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A partial differential equation for the probability amplitude in the spherical phase space is de-
rived to describe the nonlinear evolution of a free-electron laser in the Compton regime. A pertur-
bative solution up to an indefinite high order of the electron quantum recoil is obtained. It is used
to calculate the laser output, in terms of average photon number, as a function of the wiggler

length.

I. INTRODUCTION

We consider a nonlinear quantum model of a free-
electron laser (FEL) working in the Compton regime.
The FEL is reduced to its very bare essentials; it consists
of a single electron propagating along an untapered
wiggler at a relativistic speed and interacting with a sin-
gle mode of radiation propagating along the same direc-
tion. On the other hand, we include the nonlinear
effects due to the quantum recoil of the electron, treated
as a perturbation, up to an indefinite high order.

Quantum-mechanical analysis of an FEL often starts
from the Bambini-Renieri Hamiltonian' which describes
the system in a frame moving along with the electron
and the laser radiation at a speed very close to that of
light so that (1) the wiggler field appears almost as a
plane-wave radiation consisting of quasiphotons
(Weizsacker-William approximation), (2) the frequency
of the wiggler field coincides with that of the laser, (3)
the electron dynamics becomes nonrelativistic, and (4)
the picture of the laser action becomes that of photons
scattered back and forth between the wiggler field and
the laser field with the electron recoils providing for the
conservation of momentum.

The Bambini-Renieri Hamiltonian can be written as?
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where p is the momentum of the electron, aZ (aJV) is the
creation operator of the laser (wiggler) field, k =w/c,
and A=e?/2mweyVy is the coupling constant with Vy,
being the wiggler volume.

This Hamiltonian can be translated into the following
difference-differential equation:®
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where C,(t) is the probability amplitude that » photons
are in the laser field at time ¢, A=kpo/m and
E =2#k%/m are two constants related to the initial
momentum and the quantum recoil, respectively, of the
electron, and N is the total number of the initial “pho-
tons” in the wiggler field.

Equation (2) has been recognized by Bosco et al.® as
one of the various types of generalized Raman-Nath
equations (RNE). Hence these authors call it spherical
RNE. The original RNE was derived in 1937 to de-
scribe light diffraction by ultrasound.® The various types
of RNE appear in a large number of physical problems,
as pointed out by Bosco and Dattoli,” and they are all
m;solvable because of the existence of the nonlinear term
n‘e.

Bosco et al.’ have obtained solutions to Eq. (2) under
the simplifying assumption that e=0. Lee® has obtained
a perturbative solution to the first order of the perturba-
tion parameter €. Most recently, Lee’ has used the Q
representation of atomic coherent states® to transform
the spherical RNE into a partial differential equation for
the probability density function over the spherical phase
space and has obtained a perturbative solution up to ar-
bitrarily high order of €. The trouble with this last solu-
tion is that the analytic expression is so lengthy that it is
very difficult to use it to calculate any observable physi-
cal quantities.

We have now realized that it is much easier to deal
with the probability amplitude than with the probability
density function. It should be pointed out that probabil-
ity amplitude does not exist for the more famous P rep-
resentation and the Wigner distribution because they
must allow negative values. This is a distinct advantage
of the Q representation.

In the following, we will derive the partial differential
equation for the probability amplitude, find an almost
exact solution, and then use it to calculate the average
laser photon number as a function of time.

II. EQUATION FOR THE PROBABILITY
AMPLITUDE IN SPHERICAL PHASE SPACE

The density matrix to be constructed from the solu-
tion of Eq. (2) is of the following form:
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where the |n) are quantum states of definite photon

number. The atomic coherent states are defined as
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and the probability density function over the spherical
surface in the Q representation is defined as
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is the probability amplitude. The normalization condi-
tion is
N +1
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It will be convenient to introduce the following dimen-
sionless parameters:
5=A/Q, A=A/Q,

where Q=(A24 A%
Using Egs. (2) and (8), we can obtain the partial
differential equation for Py(6,¢,7) as

e=NE/Q, =201, (8)
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III. PERTURBATIVE SOLUTION

We will try to find a perturbative solution to Eq. (9) of
the following form:

Py(0,6,7)=P%0,¢,7)+€P(0,4,7)
+€e2P%0,4,7)+ - - (10)

with the initial condition: C,(0)=§,,=>Py(6,64,0)
=P%0,4,0)=[cos(8/2)]¥ and P!6,4,00=0 for all
[ >0.

Substitution of Eq. (10) into Eq. (9) yields

A
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DyP'+'(6,¢,7)+D,P"6,6,7)=0 .
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The solution to Eq. (11a) satisfying the initial condi-
tion can be written as

P%6,¢,7)=[e®"?F(0,4,7)]V, (12)
where
F(6,6,7)= |cos T\ _issin | = | |cos 6
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And, as long as [ << N, the solution to Eq. (11b) can be
written in the form
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where G (6,¢,7) must satisfy the following equation:

(Dy+e€D,)Py(6,4,7)=0, ©® 3 2
(Dyg—8)G (8,0, 7)= | = F(6,,7)
where 0 7 9 2
A~ a d cn 2
Do=i{=—+ |Acot | —8 | — —ike— |, .
0=, T e cosp—d | 54 —ihe ao} = |asin | 2 |sin | |7 (15)
(9a) ) o C . ..
R [ 3 The solution to Eq. (15) satisfying the initial condition
Di=——— (9b) can be written as
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where

h(r)=3sinT—7[cosT+2], (17)

h'(7) is the first derivative of h(7), and h''(7) is the

second derivative.

We can now put the components of the solution to-
gether. Substitution of Eqgs. (12) and (14) into Eq. (10)
gives
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Py(6,6,7)={[F(6,6,7)*+€G (6,6,7)}¥/2No7/2

= | A(7)cos® | = | +B(r)sin | = |cos e'?

2
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2
where the explicit expressions for 4 (7), B(7), and C(7)

can be obtained by using Egs. (13) and (16) as follows:
A(1)=[(1482)cosT+A%]/2

—i[8sint+(eA*/8)n(T)], (19a)
B(r)=[A8(cost— 1)+ (eX3/4)h'(7)]

+i[ —AsinT+(eA’8/4)h(7)], (19b)
C(r)=[A¥cosT—1)—(eA?8/4)h"(1)]

+i[(€A*/8)h(T)+ (A2 /4)n"'(T)] . (19¢)

IV. AVERAGE PHOTON NUMBER

Now we can use the solution to calculate the average
photon number which represents the laser output. The
rigorous way to carry out this calculation is very tedi-
ous. Fortunately, we can take a short cut as follows:
Using Eq. (18), we obtain the probability density func-
tion Qy(6,6,7)=|Py(0,4,7)|% as some expression
raised to the power of N/2. When N >>1, Qy(0,¢4,7) is
a very sharply peaked distribution almost like a Dirac &
function in the spherical phase space, with 7 as a param-
eter; then we should be able to approximate the expecta-
tion value of an expression by its value at the peak of
On(6,¢,7) located at (Oy7,0,7).

Let n be the photon number; then the normalized
laser output can be represented by

%:,—)E((l—cos@)/Z)z(l—coseM)/Z ) (20)
And from Eq. (18) we can derive the following relation:
cosOy=(|A|—|C|)N|A4|*+|C|*+1|B|?
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FIG. 1. FEL output vs wiggler length. The values of the
parameters are A=8=1/V'2 and €=0, 0.2, and 0.5.

Using Eq. (17) in Egs. (19), then Egs. (19) in Eq. (21),
and then Eq. (21) in Eq. (20), we can obtain an explicit
analytic expression for the laser output as a function of
time or wiggler length, with A and € as two independent
parameters. (8 is not an independent parameter because
of the relation 82+A2=1.)

In Fig. 1 we present some examples of the numerical
evaluation of (n)/N with A=86=1/V2 and €=0, 0.2,
and 0.5. It indicates that, for e=0, the output is a per-
fect periodic function of 7, as is known from the exact
solution for this special case,® and that the perturbation
causes the first peak to be slightly lower but the second
peak to be substantially higher, especially for higher
values of €. This implies that, if we have a wiggler long
enough to reach the second peak of the output, we can
enhance the efficiency of the FEL.

ACKNOWLEDGMENT

This research was performed under the auspices of the
U.S. Department of Energy through the Lawrence
Livermore National Laboratory under Subcontract No.
7381905.

1A. Bambini and A. Renieri, Lett. Nuovo Cimento 31, 399
(1978); A. Bambini, A. Renieri, and S. Stenholm, Phys. Rev.
A 19, 2013 (1979).

2A. Bambini and S. Stenholm, Opt. Commun. 30, 391 (1979).

3pP. Bosco, J. Gallardo, and G. Dattoli, J. Phys. A 17, 2739
(1984); P. Bosco, G. Dattoli, and M. Richetta, ibid. 17, L395
(1984).

4C. W. Raman and N. S. Nath, Proc. Indian Acad. Sci. 2, 406

(1937).

5F. Ciocci, G. Dattoli, and M. Richetta, J. Phys. A 17, 1333
(1984).

6C. T. Lee, Phys. Rev. A 31, 1212 (1985).

7C.T. Lee, J. Phys. A 18, L1139 (1985).

8F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas,
Phys. Rev. A 6, 2211 (1972).



