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A series of molecular-dynamics simulations of binary-fluid mixtures composed of softly repelling
spheres have been made as part of an investigation of the glass-forming properties of mixtures.
These mixtures are simple prototypes of glass-forming systems, as both randomness and frustra-
tion are intrinsic to them. The randomness is inherent in the fluid and frustration is due to the
large, local rearrangement of atoms required for the formation of a crystal from a fluid or glassy
configuration. The equation of state, pair and triplet correlation functions, single-particle velocity
time autocorrelation functions, and some measures of local glassy order have been determined for
a range of compositions, X, and effective reduced densities, I,&

——(n /T*' )(o.,iI/o. ii)', where o.,iI.

is the one-fluid van der Waals equivalent diameter. In addition, attention has been focused on the
relaxation of some anisotropic correlation functions characterizing the local environment. At-
tempts have been made to analyze some of these quantities using plausible phenomenological mod-
els. The changes in these quantities which occur as the fluid is supercooled and finally forms a
glass are examined and the possible implication of these findings for certain dynamical theories of
the glass transition are discussed. Calculations have also been performed to determine composi-
tional conditions necessary for a supercooled liquid to crystallize and the relevance of this to re-
cent experiments is discussed.

I. INTRODUCTION

The problem for statistical mechanics posed by the ex-
istence of glassy, nonequilibrium states of matter is one
of the most challenging ones currently being studied.
Although considerable progress has been made in under-
standing the mean-field solution to certain classes of
spin-glass models, ' the theory for the more difficult
structural glass problem involving topological disorder-
is not well developed. One of the main reasons for this
difficulty is that, unlike in the case of mean-field spin-
glass models, it has been quite difficult so far to con-
struct a simple model (or a tractable field theory) that
can adequately describe the abrupt increase in viscosity
which is observed as a liquid nears the glass transition
temperature. A way to make progress is to assume that
some mode becomes frozen in (i.e., the relaxation time
associated with a decay of that mode diverges or be-
comes extremely large) and to look for a dynamical
mechanism that describes this. Indeed, Leutheusser
proposed a model based on kinetic theory in which it
was assumed that the density Auctuations become frozen
in as the glass transition temperature, Tg, is ap-
proached. " The freezing in of the density fluctuations
occurs because of a nonlinear feedback mechanism
which inhibits structural relaxation. However, diffusion
is itself determined by the ability of the particles to un-
dergo structural rearrangements. Thus, the structural

relaxation time, ~„, becomes a function of the structure-
dependent viscosity, q(r„), and the self-consistent solu-
tion for ~ t

' leads to a power-law divergence as Tg is ap-
proached. However, in laboratory glasses, there ap-
pear to be several regimes where the viscosity scales
differently with temperature. ' A natural question that
arises is whether there are additional parameters whose
relaxation directly, or indirectly, controls the abrupt rise
in the viscosity. The current dynamical theories do not
predict the varied behavior of the shear viscosity, g, of
laboratory glasses as a function of temperature. In par-
ticular, the crossover from a power-law behavior in g to
an Arrhenius-type behavior close to T~ is not well un-
derstood. Several computer-simulation studies' of sim-

ple models have been attempted in order to shed light on
this issue, but many of the essential ingredients needed
to postulate a dynamical model have not yet been deter-
mined. The present work is an initial attempt towards
this end. In particular, the work reported here
represents a preliminary step in an investigation of the
formation of glassy states for two-component systems in-
teracting via continuous potentials. It certainly is desir-
able to have a simple, well-characterized system to serve
as a test case when developing ideas on how to describe
the glassy state. One goal of this work is to provide
such a well-characterized system.

We have chosen to study the binary-Quid mixture of
softly repelling spheres. It is an attractive candidate for
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such a test-case system because it is one of the simplest
systems to form a glass readily. ' Two important
features of a glass-forming system have been identified as
"randomness" and "frustration. " The ease with which a
"computer glass" is formed from a binary mixture is a
result of the inherent randomness of the arrangement of
the particles in the fluid and the frustration associated
with the relatively large local displacements needed to
organize the atoms in a crystalline arrangement starting
with a distorted fluid configuration. A binary mixture
requires interchanges of atoms whereas a one-component
soft-sphere fluid only requires small displacements of
atoms to form a crystal. The result is that the frustra-
tion is much weaker in the one-component fluid than in
a mixture. The extent to which the system experiences
topological frustration depends on the composition and
the size ratio of the two components, and probably on
the quenching rate. Thus it appears that frustration
would be a rather difficult thing to quantity, but model
free energies which capture the essence of frustration
can be written down. ' ' It is appropriate to search for
the consequences of frustration and it seems clear from
the work reported here that in the structural glass-
transition problem there is a finite length scale associat-
ed with frustration. Consequently, we have attempted to
identify an appropriate "local" order parameter which
exhibits an increasing relaxation time with decreasing
temperature and which is for practical purposes frozen
in at and below T~. We report here the results of a
series of molecular-dynamics simulations of the binary
soft-sphere system with a view towards addressing some
of the issues raised above. Another objective of this
work is to develop a body of information about a typical
model of glass-forming systems to serve as a resource on
which to base refined studies.

We have determined equilibrium properties such as
the pressure, energy, and temperature relations for mix-
tures of soft spheres as functions of concentration, and
of the relative size of the spheres. This part of the study
complements the work of Bernu et al. ' We also calcu-
late the pair correlation functions and a reduced triplet
function which has proved successful in characterizing
the structure of fluids in other contexts. ' The latter
quantity may be especially useful (and perhaps neces-
sary) in understanding the structure in supercooled
liquids where a localized, highly correlated motion is in-
volved in the processes of structural relaxation.

One of our major objectives is to shed some light on
the reasons for the large rise in the viscosity which
occurs when a supercooled liquid is cooled to the glass-
transition temperature. Computer-simulation studies
cannot by themselves reveal the physical mechanism for
properties that are dominated by events that happen
with exponentially small probability. However, it is
hoped that by a systematic study of several time-
dependent correlation functions one will be able to pro-
pose dynamical models for relaxations in glasses and this
remains one of our major purposes. Accordingly, we
determine several dynamical quantities, namely, the
self-diffusion coefficients and the single-particle velocity
time autocorrelation functions for the mixtures. A

correlation between their behavior and the degree of su-
percooling is made. In addition, we also examine possi-
ble candidates for local order parameters which might
help analyze relaxation near the glass-transition temper-
ature. While we are not able to identify a specific quan-
tity as an obvious choice of order parameter, it seems
clear to us that a useful order parameter should be a lo-
cal quantity. The basic reason why the order parameter
characterizing the very slow structural relaxation should
be a local quantity is the following. Very close to the
glass-transition temperature, the viscosity is believed to
be described by a Vogel-Fulcher-Tammann law' and
thus structural relaxation is expected to proceed by some
type of activated process involving transitions between
barriers which separate the various minima of the free-
energy surface. Because liquid and glassy states do not
have long-range spatial order, it is physically plausible to
assume that such a barrier-crossing event should involve
only a few particles and consequently the relaxation pro-
cess should be described by a local order parameter. We
return to this point in greater detail in Sec. IV.

The remainder of this paper is organized as follows.
The details of the model and the computational pro-
cedures are described in Sec. II ~ In Sec. III we discuss
the equilibrium properties as the binary mixture is super-
cooled and we also compare the results of our work with
the results for dense-random-packed models. Section IV
is devoted to the results of the dynamical properties in-
cluding the presentation of the relaxation of several
local-order parameters. An attempt is made to analyze
some of these in terms of phenornenological models. In
Sec. V we discuss in some detail the conditions under
which binary-fluid mixtures crystallize as they are super-
cooled. This is corroborated with certain very simple
empirical theories. The relevance of this to recent ex-
periments involving vapor deposition of binary mixtures
containing Fe is also discussed. The paper is concluded
in Sec. VI with some discussion and speculation concern-
ing the applicability of our work to the construction of
dynamical models for structural glass transition.

II. MODEL AND COMPUTATIONAL DETAILS

The model for the mixture consists of N& soft spheres
of type 1 with mass m i and diameter o», and N2 soft
spheres of type 2 with mass m2 ——2m

&
and diameter o.zz.

The interaction between spheres of type AB (A, B =1,2),
separated by a distance r;~, is an inverse 12th-power
repulsion of the form

AAB(» ) ~(~/IB ~» ')

We assume that the cross-interaction diameters are addi-
tive, namely, that a.

&2
———,'(o. ~~+crzz). Deviations from

this rule lead to a variety of clustering effects which are
of interest in themselves, but which are outside the scope
of this investigation. ' In the simulations discussed in
this paper the total number of particles, N =N&+N2,
was always 500. The concentration variable X =N&/N
specifies the concentration of type-1 particles. We use
o» as the unit of length, m

&
as the unit of mass, and e

as the unit of energy. Time is quoted in units of
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TABLE I. Parameters for the soft-sphere systems studied by
computer simulation.

factor pV/i'&T is a function of the eA'ective reduced
density I,& with the form

Range of I,~ Symbol pV/Xk~ T =7+6.848I,~ . (6)

0.2
0.8
0.4
0.5
0.5
0.8
0.2

1.2
1.2
1.2
1.2
1.1
1.1
1.1

0.93—1.60
0.85 —1.53
1.20-1.71
1.20- 1.64
0.92—1.70
0.83—1.71
1.02- 1.67

(2)

Our results confirm this scaling with I,z as is shown in
Fig. 1 where pV/Nk&T values for all of the fluid states
we have examined are plotted as a function of I,z. All
of the composition and size-ratio dependence of the ther-
modynamic properties of these mixtures is contained in
their dependence on I,z. This dependence of the
compressibility factor, p V/Nkz T, holds both in the
liquid and in the glassy states. It is not known for how
large a size ratio this result will hold, although it holds
«r o2$&1.40». 14

The quantity cr,& is the one-fluid van der Waals
equivalent diameter' and is defined by

o',s Xo——))+2X(l —X)u)q+(1 —X) o'p2 . (4)

We find I,z to be a good measure of the composition
dependence of the compressibility factor, p V/Nkz T.

The system parameters considered in this paper are
listed in Table I along with the range of thermodynamic
states examined. Given the richness of the parameter
space for a binary mixture, it is not possible to be ex-
haustive in the coverage of the thermodynamic possibili-
ties. Instead, choices must be made based on the
motivation of the investigation. The choices represented
in Table I reflect our interest in the supercooled liquid
and in the glassy state.

The simulations were performed for constant energy-
constant volume conditions and periodic-boundary con-
ditions were employed. The equations of motion were
integrated using the Beeman algorithm with a time
step of 0.01~. Production runs of 10000 time steps were
made to collect results once a stable thermodynamic
state had been established. The stability of the state was
checked by comparing results from sequential runs.

III. EQUILIBRIUM PROPERTIES

The number density is n *=No.
&] /V where V is the

volume of the system. Finally, the temperature, T, is
taken to be —', the mean kinetic energy per particle and is

expressed as T*= k& T/e, where kz is Boltzmann's con-
stant, and the pressure, p, is expressed in units of e/o. ».
Bernu et al. ' have suggested that it is useful to intro-
duce an eA'ective reduced density defined as

(3)

B. Pair functions and partial three-body
correlation functions

The structure of the mixture has been examined in
terms of the pair functions, g»(r), g&z(r), and gz2(r).
These functions are normalized so that they approach
X, 2X(1—X), and (1 —X), respectively, for large sepa-
rations of the atoms. Note that this choice of normali-
zation diA'ers from that of Bhatia and Thornton by
these factors. The pair functions are shown in Figs. 2 —4
for X =0.5 and for three values of I,a. (referred to below
as "the three values of I,tr"), namely, 1.26, 1.37, and 1.7.
These functions have been constructed with a spatial
resolution of 0.01. The first state is a liquid, perhaps
slightly supercooled, the second state is a significantly
supercooled liquid and the third state is a glass. Note
that for l,z——1.37, the second peak in each of the pair
functions is slightly broadened, but is not split, as is the
case for I,&

——1.7. This is in contrast to the results of
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Because of the form of the interaction, Eq. (1), the
pressure p, energy E, and temperature T of the fluid are
related by

pV/'&kg T =4E/~kg T —5,
independent of the composition, masses, and size ratios
of the components. ' This equation follows from the ap-
plication of the virial theorem to the soft-sphere model.
Bernu et a/. ' have indicated that the compressibility

FIG. 1. Compressibility factor, pV/Nk&T, is shown as a
function of the reduced density I,z for all of the fluid thermo-
dynamic states examined in this work. Well-annealed glassy
state values are slightly lower than the fluid values shown here.
The plotting symbols are listed in Table I along with relevant
system parameters. This clearly shows that pV/NkqT scales
with I,~ and that the concentration dependence is embodied in
the reduced density.
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FIG. 2. Pair functions g»(r) for the X =0.5 mixture of soft
spheres with o.22

——1.1o.&I. The solid line is for I,~——1.7, a
glass, the dashed line is for I,&——1.37, and the dotted line is for
I,g ——1.26.

FIG. 4. Pair functions g22(r) for the X =0.5 mixture of soft
spheres with o.22

——1.1o.». The solid line is for I,~——1.7, a
glass, the dashed line is for I,~——1.37, and the dotted line is for
I,g ——1.26.
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FIG. 3. Pair functions g»(r) for the X =0.5 mixture of soft
spheres with o.22 ——1.1o.». The solid line is for I,&

——1.7, a

glass, the dashed line is for I,z ——1.37, and the dotted line is for
I, 1.26.

Bernu et al. ' who report that the splitting in the second
peak occurs for I,z& 1.3, which is a supercooled liquid.
The glassy state is reached when I,&=1.5. Probably
this apparent difference in where the splitting occurs is a
consequence of the difFerent spatial resolutions used in
the two simulations. (We have extended our runs for
I,z——1.37 and do not find any indication of the gzz's
changing as the length of the simulation increases. ) In
any case, the evolution of the structure of the second
peak is a gradual process suggesting that the develop-
ment of the two well-defined, but slightly different, dis-
tances near r =2 is not an abrupt event. Instead, the
distance between pairs of particles becomes better
defined in a continuous manner as I,z increases. Also
for the glass there is no indication of a well-defined shell
of particles at the position of the second neighbors in a
close-packed crystal. The same sort of structure is
found for X=0.8 for these values of I,z, indicating that

the glass forming trends are not strongly dependent on
the composition. The system with X =0.2 initially
formed a glass for I,&——1.7, but on extensive annealing
at constant energy a structure with the signature of a
close-packed crystal formed. This is discussed further in
Sec. V.

The coordination numbers for the states displayed in
Figs. 2—4 have been determined by integrating these
functions to r =1.5, the position of the minimum in

g, 2(r). The 1-1 coordination number ranges from 2.97
for I,&

——1.26 to 3.02 for I,z——1.7. The corresponding
ranges for the 1-2 and 2-2 coordination numbers are
6.19—6.21 and 3.19—3 ~ 33, respectively.

We have also examined the scaling properties of the
pair distribution functions, g»(r), g,z(r), and gz2(r) by
varying the composition for fixed I,z. As is shown in
Fig. 5, these functions exhibit significant departures from
the form g„~(r/o, fr,I,s) In Fig. 5 t. he normalization of
g&&(r) has been changed so that g»(r) approaches unity
for large separation. This has been done in order to ern-

phasize the departures from the scaling form as the con-
centration is varied. This lack of scaling in the pair
functions refiects the fact that it is pV/Nk&T and not
the local structure which scales with I,ff.

Pair correlations do not provide any information
about how local arrangements involving three or more
particles might occur. Some further insight into the
structure which develops as the temperature is lowered
can be obtained by examining some partial three-body
correlation functions. We have generated P(c sOo), the
distribution of the cosines of the angles formed by the
lines or bonds connecting two particles to a third, cen-
tral particle, when the two particles are "near neigh-
bors" of the central particle. ' Near neighbor is taken to
mean that the length of the bonds is less than the posi-
tion of the minimum in g, 2(r) following the principal
maximum. From Fig. 3 we see that this is approximate-
ly 1.5cr». (This definition of a near neighbor is used
throughout this paper. ) At equilibrium liquid tempera-
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FIG. 5. The g&1(r/o. ,q) function for I,~ ——1.26 with X =0.5

(solid line) and X=0.8 ( + ). The normalization has been
changed from that of Fig. 2. so that g11~1 for large separa-
tions. Similar results are obtained for the g12 and gq~ functions
showing that the pair functions do not scale with o.,~ for a
given value of I,ff.

tures these distributions are peaked at about 60' with lit-
tle structure for larger angles. As the temperature is
lowered, additional structure develops, indicating that
certain packings are favored. This type of analysis has
been used to distinguish between short range fcc and bcc
arrangements of particles and to distinguish between
crystalline and glassy configurations. These distribu-
tions are displayed in Fig. 6 for the same states listed for
Figs. 2 —4. The major features, in addition to the max-
imum at 60', are the secondary maxima at 110'—120'
and at 180'. These secondary maxima become more pro-
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FIG. 6. Distribution of bond angles for pairs of near-
neighbor particles for X=0.5 mixtures and I,&

——1.26 (dotted
line), I,~——1.37 (dashed line), and I,q ——1.7 (solid line). These
functions have been scaled by the maximum in the I,z——1.7
distribution.

nounced with increasing I,~, suggesting that there is a
tendency toward a locally ordered, incomplete fcc ar-
rangement. (A fcc structure would have spikes at
60', 90', 120', and 180 for near-neighbor pairs. ) How-

ever, the peaks are broad and the minima are relatively
shallow when compared with a truly crystalli~e arrange-
ment and the 90' feature is absent, indicating that the
first shell of neighbors is not actually ordered as in a
crystal. The absence of 90' feature indicates that order-
ing does not extend to second neighbors since the pairs
with 90' bond angles are at second-neighbor distances.
This information, when combined with the pair-function
results, suggests that the glass consists of "units" which
are locally ordered at the first-neighbor distance but are
disordered for larger distances. Certainly the quasicrys-
talline configuration does not reach to the second-
neighbor distance as evidenced by the absence of a local
maximum in the pair functions at the second-neighbor
distance for a fcc crystal. As noted above, the informa-
tion derived from these triplet distributions is essential
in determining the nature of the short-range local order
present in the glass. This suggests that one should in-
clude triplet (and higher-order) correlations in an
eff'ective free energy to describe dynamical properties
such as the density-density correlation function for su-

percooled liquids close to the glass-transition tempera-
ture.

C. Comparison with dense random packing models

There have been numerous studies of the structure of
alloy glasses by generalizing the dense-random-packing
(DRP) algorithm developed by Bennett. The earliest
work was due to Sadoc, Dixmier, and Guinier and
formed the basis of further investigations by Bondreaux
and Greger. ' In these studies a triad consisting of
three touching atoms forms the initial seed and an algo-
rithm was developed so that the growing cluster attained
the proper composition. Addition of another atom is
made at random subject to the constraint of the desired
composition. These authors introduced the rule that
two smaller atoms (modeling the metalloid) cannot be
near neighbors. The initial studies " indicated that
close-packed structures were not obtained with this algo-
rithm. They also discovered that the pair distribution
functions v ere anisotropic, i.e. , their values depended on
the direction in which the radial distance from the
center of the grown cluster is measured. These problems
were circumvented by annealing by DRP cluster under a
Lennard- Jones potential using the conjugate gradient
method to relax the system to a local potential-energy
minimum. ' ' The resulting radial distribution func-
tions are quite similar to the results we have obtained for
the soft-sphere mixtures. They also were found to repro-
duce experimental structures of alloy glasses, It is in-
teresting to point out that in the DRP model of Ben-
nett, the second part of the split is larger than the first.
This is in contrast to the simulation studies of one-
component systems. However, the relaxed DRP model
of alloys also yields split second peaks of pair functions
which are in accord with molecular-dynamics simulation
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results. This may either be due to the relaxation of the
original DRP model or due to the weak constraint
prohibiting metalloid atoms to be near neighbors. It
would be interesting to obtain the bond orientational or-
der in DRP representations of metal-metalloid systems.

IV. DYNAMICAL PROPERTIES

From Sec. III it is clear that in binary mixtures, as is
the case in single-component systems, the structural
properties of the system change continuously as the de-
gree of supercooling is increased. As has been pointed
out in the introduction, the dynamical properties of the
liquid, and in particular the shear viscosity, show an
abrupt increase as Tg is approached. Although there
have been experiments suggesting that in some tempera-
ture regime g scales as a power law, ' it seems well ac-
cepted that for T close enough to Tg (say T/T~ )0.7), g
obeys the well-known Vogel-Fulcher- Tammann law, '

ad=exp[A/(T —To)]. This can only be explained by
models that involve stress-assisted thermal activation
over free-energy barriers. This idea is certainly not
new and was proposed over thirty years ago to explain
cold flow in glassy polymers and plasticity properties of
inorganic glasses. Slow structural relaxation near Tg,
which involves transitions between several local free-
energy minima, appears to be consistent with the de-
tailed numerical simulations of Stillinger and Weber.
Hall and Wolynes have utilized the notion of the shape
of inherent structure in liquids and have obtained an ex-
pression for the relaxation time for activated crossing.
Using density-functional theory they were able to esti-
mate the average barrier height in the free-energy sur-
face in terms of the spring constant for atomic motion.
Assuming that viscous relaxation is dominated by transi-
tions between free-energy barriers, they predicted that g
is proportional to exp[c/( V —Vo) ].

Our interest in pinning down the physical mechanism
leading to Vogel-Fulcher-Tammann (or similar law) be-
havior can be summarized as follows. By assuming that
structural relaxation, and hence diffusion, in liquids near
the glass transition proceeds by activated processes, it
should be possible to identify an order parameter associ-
ated with this slow relaxation process. We believe that
such an order parameter should be a local quantity
which involves only a few particles within a specified,
finite length scale. (This is in contrast to Ising spin
glasses where all length scales contribute to diverging
time scales near the spin-glass transition temperature. )

The natural choice for this length scale seems to be the
minimum in the radial-distribution function, which is
approximately 1.5crii. The free-energy surface (presum-
ably) has a large number of local minima which corre-
spond to metastable states. The various minima are
separated by barriers and if the transition from one
minimum to another involves rearrangement involving
many particles (say hundreds) then that even is unlikely.
Specifically, transitions from one metastable state to
another requiring a large number of particles will either
involve a large energy barrier or will have low entropy
due to the coordinated motion of several particles and

thus will be a rare event. Thus activated processes ena-
bling structural relaxation on the time scale of computer
simulations, and perhaps on experimental time scales as
well, can only involve clusters of a few particles. This
physically reasonable assumption, which is also support-
ed by similar findings in a previous simulation in the
context of spin glasses, has motivated us to search for
relaxation of local correlation functions defined in terms
of 10—15 particles. Unlike in spin-glass models, the na-
ture of the order parameter is not obvious. Several can-
didates can be investigated and, in what follows, we
present the results of a few of these. One of the most
obvious ones that we have not investigated is associated
with the decay of the local stress tensor. We intend to
pursue this topic in a future study.

A. Bond orientational order

In a series of papers Steinhardt et al. have found
that when a one-component Lennard-Jones liquid is un-
dercooled about 10% below the melting temperature, a
state with short-range translational order but with ex-
tended correlations in the orientation of clusters of parti-
cles results. Mountain and Brown also observed these
states for the Lennard-Jones liquid but did not observe
metastable states of this type in soft-sphere one-
component liquids. The orientational order of the meta-
stable liquid was determined to be predominantly
icosahedral and it was shown that the correlation length
associated with the orientational order far exceeds the
translational correlation length. The proliferation of
icosahedral ordering in Lennard-Jones systems was ra-
tionalized using the arguments originally proposed by
Frank. He suggested that icosahedral clusters had
lower energy compared to any microcrystalline arrange-
ment. Nelson ' exploited this idea in a series of papers
with an additional notion that frustration prevents the
occurrence of infinite-range icosahedral order. This ina-
bility to form infinite-range icosahedral ordering suggests
that the relaxation of the appropriate order parameter
should exhibit an extremely slow decay and this has
prompted us to investigate the bond orientational order
parameter, Q6, which is defined below, as an indication
of the presence of a glass.

A general parameter Qi is defined as follows. Follow-
ing Steinhardt et al. we associate a bond joining an
atom to its nearest neighbors. To each bond, a set of
orientational order parameters Qi is defined to be the
spherical harmonics associated with the orientation of
the bond in the external coordinate system and (Qi ) is
the average over all near-neighbor bonds. The rotation-
ally invariant quantity Q, is then

1/2

The order parameter g&(t) is defined as an ensemble
average as Qi with itself at a later time t,

Q((t) = ~ Ql(t)Q&(0) ~ .

Unlike in the one-component case where the average
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value of Q6 shows a strong correlation with the onset of
the glassy state, ' it does not do so for a binary mix-
ture. This has been noted earlier. Since the glass tran-
sition is inherently a kinetic effect, it is of interest to ex-
amine $6(t) to see if the kinetics of local order might be
reflected in that quantity. Our initial work indicated
that this might be the case in that the time required for
the decay of $6(t) to its long-time value appeared to in-
crease with decreasing temperature. This also has been
found to occur in a one-component soft-sphere system.
However, as may be seen in Fig. 7, the magnitude of the
time-varying part of $6(t) actually decreases with de-
creasing temperature and effectively vanishes in the
glass. This indicates that the kinetics of the bond orien-
tational parameter is not a particularly useful indicator
of glass formation in binary mixtures. This is distinctly
different from the one-component fluid. The bond orien-
tational order parameter Q6 is quite sensitive to the sizes
of the particles in the fluid. Therefore, some other quan-
tity is needed to characterize the short-range structure
which leads to glass formation.

B. Relaxation of an orientational order parameter

As another probe of a local order parameter for
structural relaxation, we have investigated the dynamics
of the correlation function, p(t), which describes the
possibility of a bond joining two atoms undergoing local
rotation. Specifically, tp( t ) is given by

&p(t) = g (cosO;, (t) ),1

N

where the average is over all central atoms, i, and all
near-neighbor atoms, j, of atom i (i.e., atoms, j, that lie
within a specified distance r;„of the central atom), and
0; (t~) is the angle between bond ij at time t and that
bond at time zero. Clearly, y(t) is a measure of the ease
with which a bond can execute local rotation in a given

thermodynamic state. At high temperature or low den-
sity, where the structural relaxation times are quite
small, the particles rapidly diffuse away from their in-
stantaneous local environment and thus we expect p(t)
to decay rapidly to zero. As the liquid is supercooled,
the structural relaxation time increases and the relaxa-
tion time of the order parameter, ~~= y t dt, is also

expected to increase. Consequently, the decay of rp(t), if
it occurs at all, is expected to be extremely slow. In Fig.
8 a plot of cp(t) as a function of t is given for four values
of I,tr. We see that y(t) becomes slowly varying as the
liquid is supercooled and seems to be nearly constant for
the glass. A fact about time scales is worth noting. The
correlation function y(t) is shown for 5r while the veloc-
ity autocorrelation functions (see below) have decayed to
zero in about w, even in the glass. Thus structural relax-
ation, of which g(t) is but one measure, is a slow process
in the supercooled regime and is absent in the glass.
These results for y(t) indicate that the "orientation" of
the local cage surrounding an atom is slowly varying and
becomes frozen in for the glass.

It is tempting to speculate that y(t) could be a candi-
date quantity whose slow relaxation provides the neces-
sary nonlinear feedback for the abrupt viscosity increase
as Ts is approached. The non vanishing of cp( t )

[y(t)~const as t~ ac] can then be interpreted as an
analogue of the Edwards-Anderson order parameter of
spin glasses. It should be recognized that, unlike the
spin-glass problem, no quantity which has an obvious
physical interpretation has emerged whose relaxation is
the slowest and is frozen in as the liquid-glass transition
is reached.

We now propose a simple model that explains the
reason for the continuous slowing of p(t) and the lack of
decay of y(t) for t ~ ac at and below the glass transition.
We appeal to the well-known results in the theory of ro-
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FIG. 7. Bond orientational order-parameter time correlation
function $6( t ) for X=0.5 mixtures and I,s = l.26 (dotted line),
I,~——1.37 (dashed line), and I,~——1.7 (solid line). In each case,
a solid, horizontal line has been drawn so that it passes
through l(6(2r). This shows how the amplitude of the time
variation of t(6(t) appears to disappear in the glass.

FIG. 8. The time dependence of y( t ) for X=0.5 mixtures
and I,~——0.95 (dash-dot line), I,fr

——1.26 (dot ted line),
r„=1.37 (dashed line), and I,&

——1.7 (solid line). The decay of
y(t) is quite sensitive to the degree of supercooling and be-
comes very long for the glass.
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tational Brownian motion. In this discussion we view
the local unit vectors as unit spheres undergoing
Brownian motion in a highly viscous medium. In addi-
tion to the dissipative eff'ects, the interaction (or entan-
glement) of a given unit vector with its neighbors im-
pedes the rotational motion. But this slow structural
motion itself determines the viscosity and hence a feed-
back mechanism emerges. Here we provide a simplified
description which indicates the possibility that
y(t)~const for long times at T =Tg. For purposes of
illustration, we treat the unit vector as a rotating disc
and treat the interaction between it and its neighbors in
a mean field sense, i.e., an effective "moment of inertia"
is used. The stochastic equation describing the equation
of motion of the angular velocity, co, can be written as

d~/dt = —ba)(t)+g(t),

where the effective friction term 5=6~pa /m, a is an
effective radius associated with the unit vector, m is an
effective mass, and g(t) is the usual noise term. We also
need the equation of motion for R (t), the generator of
rotation in two dimensions, namely,

dR (t)/dt = i cree(t—)R (t),
where

0 i
—i 0

and

cos9(t) sin8(t)
R(t)— —sin[9( t ) cos0( t )

With these equations, one can obtain the correlation
function of the unit vector ( (u)0. (ut)) as ~

p(t) = (u(0).u(t) ) =exp[ —y[tb. —1+exp( —tb, )]j,
which, as t ~ oo, goes to the Debye result

y(t) =exp( yth), —

with y=k&T /IA so that as g~ oo, yh~0.
In supercooled liquids the structural relaxation time is

much greater than the vibrational relaxation time and
according to the self-consistent mode coupling
theory, g = 1/( T —T ), where a = 1.8. Consequent-
ly, this phenomenology suggests that
y( t ) = exp[ —( T —Ts ) t A] where A is a constant greater
than zero. This mechanism leads to the conclusion that
y(t) goes to a constant as T~Tg+. In reality, the physi-
cal situation is far more complex, but this very simple
model strongly indicates that as a supercooled liquid ap-
proaches the glass transition, some sort of orientational
freezing should occur.

C. Self-difFusion coe%cients

The self-diffusion coefficients can be calculated either
from the single-particle mean square displacement or by
integrating the velocity autocorrelation function. We
use the mean square displacement, which is given by

(10)

where 3 =1,2 and the averaging is done over several in-
itial conditions denoted by s. (In our simulations, 1000
time origins were used. ) The self-diffusion coefficients
then are

D„= lim —(R~(t) )
1 2

6t

The self-difFusion coefficients of the two components are
found to be decreasing functions of the inverse tempera-
ture, and therefore of I,z. The vanishing of the self-
diffusion coefficient is one indication of the formation of
an amorphous solid or a glass. Using this criterion, it
was found that the Dz were smaller than the uncertain-
ties when I,&=1.5. This is in accord with the results of
Bernu et al. ' These authors also noted that above the
glass transition D —exp( —b F,[t), which is just the form
of an activated process, namely, D =exp( b'/T). —

It should be noted that computer simulations cannot
be used to distinguish between strictly zero values for
Dz and exponentially small values. This point is partic-
ularly important as the glass-transition temperature is
approached. The small but nonzero values observed
even below the glass transition may be due to the follow-
ing reason. Because of the very high quenching rate that
is realized in the formation of the computer glasses, the
packing fraction is lower than what would normally be
found in laboratory metallic glasses. This implies that
the system is quenched into a metastable state with a
free energy that is still relatively high. Particles which
are stuck in this state can diffuse and this may be the
reason for observing very small diffusion coefficients
even at I,&=1.7. Additional support for this argument
comes from the work of Kristenson who finds that the
value of the diffusion coefficient decreases further when
the atoms in a glassy state are allowed to anneal. For
dense-random-packing models this problem is more
severe.

D. Velocity time autocorrelation functions

We have already noted that the local anisotropic order
that seems to develop as Tg is approached may result in
long temporal correlations in certain dynamical proper-
ties. In Figs. 9—11 we present plots of the velocity time
autocorrelation functions Z~(t), A =1,2, as a function
of t for the three values of I,z. These figures show that
the particle undergoes discernible damped oscillatory
motion with a seemingly large damping constant. The
behavior is more pronounced for the bigger particle
(shown as a dashed line) than for the smaller particle
(shown as a solid line). Physically, this can be interpret-
ed by observing that for times smaller than a charac-
teristic vibration time ~„b, the tagged partic&~ is trapped
in a dynamic cage formed by the neighboring particles.
After about a vibrational period the cage evolves slowly
(the rate of evolution decreasing drastically as T~Tg)
and thus Z~(t) is damped to zero. This interpretation
would lead one to predict that the amplitude of the os-
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0.26 &X &0.86. The uncertainties on these bounds is on
the order of a few percent in X. We note that these
measurements, when combined with this theory, suggest
that the empirical rule that amorphous states are stable
when the sizes differ by at least 10% should be relaxed
to a difference of about 5%. Our simulation results are
in good agreement with these measurements and predic-
tions.

It is interesting to speculate on why the X=0.2 case,
which is mostly large spheres, crystallizes more readily
than the X=0.8, which is mostly small spheres. One
possibility is that the number of densities for the cases
we have examined (0.85 for X =0.8 and 0.69 for X =0.2)
rather than I,z is an important factor. This would be so
if the lower density makes the nonequilibriurn process of
crystallization proceed more easily. Another possibility
is that for a given value of I,& the few small spheres can
move more freely in a background of large spheres than
can a few large spheres in a background of small
spheres. If this were true, then the degree of frustration
would be different in the two cases. This also would ac-
count for the simulation results. We plan to address this
issue in a separate investigation as it may provide a clue
to the quantification of frustration.

VI. DISCUSSION

In this paper we have reported simulation results for
binary mixtures of soft spheres with a particular em-
phasis on identifying possible physical mechanisms that
result in slow transport in supercooled liquid and glasses.
It is difficult to draw definitive conclusions from
computer-simulation studies involving small numbers of
particles and short time scales. Nevertheless, the results
indicate several interesting aspects of glass formation
that can be used to construct model dynamics for
viscous relaxation in glassy and supercooled states.
Based on the results reported here, we are not in a posi-
tion to develop a "picture" of what happens as the
glassy state is formed in this binary system and to specu-
late on how these features should be incorporated into a
theory of the glassy state. It is hoped that these results
apply to most metallic glasses as well.

The most important point to be learned from these
simulations is that the changes associated with the for-
mation of the glass occur locally rather than collectively
and hence there is a need for some sort of local quantity,
an "order parameter, " to characterize the local order.
The structural results obtained from the pair and triplet
correlation functions indicate that for r ' soft spheres
the local order develops into a smeared-out fcc arrange-
ment of atoms in the first shell of neighbors around a
given atom and that this order is sufficiently distorted
that it does not extend to the second-neighbor distance
in the crystal. This also provides a length, on the order
of 1.So.», which characterizes the local order.

Another important feature of the glassy state is the
freezing in of the local environment for each atom. The
quantity g(t), which is a measure of the local environ-
ment, becomes long lived in the supercooled liquid and
rapidly reaches a finite, asymptotic value in the glass.

H= —g J;,s;s, , (13)

with s; = (cosg; sing; ) and s; = 1. The coupling con-
stants J,~ are antiferromagnetic ( = J) on alternate—
columns of bonds and are ferromagnetic (=J) elsewhere.
Thus H given by Eq. (13) can be though of as a lattice
model of interacting normals associated with the unit
vector joining two atoms. In a recent numerical study
it has been shown that for a given value of J, the system
freezes into a state at a temperature T, where the
Edwards-Anderson order parameter, qE~ ——g (s, ), be-
comes nonzero; the brackets denote a thermodynamic
average. Because s; is very similar to the unit vector
studied here, it is tempting to suggest that the frustrated
Hamiltonian of Eq. (13) could be a model that can be
used for the structural glass transition. If so, it would be

This suggests that the orientation of near-neighbor
bonds might be a useful means of characterizing local
order. The decay of g(t) provides a time scale for the
loss of local order. The characterization of time scales
for the decay of local order has not been attempted here,
but will be addressed in future studies of these systems.

In contrast to y(t), neither the bond orientational or-
der parameter Q6, nor its time correlation function
(t6(t), is a useful indicator of the binary glass. The aver-
age of Q6 remains small and the fluctuations about this
average are small so it does not provide a convenient sig-
nal for glass formation in the two-component system.
This is quite unlike the one-component case, where a
striking increase in the average of Q6 accompanies the
formation of the glass. This is probably due to the
differences in the way unequal-size spheres closely pack
compared with like-size spheres. The closest packing of
like-size spheres about a single sphere is the icosahedron.
This structure would be strongly distorted when unlike-
size spheres are present.

One of the major objectives of the present work is to
identify possible "local modes" involving few particles
and to relate the relaxation of these modes to the glass
transition. The physical motivation for such a picture
stems from the notion that activated processes, which
dominate structural relaxation for temperatures close to
the glass-transition temperature, can only involve rear-
rangement of particles over a small length scale. How-
ever, as has already been emphasized, the identification
of such an order parameter does not appear to be unique
and several candidates suggest themselves.

Among the ones we have investigated here, the most
promising process is the slowing down of the relaxation
of g(t); in fact p(t)~const as t~ ao for T & Ts. The
unit vector can be modeled by spins on a regular lattice
where frustration is the ingredient that causes the dy-
namic slowing down. Nselson has suggested that the
frustration embodied in uniformly frustrated X-Y spin
systems is analogous to frustration experienced in glasses
when one tries to fill space by tetrahedra. The behavior
exhibited by g(t) is similar to that found for the
Edwards-Anderson order parameter in the frustrated X-
Y model in two dimensions. ' In spin language, this is
described by the Hamiltonian,
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interesting to consider a soft spin version of the fully
frustrated X-Y model and to investigate the relaxational
dynamics of the model. The behavior of the spin-spin
correlation function may be related to the detailed dy-
namics of tp( t ). We note that as a model for a
Josephson-junction array in a transverse magnetic field,
the constraint that causes frustration can be expressed in
terms of line integrals involving the vector potential
across the junctions. However, as a model for structural
glasses, the relation between the constraint expressed by
the directed sum around the plaquette to the parameters
of the supercooled state is not obvious.

In summary, we have used molecular dynamics to ex-
amine some potential order parameters for glass forma-
tion in binary mixtures. In contrast with the spin-glass
problem, the task of identifying a unique order parame-
ter that drives the "transition" to the glassy state has
not been completed. Our simulation results suggest that
to reach a crystalline state from a glassy state, rear-
rangements of particles over a finite length scale is
sufhcient. Consequently, a short-range order measure
which is nonhydrodynamic, namely, qr(t), has been

identified as one possible candidate for a dynamical or-
der parameter. In order to propose a dynamical model
the knowledge of the free energy, F I &pj, affecting the re-
laxation of tp(t) is required. In addition, the coupling of
this order parameter to the usual hydrodynamic modes
should be considered. The free-energy surface, FItp),
should be general enough to account for activated pro-
cesses but simple enough that the mode-coupling equa-
tions can be solved. It is hoped that such a dynamical
model will predict the viscous relaxation in glasses in a
more realistic way than has been achieved to date.

ACKNOWLEDGMENTS

One of us (D.T.) would like to thank T. R. Kirkpa-
trick for several useful discussions on the dynamics of
glass formation. This work was supported in part by
National Science Foundation Grant No. CHE-86-09722,
the Camille and Henry Dreyfus Foundation, the Alfred
P. Sloan Foundation, and the Presidential Young Inves-
tigators Program.

K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
~See the articles in Topological Disorder in Condensed Matter,

edited by F. Yonezawa and T. Ninomiya (Springer-Verlag,
New York, 1983)~

For a review discussing this notion in detail, see D. R. Nelson
in Applications of Field Theory to Statistical Mechanics, edit-
ed by L. Garrido (Springer-Verlag, New York, 1984), pp.
11-31.

4For a recent review, see J. Jackie, Rep. Prog. Phys. 49, 171
(1986).

5E. Leutheusser, Phys. Rev. A 29, 2769 (1984).
U. Bengtzelius, W. Goetze, and A. Sjolander, J. Phys. C 17,

5915 (1984); U. Bengtzelius, Phys. Rev. A 33, 3433 (1986).
7T. R. Kirkpatrick, Phys. Rev. A 31, 939 (1985).
S. P. Das, G. F. Mazenko, S. Ramaswamy, and J. Toner,

Phys. Rev. Lett. 54, 118 (1985).
9T. Greszti, J. Phys. C 16, 5805 (1983).

W. Goetze, in Amorphous and Liquid Materials, Vol. 118 of
NA TO Advanced Study Institute, Series E, edited by E.
Luscher, G. Fritsch, and G. Jacucci (Martinus Nijhoff, Dor-
drecht, 1987), pp. 34—81.

"Recently approximate connections between mode-coupling
theory and density-functional theory have been established
by T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. A 39,
3072 (1987).

' C. A. Angell and W. Sichina, Ann. N.Y. Acad. Sci. 279, 53
(1976).
J. R. Fox and H. C. Andersen, J. Phys. Chem. 88, 4019
(1984). Extensive references to earlier simulation studies are
to be found here.

~4B. Bernu, Y. Hiwatari, and J. P. Hansen, J. Phys. C 18, L371
(1985); Phys. Rev. A (to be published) ~

5J. P. Sethna, Phys. Rev. Lett. 50, 2198 (1983); Phys. Rev. B
31, 6278 (1985).
S. Sachdev and D. R. Nelson, Phys. Rev. B 32, 1480 (1984).

' R. D. Mountain, Mol. Phys. 59, 857 (1986). References to
other uses of these triplet correlations are listed here.

' H. Vogel, Phys. Z. 22, 645 (1921); G. S. Fulcher, J. Am.
Ceram. Soc. 8, 339 (1925); G. Tammann and W. Hesse, Z.
Anorg. Allgem. Chem. 156, 245 (1926).

' T. W. Leland, J. S. Rowlinson, and G. A, Sather, Trans.
Faraday Soc. 64, 1447 (1968).
D. Beeman, J. Comput. Phys. 20, 130 (1976).

'W. G. Hoover, M. Ross, K. W. Johnson, D. Henderson, J. A.
Barker, and B. C. Brown, J. Chem. Phys. 52, 4931 (1970).
A. B. Bhatia and D. E. Thornton, Phys. Rev. B 2, 3004
(1970).

A. D. J. Haymet, Chem. Phys. Lett. 107, 77 (1984).
24R. D. Mountain and P. K. Basu, J. Chem. Phys. 78, 7318

(1983),
25This is in accord with the recent work of F. H. Stillinger and

R. La Violette, Phys. Rev. B 34, 5136 (1986), in which they
report that the inherent structures obtained from a Quid

configuration tends to produce locally defective fcc crystal-
lites. Their main observation is that the characteristic of the
amorphous state is the deviation from a local twelve-fold
coordination state. A detailed geometrical characterization
of the inherent structure revealed that icosahedral coordina-
tion is rare.

C. H. Bennett, J. Appl. Phys. 43, 2727 (1972).
27J. F. Sadoc, J. Dixmier, and A. Gunier, J. Non-Cryst. Solids

12, 46 (1973).
D. S. Boudreaux and J. M. Gregor, (a) J. Appl. Phys. 48, 152
(1977); (b) 48, 5057 (1977)~

D. S. Boudreaux and H. J. Frost, Phys. Rev. B 23, 1506
(1981).
See, for example, M. Kimura and F. Yonezawa, in Topologi-
cal Disorder in Condensed Matter, edited by F. Yonezawa
and T. Ninomiya (Springer-Verlag, New York, 1983).

'P. Taborek, R. N. Kleiman, and D. J. Bishop, Phys. Rev. B
34, 1835 (1986).
M. Goldstein, J. Chem. Phys. 51, 3728 (1969).
E. Orowan, Creep in Metallic and 2Vonmetallic Materials,
Proceedings of the First National Congress of Applied



36 MOLECULAR-DYNAMICS STUDY OF GLASSY AND. . . 3311

Mechanics (American Society of Mechanical Engineers, New
York, 1952), pp. 453 —472.
F. H. Stillinger and T. A. Weber, Science 225, 983 (1984).

~~R. W. Hall and P. G. Wolynes, J. Chem. Phys. 86, 2943
(1987).

C. Dasgupta, S. K. Ma, and C. K. Hu, Phys. Rev. B 20, 3837
(1979).
S.-P. Chen, T. Egami, and V. Vitek, J. Non-Cryst. Solids 75,
449 (1985).

~P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev.
Lett. 47, 1297 (1981);Phys. Rev. B 28, 784 (1983).
R. D. Mountain and A. C. Brown, J. Chem. Phys. 80, 2730
(1984).

4 F. C. Frank, Proc. R. Soc. London, Ser. A 215, 43 (1952).
4~D. R. Nelson, Phys. Rev. Lett. 50, 982 (1983); Phys. Rev. B

28, 5515 (1983); D. R. Nelson and M. Widorn, Nucl. Phys. B
240, 113 (1984).

4~D. Thirumalai and R. D. Mountain, J. Phys. C 20, L399
(1987).

J. G. Amar and R. D. Mountain, J. Chem. Phys. 86, 2236
(1987).

44S. F. Edwards and P. W. Anderson, J. Phys. F 12, 965 (1975).
4~J. McConnell, Rotational Brownian Motion and Dielectric

Theory (Academic, New York, 1980).
W. D. Kristensen, J. Non-Cryst. Solids 21, 303 (1976).

47M. R. Hoare, Ann. N. Y. Acad. Sci. 279, 186 (1976); J. Non-
Cryst. Solids 31, 157 (1978); Adv. Chem. Phys. 40, 49 (1979).
J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-
Hill, New York, 1980), pp. 129—134; see also B. J. Berne, J.
P. Boon, and S. A. Rice, J. Chem. Phys. 45, 1086 (1966).
S. H. Liou and C. L. Chien, Phys. Rev. B 35, 2443 (1987).
T. Egami and Y. Waseda, J. Non-Cryst. Solids 64, 113 (1984).

~~E. Fradkin, B. A. Huberman, and S. H. Shenker, Phys. Rev.
B 18, 4789 (1978)~

~~M. Y. Choi and D. Stroud, Phys. Rev. B 32, 7173 (1985); D.
Stroud and S. Kivelson, ibid. 35, 3478 (1987); S. Teitel and
C. Jayaprakash, ibid. 27, 598 (1983); T. C. Halsey, ibid. 31,
5728 (1985).

~~T. C. Halsey, Phys. Rev. Lett. 55, 1018 (1985).
~4A model similar in spirit but differing in detail was proposed

and examined by S. Sachdev, Phys. Rev. B 33, 6395 (1986).


