, pp/v =p /2D, which
is just the diffusion time for length scales of order p, the
tip radius. The other time scale that presumably enters
the problem is that associated with motion of the stabili-
ty front itself. The linear stability analysis of Mullins
and Sekerka' "' suggests that this time is A,, /v, where
A,, is a stability length of order QdoD/v. In our dimen-
sionless units this time is thus of order i/cr. Hence, we
can make a quasistationary approximation and neglect
the r dependence of gi and gi in (2.1) if p «i/o; a con-
dition that is generally satisfied experimentally.

With this approximation, we find gi(x, cv) satisfies

—oi~igi ——f f dx' i —gi(x', cv)+ [x —(x') —2r][gi(x, cv) —gi(x', to)]
o 2~r — v'g ' 2r

2

Xexp — (x —x') + (x')
27 2

X

2
+7 (2.8)

where K] is the linearized curvature operator defined by

1 d

(1+x ) dx
+Ki=— 3x

(2.9)
(1+x ) dx

The integral on the right-hand side of (2.8) involving g, (x, co) can be computed explicitly. The remaining integral
over r can be evaluated in terms of the Bessel functions of the third kind, Ko(z) and Ki(z), providing the resulting
singular integral is interpreted as a Cauchy principal value, which we denote by P J. The resulting equation of
motion reads:

with

—ovigi+ 1+x
ltd—+p Zo+Zi (2.10)

and

Zo ———f dx' e ~(" }~ g, (x', cv)Ko(Pi/il(x, x') },
7T oo

Z, = P f dx'[(x') —x ]e t'(' l g, (x', cv)[i}(x,x')] ' Ki(pv'i}(x, x')},
21T —OQ

(2.11)

(2.12)
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where

21(x,x')=(x —x') [1+—,'(x +x') ) . (2.13)

Equation (2.10) forms the basis of our subsequent
analysis. It is worth emphasizing that the only approxi-
mations made in deriving it from (2.1) are the lineariza-
tion about the Ivantsov parabola and the quasistationary
approximation.

III. WKB SQLUTION

with

g(x, co) =exp[iW(x, co)/&o ] (3.1)

To proceed further and obtain an analytical solution
of (2.10), we will take advantage of the fact that the ex-
perimentally relevant values of o. and p are much less
than unity; typically o.-0.02, and p (5X10 . In addi-
tion, as discussed above, the quasistationary approxima-
tion requires p «&cr. Thus it is reasonable theoretical-
ly to consider the limit p~0. However, this limit is del-
icate because of the logarithmic divergence at small ar-
gument of Eo. Unlike in the steady-state calculation'
(or in the derivation' of the corresponding dynamical
equation in three dimensions), we cannot simply set

p =0. We can, however, evaluate the integrals in (2.11)
and (2.12) by an extension of the method used in the
steady-state calculation, which avoids the apparent prob-
lems for p =0.

The essential idea is the same. We endeavour to re-
place the integral operators by local terms by assuming
that gi(x, co) has a WKB form governed by the singular
parameter o'.

which originally runs along the real axis, into the com-
plex x' plane. As in the steady-state calculation, we do
not know a priori whether to bend into the upper or
lower half plane but need to check for self-consistency of
the resulting solutions. The required consistency condi-
tion is that the modulus of the WKB solution decreases
exponentially in the direction in which the contour is
bent. In bending the contour we must take note of the
singularity of the integrands at x'=x. In (2.12) this is a
simple pole, but in Z0, (2.11), we have a logarithmic
branch point arising from KD(p v'r)) = —ln

~

x —x '
~

as
x'~x. The associated branch cuts are most convenient-
ly defined by the regularization ln

~

x —x '
~

~ln[(x —x') +e ]', e~O+, resulting in a double cut
structure.

For small o. we expect these singularities to yield the
dominant contributions to the integrals; the remainder
of the contour contributing exponentially small (in v'cr)
corrections. In the steady-state discussion' of the solva-
bility condition, the justification of this estimate relied
on the existence of saddle points in the analogue of
W(x, cu) at x =+i with ImW &0. Here we will find that
ImW(x, co)=0 for pure imaginary x. Nevertheless, it
will transpire that we can deform the contour in both
(2.11) and (2.12) to a new contour along which
ImW(x', co) is a minimum for x'=x.

It is possible to carry out this procedure directly on
(2.11) by explicitly integrating along the relevant branch
cut arising from K0(p&r)). It is, however, more con-
venient to deal with the logarithmic branch cut in Z0 by
differenting (2.10) with respect to x to obtain

d - d
cr —(ic,g, )+Jx dx

W(x, ar)= W ( 0xco)+ vrWci(x, ai)+ . (3.2)

and solve explicitly for W0 and 8'&.
With this substitution for gi, we perform the integra-

tions over x' by deforming the contour of integration, where

1 CO JZ ]

v'g
—+p (pxZ0 —ZD )+

QX
(3.3)

ZD —— P J dx'[c)21(x, x')/Bx]e i'('" l/ g, (x', co)[2)(x,x')] '/2Ki(p&r)(x, x')),
277 00

(3.4)

We may now take the limit p~0. Hence, on using the
fact that K, (z)-z ' as z~O+, Zi and Z0 both become
of the form

f (x', x)gi(x', co)F [gi]=P dx' (3.5)

where f (x', x) is regular at x' =x.
Inserting (3.1) for gi, we can evaluate F by deforming

the contour as described above. From the pole at x'=x
we obtain

F[g i ]= +serif(x, x)g i (x,co), (3.6)

where the + ( —) sign refers to the contribution arising
from deforming the contour into the upper (lower) half

plane. To ensure that the remainder of the contour does
not contribute, we require that

+Re W~'(x) )0 . (3.7)

2/2
( g+)+ i/2

8x Qx 1+x

(3.8)

Substitution of (3.1) into this equation yields, on equat-

Here and below the prime denotes differentiation with
respect to x.

Applying the result (3.6) to Z, and Z~ in the limit

p ~0, reduces (3.3) to a local ordinary differential equa-
tion for g —, , namely
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ing powers of 3/cT, a set of equations for the WKB func-
tions, W0, W1, . . . . To simplify notation we set

(I) + .
e +is/2+ ( +(8+0 ( 2)—

2 (3.20b)

8=tan —'x, (Ic=(1+x')'"
and define

(3.9)
and

(3.20c)

iW—'
0

(1+x')'"
Then z+ satisfies

(3.10)

Applying conditions (3.13) and (3.15), we conclude that
for co « 1, the only acceptable solutions for x & 0 are z' '

if co & 0 and z'+' if m & 0.
Integrating (3.20a) gives

r

z++e ' z++co=0,

while the first correction W& is given by

iW —,

' 3z+(z+/(Lc)'+(e ' /(Lc)'

(1+x2)I/2 3z2 +e+i()

(3.1 1)

(3.12)

and

2

ReWO ———ca —co A (x)+0(co )
2

ImWO ——+co[x —aI B (x)+0(co )],

(3.21)

(3.22)

Note that (3.11) confirms our early anticipation that ca

should scale as I /&(T.
Since (3.11) is a cubic, there exist three possible solu-

tions for Wo '. The relevant solutions (if any) must satis-
fy (3.7), which implies that

where

A (x)=12—4(1+x )'/—

and

(3.23)

+Imz+ &0 . (3.13) B (x)= —15s (x)+ 8x (1+x )'/ + sx
(I+ 2)I/2 (3.24)

gi(x, a3)~0 as x~+ oo .

Hence, we require

ImW —&0 as x~+ ao

(3.14)

(3.15)

Physically, we will be interested in disturbances that
propagate down the sides of the dendrite away from the
tip. Our ensuing analysis is clearer if we discuss explicit-
ly only propagation towards x =+ ~. In this case, we
also demand that

with

s(x)= —,'ln[x+(1+x )'/ ]+—,'x (1+x )' (3.25)

For future convenience, we have adjusted the constant of
integration so that WD (x =0, co)=0. It is straightfor-
ward to check that ImWQ (ImW0+ ) has the correct be-
havior along the deformed contour for co) 0 (co(0) to
justify our estimation of the integrals in (2.11) and (2.12).
As x~+ (x),

or A (x ) = —4x -+ 0 ( 1 ) (3.26)

Rez+~R„&0 as x~+ ~ . (3.16) and

1/2

27 4

+- 3i0
CO+
2

1/3

(3.17)

It is possible to find the three roots of (3.11) explicitly.
Define

B (x ) = —,
' x +0 ( lnx ) .

The leading terms in (3.21) and (3.22) imply that

1 (x,~)-e im(t —x /2)/+o. co[x —(u B(x)]/+o.

(3.27)

(3.28)

and
1/2

27 4

+ 3iO
1/3

(1) 2n.i /3(y+ + m.i /3'+z+ ——e

(2) —2vri /3C + + —m.i /3'+

then the three roots of (3.11) can be written

(3.18)

(3.19a)

(3.19b)

(3.19c)

which, as required, describes a perturbation that propa-
gates towards x =+ oo. However, while g I ultimately
decays in accord with (3.14), initially the perturbation is
amplijied Moreover. , for small co this amplification in-
creases with ~. We also observe that the speed of propa-
gation down the dendrite is unity so that the perturba-
tion remains stationary in the laboratory frame.

We can similarly expand (3,19) for large co. The three
solutions are then

(k) + I /3:F 2nik/3+ I —I/3 +2m(k/3 +(9+0 (
—5/3)z+

We shall make use of these exact expressions later in our
numerical calculations. However, to explore the essen-
tial physical (and mathematical) content, it suffices to re-
tain only the leading two terms in a small co expansion.
Expanding (3.19), or, more directly, (3.11) we obtain

(3.29)

Again, applying (3.13) and (3.16), we find that only one
of these solutions is acceptable. For x &0 and co»1
this is z' ', which gives

(0) + [
+i() 2 +4i()+ 0 ( 4) ] (3.20a) 'Wo = —

—,'s(x)co'/ (1+t3/3)+0 (co (3.30)
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x
7.5 9.0 10.5 12.0

FIG. 1. Plot of —Im8'o(~) as a function of x for the indicated values of co.

where s(x), defined in (3.25), is the arc length down the
dendrite. (For co « —1, the appropriate solution is z'+'. )

Since the real part of (3.30) is negative for all x, there is,
in this case, no amplification of the perturbation as
occurs for small co.

The preceding analysis establishes the existence of a
single acceptable WKB solution to (3.8) for sufficiently
small and su%ciently large co. However, the solutions in
these two limits correspond to dijferent roots of (3.11).
Inspection of (3.17) or (3.18) shows that the determinant
of this selection is the phase of the square root appearing
in N —and O' —. Hence, we expect that z' ' remains the
relevant solution for a11 co & cu„where

co, =4/27 . (3.31)

At this critical value, the two WKB solutions become
degenerate at O=n/3 (or x =i/3). . As co passes through
co„z' ' and z' ' exchange their validity with respect to
condition (3.16).

For co&co„z' ' is such that the resulting solution
g&(x, co) converges at infinity, whereas the solution de-
rived from z' ' diverges. For co&co„z' ' yields the con-
vergent solution for g&. This switch of the physically
relevant solutions has a marked efFect on the response of
the dendrite to a perturbation of given frequency. This
can be seen in Fig. 1, where we plot —Im Wo(x) as func-
tion of x for different values of co with 8'0 constructed
by integrating the appropriate root, z'0' or z' ', of (3.11).
This figure is essentially, apart from a scaling by 1/v o,
a plot of the logarithm of the amplitude of g&(x, co). The
amplification implied by (3.22) for small co is apparent.
The qualitative change in the response as co passes
through cu, is also apparent. Strikingly, we observe that

for u slightly greater than co, the perturbation is first
suppressed then magnified before ultimately decaying.

It should be stressed, however, that the naive WKB
analysis that we have carried out breaks down in a
neighborhood in the complex x plane of x =i/3 for
co-co, . We discuss this point further in Sec. IV. In par-
ticular, one would expect that the derivative of exact
solution of (3.8) near x =0 to vary smoothly with
rather than discontinuously as suggested by Fig. 1.

With 8'0 evaluated, we can, in principle, compute 8'&

from (3.12). For small co, we obtain by substituting
(3.20a) in (3.12) and integrating

i W , =ln( 1+ix)——2' (e —' —1)+O(co ), (3.32)

where we have again set the constant of integration so
that W —, (x =O, co)=0.

IV. COMPARISON WITH NUMERICAL RESULTS

In this section we compare our analytical results with
the numerical analysis presented in a recent paper by
Kessler and Levine. ' As we shall see, we can reproduce
with a satisfactory quantitative agreement all the quali-
tative features emphasized by Kessler and Levine, al-
though we must admit that, in view of our analytical re-
sults, the sidebranching wavelength selection mechanism
proposed by those authors does not seem to be complete-
ly well defined. In order to make the comparison more
transparent, we switch, in this section, to the notation
used by Kessler and Levine, whose length and time units
are I =2D /v and I /v, respectively; 1 being the diffusion
length.
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The numerical study refers to the normal displace-
ment 5(u) of the steady-state interface when the system
is forced at a particular frequency Q. [The parameter u

is defined below in (4.2).] This is the same as solving
(2.8), with the difference that while we treat both the
steady-state shape correction and the time-dependent
perturbation to linear order, only the latter is considered
small in the numerical analysis of Ref. (14) where lineari-
zation is performed about the full steady-state solution.
For those values of parameters that we are interested in,
this should not make an appreciable difference. To
first order in g, (x, co) one can easily check that

g, (x (u), co)
5(u) =

[1+x (u)]'
(4.1)

where the relation between x and u as defined by Kessler
and Levine is

u =-,'p[(1+2x ) —1]' (4.2)

Note that p accounts for the change in length unit and
that u is a simple interpolation of the relation [see (3.25)]
between x and the arc length s along the Ivantsov para-
bola. If x «1 then u =s, while for x ~&1 we have
u =2s. Finally the relation between co and 0 is easily
computed to be co=pv'c7$1.

A11 the qualitative features of the numerical study of
the sidebranching modes are actually evident already in

i Wp (x,co)
Re

CT

x —ni —(1+x )' +
o 2 (1+x )'

——", ln[x +(1+x )'~ ] (4.3)

We explicitly see that the sidebranching mode
gi(x) —exp(iWO /&o ) is exponentially amplified in a re-
gion that, for co «1, extends to x =1/co . For x greater
than this, the amplitude decreases and eventually dies
away. This is illustrated in Fig. 2, which is a plot of
Re6(u) as a function of the arc length parameter, u, for
0=25 and v'o =0.13.

On the other hand, if we fix x and consider the
response as a function of co, we find that the
amplification has a peak at au~ =2/3x. Because of this x
dependence, it is not obvious to us how one should select
the value of co responsible for the experimentally ob-
served sidebranching wavelength. Indeed, for 0 & co & co,
all modes are characterized by exponential amplification
and we can check explicitly that the quasistationary ap-

Fig. 1 of the preceding Sec. III, which is a plot of
Re[iWo (x,co)]. More quantitatively, for small co we
have, to order co, from (3.24) and (3.28):

C)
C)

0=25, v o=0.13

C)
C)

C)
iiiit, , .

ft/)/TED+

C&

CO

i 0.0 8.0 1 6.0 24.0 32.0 40.0 48.0

u un' s o

FICr. 2. Response of the dendrite to a fixed frequency (0=25). The curve is a plot of Re5(u)=Re[exp(iWO/v'o+iW, )] as a
function of the arc length parameter u for &o.=0.13 and p =0.08. The functions Wo(x) and W&(x) were obtained by extending
their small co expansions (see Sec. III) to fourth order. (Note that the abscissae are in units of the diff'usion length. )
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C)
O
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tioned in Sec. III, the WKB analysis breaks down in a
neighborhood of the point x =&3 in the complex x
plane when co=co, . Indeed the relevant turning point of
(3.8) moves from x =i through x =v'3, at to=co, , to
x = —i when co goes from 0 to + op. Our analysis, how-
ever, completely neglects this fact; essentially because we
are mainly interested in values of cu such that co «co,
and, in this regime, our solution is uniformly valid for all
positive x.

A more careful examination of (3.8) when cu is in a
neighborhood of co, would also presumably smooth away
the discontinuous behavior of the solution close to co,
that has been discussed in Sec. III and can be seen in

Fig. 1. Such a detailed analysis, however, although
mathematically interesting is somewhat unnecessary
from our point of view as will appear more clearly from
the analysis of Sec. V.

0.0 1.8

I I

3.6 5.4

urll S 0
7.2 9.0

FICr. 3. Amplification, 1n
~

5(u) ~, of fixed frequency pertur-
bations as a function of distance, measured by parameter u, see
(4.2), from the tip. The solid curves are the WKB approxima-
tions for 5(u) obtained by numerically integrating (3.20a) and
(3.12) for Wo and Wl. The dashed curves are the correspond-
ing numerical calculations of Kessler and Levine (Ref. 14).
The system parameters pertaining to the plot are o. =0.017 and

p =0.08.

proximation is satisfied by these modes if co&p&0. . As
we will see in Sec. V, this whole band of values of cu is
relevant to the propagation of localized wave packets.

In Fig. 3 we directly compare our result for the loga-
rithm of the amplitude log

~

6(u)
~

with the numerical
data of Kessler and Levine. The values of 0 chosen are
20 and 25 and correspond ' to values of cu given approxi-
mately to 0.21 and 0.26. The quantitative agreement,
which is quite satisfactory for these and smaller values of
m, is not so good when m gets closer to co, . The reason
for this disagreement is easy to understand. As men-

V. EVOLUTION OF A WAVE PACKET

Our analysis in Sec. III and the discussion of Sec. IV
has concerned the evolution of a perturbation of axed
frequency. It is more relevant physically to consider
small perturbations of the steady-state needle crystal
that are localized in space and propagate down the den-
drite. Hence, we define a nave packet

g, (x, t) =f de F (ru)g)(x, ru)e'"' (5.1)

where we assume that F (co)=F ( —cu) is smooth and
broad and that g) has the WKB form (3.1). Again, in
the spirit of Sec. III, we shall restrict attention to the
propagation of this pulse towards x = + ~.

We focus on the behavior of the wave packet after it
has moved well away from its initial position near the
tip. Our results of Sec. III imply that for x, t &&1, the
wave packet will find itself in regime such that only
small values of n) contribute to the integral in (5.1). We
can thus simplify the discussion by making use of the
small cu expressions, (3.21), (3.22), and (3.32), for the
WKB functions, where 8' is the relevant solution for
co & 0 and W+ that for cu &0. Since i&+(x, —cu)
=[iW ( , x)]co*, where e denotes complex conjugation,
we can write (5.1) as

( t) 2( I+ 2))/2R —&9 f d F ( )
cu[x cu B(x)]l (r i—co[( —z+cu A (x)]l ax,

0
(5.2)

where the functions A (x) and B (x) are given by (3.23) and (3.24), respectively. In writing (5.2), we have also neglect-
ed the term of order ~ in 8'&', an omission that will be justified by the following analysis. We have also defined

2z= —x
2

(5.3)

. z —t
1 —i

&2z
(5.4)

which for large x is simply the arc length s, recall (3.25), along the dendrite from the tip to the point (x,z). We shall
find that the most important regime is z —t.

We now estimate the integral over co in (5.2) by a saddle point approximation. The saddle point frequency is

1/4 1/2

CO~ = 1 2 ——5/4
v'3 z

+O(z ' ),

where the second term can be neglected for (z —t) «z, thereby substantiating our use of the small n) expansions in
(5.1) and the neglect of all cu dependence in W). Hence we obtain
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i/4
gi(x t)-f(2z)' o' Imexp 1 —i

c lJ

3//2

(5.5)

where c =3/3/2 and f is a numerical constant of order unity. For (z —t) «z this simplifies to

g, (x, t ) —f(2z )
' 'o''/ sin

(t —z ) (2z )'"
exp

ci/o (2z )'" c3&cr
(z —t)'

4ci/o. (2z )' (5.6)

This result describes an exponentially growing wave
packet, whose amplitude varies as exp(az ' /v cr ),
where a is a positive constant. From the exponential
factor in (5.6), we observe that the pulse is centered at
x = t so that it moves down the dendrite at unit velocity,
that is, it remains stationary in the laboratory frame.
However, the width of the packet increases as

i/2 i/4(2 —)3/8 (5.7)

and the wavelength

(5.8)

is also weakly x dependent.
Two features of the wave packet described by (5.6) are

worth specific comment at this time. Firstly, the depen-
dence of the amplitude, width, and wavelength on o. and
on z is identical to that found' in the boundary layer-
model. Secondly, in contrast to the fixed frequency
response discussed in Secs. III and IV, the disturbance
continues to grow at arbitrarily large distances down the
dendrite. This growth is a consequence of our assump-
tion that the initial pulse contained arbitrarily small fre-
quencies. It is only these components of lower and
lower frequency that continue to grow unstably by the
process described in Sec. III as z increases.

VI. SUMMARY AND DISCUSSION

In this paper we have discussed the evolution of time-
dependent perturbations of the needle crystal solution of
the two-dimensional symmetric model of solidification.
Within a WKB approximation we found that a selective
amplification mechanism results in the initial
amplification of a perturbation of fixed frequency co (less
than some critical frequency co, ) as it propagates down
the dendrite. However, ultimately such a perturbation
dies out. On the other hand, a wave packet that is ini-
tially localized close to the tip will continue to grow ex-
ponentially as the pulse moves to arbitrarily large dis-
tances from the tip provided the initial wave packet con-
tains modes of arbitrarily small frequency. Our analysis
predicts that the amplitude of the packet grows as

1 /4 —1/2
e",where a is a positive constant, o. is a dimen-
sionless surface tension parameter, and s is the arc
length down the dendrite. The characteristic wavelength
associated with the packet varies as o' s', while its
width varies as o'/ s /; recall (5.7) and (5.8). Typically,
o -0.02.

At this point a comment is appropriate on the closely
related work of Pelce and Caroli et al. ' using the

Zel'dovich ' method. Pelce's initial perturbation does
not contain low-frequency components. Consequently,
he concludes that the perturbation dies out at large z.
On the other hand, Caroli et al. ' discuss the evolution
of a localized front deformation. The starting point of
this analysis is a linearized equation that appears to ac-
count, rather generally, for the effects of the initial shape
correction and temperature field perturbations. Howev-
er, some of the subsequent approximations introduced to
make this equation mathematically tractable are com-
pletely equivalent to simply replacing it with our equa-
tion (2.8). Caroli et al. then essentially assume a solu-
tion of the form g&(x, t) =e '"'", where

S (x, t) =f (t)+iq (t)[x —xo(t) ]——,'a(t)[x —xo(t)]

(6.1)

and derive equations for the functions f (t), q (t), xo(t),
and a(t). While this ansatz is precisely of the same form
as our fina/ result (5.6) for the wave packet and the pre-
dictions for the behavior of the width and the charac-
teristic wavelength agree, apart from a numerical factor,
with our results (5.7) and (5.8), the two analyses are, in
fact, rather different. One reflection of this difference
occurs in the amplification of the wave packet; Caroli
et al. do not obtain the exponential amplification that
we predict. The origin of the differences in the two tech-
niques seems to be fundamental. The analytical tech-
niques of Caroli et al. do not appear capable of treating
correctly the small co modes, essential for the
amplification. The power of the WKB method we have
used, in contrast to a Zel'dovich approach, is that it does
not force us to consider an initial perturbation which is
localized on the scale of the tip radius. This is quite im-
portant since, from the discussion in Sec. V. it is the
very long wavelength components of the initial perturba-
tion that are crucial in determining the amplification of
the packet, rather than the "most dangerous" initial
modes as assumed by Caroli et al.

As remarked in Sec. V, our results on the propagation
of a wave packet are identical, as far as their dependence
on o and s are concerned, as those found' in the
boundary-layer model. Despite the neglect of nonlocal
effects in its treatment of the thermal field, this model
appears to retain faithfully many of the essential effects
and features of more realistic models.

Our results for the propagation of fixed frequency
modes for sufficiently small frequency quantitatively
reproduce a11 of the features found in a recent numerical
study' of the same problem. At higher frequencies, the
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agreement is only qualitative due to a breakdown of our
WKB analysis. It is conceivable that this could be
rectified by a more detailed analysis of the WKB solu-
tions. We have not carried this out since we believe that
the evolution of wave packets is more relevant to side-
branching in dendrites than the evolution of fixed fre-
quency perturbations.

The picture we have of the generation of sidebranches
is as follows. The growing needle crystal is perturbed lo-
cally by some external noise, presumably simple broad-
band thermal noise. Perturbations arising near the tip
propagate down the sides of the dendrite and undergo
amplification as described above resulting in the ultimate
development of visible sidebranches some distance from
the tip. It is precisely this scenario that was suggested
by the boundary-layer model results. ' In view of the
quantitative agreement between our results for the sym-
metric model and corresponding calculations in the
boundary-layer model, it is very plausible that a noise-
driven sidebranching mechanism is also valid. To
confirm this expectation requires the explicit inclusion of
noise into our calculations. Since the symmetric model
is based on a completely realistic description of the
thermal field there is in principle no difhculty in adding
such thermal fluctuations. However, there are very
definite technical difhculties. Some progress is possible
and this is described in a separate report. '

One of the most satisfying aspects of the calculations
reported in this paper is the extent to which it is possible
to carry out an analytical treatment of what is a rather
difficult nonlocal problem Irecall (2.1)]. Our results, to-
gether with earlier results on steady-state velocity selec-
tion' in dendrites and related work ' on viscous
fingering in the Saffman-Taylor problem, confirm that
such WKB approximations are very powerful methods
for the discussion of such singularly perturbed nonlinear
problems.

We conclude by commenting specifically on one recent

other application' of this approach that is very similar
to the calculations reported in this paper. Bensimon
et al. ' discuss the stability against short wavelength
perturbations of moving curved fronts in both the den-
drite problem and the Saffman-Taylor problem. While
their basic equation is very similar to, but slightly
simpler than, our equation (2.8), their resulting equation
for the dominant WKB solution, 8'o in our notation, is
identical to our equation (3.11) with again two possible
solutions, the analogs of z' ' and z' of Sec. III. The
difference is that Bensimon et al. consider pure imagi-
nary co ( =iv) corresponding to the so-called tip-splitting
modes. As a result, the boundary conditions they im-
pose are diff'erent, namely, modes must vanish as x tends
to both + ~ and —~. They find that acceptable solu-
tions exist now only for select values of v. These values
are determined by a resonance condition similar to the
Bohr-Sommerfeld quantization relation, the derivation of
which involves a subtle consideration of the behavior of
the WKB functions in the complex plane. This analysis
is similar to that one would need to perform to accurate-
ly describe the behavior of sidebranching modes with
frequencies co-co, =2/3&3. While of interest
mathematically, such an analysis is of less relevance
physically given the conclusions reached in Sec. V con-
cerning the motion of spatially localized wave packets.
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