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We generalize our earlier formalism to treat the effects of both the finite-bandwidth excitations
and finite arbitrary detunings, on the fluorescent spectra and second-order intensity correlation
functions in optical double resonance. It is assumed that the bandwidth arises from the phase
and/or amplitude fluctuations in the fields driving a three-level atom in cascade configuration.
Under the conditions that one or both of these fields are intense, secular approximation and the
theory of multiplicative stochastic processes are invoked to derive a Markovian master equation
for the atomic-density operator averaged over both phase and amplitude. The quantum regression
theorem is used to derive analytical expressions for the fluorescent spectra and the second-order
intensity correlation functions which explicitly display the effects due to detunings and fluctua-
tions.

I. INTRODUCTION

The interaction of a three-level atom with one or more
strong laser fie1ds (double resonance) continues to draw
considerable attention both theoretically' and experi-
mentally. ' The spectrum of the fluorescent radiation
from a three-level atom undergoing stepwise resonant
transition is a Stark quintuplet for both the upper as
well as the lower transitions. If, however, the driving
fields are detuned from the atomic-transition frequencies,
the spectrum exhibits as many as seven Lorentzian
peaks. ' On the other hand, if the lower transition is
driven by a strong field whereas the upper transition is
probed by a weak field, then the spectrum from the
lower transition is found to be the Stark triplet which is
characteristic of a strongly driven two-level system.
The upper spectrum, in this case, is the so-called
Autler- Townes doublet.

There are two other interesting aspects connected with
the fluorescence from a three-level atom. First is the
quantum nature of the fluorescent light which has been
discussed extensively in literature. The second which
has evoked much recent discussion is related to the fact
that fluorescence from two separate transitions in a
three-level atom is affected considerably if the atom un-
dergoes a quantum jump between two levels. ' It has
even been suggested that such coupled transitions may
be used to detect experimentally" a weak transition.
Theoretical understanding of these aspects is obtained
through the intensity-intensity correlation functions.

An important problem both in its own right as well as
having a direct bearing on experiments is to study how

finite bandwidths of the driving laser fields affects the
fluorescence from the atom. The bandwidths may arise,
say, due to phase and/or amplitude fluctuations in the
lasers. Further, the fluctuations of the two lasers may
not be statistically independent, giving rise to cross
correlations. The effects of excitation bandwidths due to
phase fluctuations on the Autler-Townes doublet were
studied theoretically at first by Georges and Lambro-
poulos' and subsequently by Agarwal and Narayana. '

It was shown' ' that the asymmetry in the Autler-
Townes doublet could switch due to phase fluctuations.
Cross correlations have also been shown to modify the
Autler-Townes doublet. ' ' The effects of cross correla-
tions on population trapping and other phenomena in
three-level systems have been discussed theoretically by
Dalton and Knight. ' Numerical results on the effects of
the phase fluctuations on the fluorescent spectrum in the
presence of two intense driving fields has been reported
by D'Souza et al. ' They have shown that with an in-
crease in the bandwidths of phase fluctuations, the cen-
tral peak and the remote sidebands in the fluorescent
spectrum begin to disappear and the Stark quintuplet
tends to reduce to a Stark doublet.

These studies, however, have not taken into account
the effects due to fluctuations in the amplitude of the
driving fields which are known to play a significant role
in many situations. In this context some analytic results
under the conditions that one or both of the fields are in-
tense were presented very recently by Lawande et al. '

However, the formulation of this paper was restricted to
the case where both the excitation fields were in exact
resonance with the respective atomic transitions and
some subtle effects due to detunings could not be dis-
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cussed. In this paper, we remove this restriction and
present a more general formalism which is valid for arbi-
trary detunings between the excitation fields and the
atomic transitions. The basic assumptions of Ref. 18,
viz. , that the phases follow a Wiener-Levy process and
that the amplitude fluctuations are described by a
colored Gaussian process' are retained in the present
paper. This assumption for the phase fluctuations leads
to an exact master equation averaged over the distribu-
tion of phase fluctuations. The subsequent treatment of
amplitude fluctuations requires one or both the excita-
tion fields to be intense so that a secular approximation
can be invoked. Within this approximation, we derive
the master equation for the atomic density operator
averaged over the amplitude fluctuations as well. This
master equation in the high-field limit is shown to pos-
sess an exact steady-state solution. We subsequently use
the master equation to derive analytic expressions for
the spectrum of the fluorescent radiation from the upper
as well as lower excitation levels which show explicitly
the effects due to detunings and fluctuations. The ana-
lytic results for phase fluctuations are found to be in
agreement with the numerical work of Ref. 17. We also
obtain analytic expressions for the intensity-intensity
correlation functions which also display the detunings
and fluctuation effects.

We present in Sec. II the basic formulation of the
problem leading to the derivation of the master equation
in the high-field limit and its steady-state solution. The
derivation and discussion of the analytic expressions for
the fluorescent spectra and the intensity-intensity corre-
lation functions is relegated to Sec. III. A summary of
the general results is outlined in Sec. IV. Finally, the
special case where both excitation fields are in resonance
with the atomic transitions is briefly treated in Appendix
A.

FIG. 1. Schematic diagram of a three-level atom interacting
with two monochromatic fields.

II. FORMULATION OF THE PROBLEM

A. Master equation

We consider a three-level atom with an upper excited
state

~

1), an intermediate excited state 2), and the
ground state

~

3 ) of energies A'co„ fico2, and fico3 in simul-
taneous interaction with two single-mode cw laser fields
(Fig. 1). The first laser driving the atomic transition

~

3) to
~

2) has a frequency Q2 which is detuned from
the atomic-transition frequency co23 ——co2 —co3 by an
amount A2. The second laser of frequency 6] drives the
atomic transition

~

2 ) to
~

1 ) and is detuned from the
atomic transition frequency ~I2 ——co& —co2 by an amount
6) ~

It is customary to describe the system by means of the
following master equation for the reduced atomic den-
sity operator p:

dPld& = —i (d 1 /2)[E1 (t ) 312+El (t ) A2»P] —i(d2/2)[E2 (t ) A23+E2(t ) A 32pP]

i(~1+~2)[~ ll P] i~2[ ~ 22 P] —
1 1( ~ »P+P ~ 11

—2~ 21P~ 12 ) 1 2( ~ 22P+P ~ 22 2~ 32P ~ 23 ) (2.1)

[~mnt ~pq] ~mq~np ~pnfiqm (2.2)

The time dependence of the applied fields El(t) and
E2(t) arises from the stochastic nature of their ampli-

The master equation (2.1) involves the usual electric di-
pole and rotating-wave approximations. Further, the
Born and Markov approximations with respect to the in-
teraction with the continuum modes of the radiation
field are inherent in the derivation. Lastly, the equation
is written in the frame rotating with respect to the laser
frequencies. The coefficients d

&
and d2 represent the di-

pole matrix elements corresponding, respectively, to the
transitions

~

1) to
~

2) and
~

2) to
~

3). Also, 2@1 and
2y2 are radiative spontaneous transition probabilities per
unit time for the atom to make a transition from the lev-
el

~

1 ) to
~

2 ) and 2 ) to
~

3 ) respectively. The opera-
tors A „=

~

m )(n obey the usual commutation rela-
tions

tude and phases. We may write

E, (t)=[E)' '+E&' (t)]exp[ —iP)(t)], P, (O)=P, O

(j=1,2) . (2.3)

where the nonstochastic amplitude Ej ' and the phases

Pio are positive real numbers while the slowly varying
time-dependent quantities E,' "(t ) and P, ( t ) are treated
as stochastic variables. Now most of the papers dealing
with stochastic theory of atoms interacting with noisy
lasers assume that the noise can be adequately described
by Gaussian stochastic processes. ' The physical
basis for such an assumption arises from the fact that in
real laser systems many independent fluctuation mecha-
nisms contribute to the laser bandwidth and superposi-
tion of all these can, within central-limit theorem, be de-
scribed by a Gaussian stochastic process. ' Moreover,
Gaussian stochastic description is analytically simple
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dg, (t)ldt =p, (t ), (2.4)

where p~(t ) is a Gaussian white noise with the proper-
ties

and tractable. In the present work we therefore adopt
an extension of the standard model used to describe a
single-mode noisy laser with small fluctuations. How-
ever, additional complications arise when two lasers in-
teract simultaneously with the atom as in the present
problem. In this case we have to take into account not
only the individual correlations in each laser but also the
cross correlations between the lasers. ' These cross
correlations may also arise naturally if the two fields are
different modes of the same laser or if the second field is
produced by splitting and frequency conversion from the
first laser beam.

We assume that the fluctuations in phase and ampli-
tude are statistically uncorrelated, described by indepen-
dent Gaussian distributions. The statistics of phase Auc-
tuations are described by the Wiener-Levy phase-
diffusion model described by the Langevin equa-
tions'~

W"(t ) = exp[ —i(p41+q42) l

X exp l
—1 [(p1+p2) A 11+p2 A 22 ) )

Xp exp [ t [ ( 4 1 +4 2 ) A 11 + (()2 A 22 ] )

in (2. 1). This results in the following equation:

d W«(t ) Idt = IL0 i p—,(p+L1) i—p2(q+L2)
—i(d, l2)E1,"(t)L3
—i(d, l2)E1"(t )L, I

W«(t ),
where

L, W«= i [H—, W«]

—y, ( A „W«+ W«A „—2 A, W«A, )

—y 2( A 22 W~q+ W«A 22
—2 A 32

W~q A 23 ),

(2.8)

(2.9)

semble of phase fluctuations. For this purpose we intro-
duce the transformation' '

(pi(t ) ) =0, 0 1( A 12+ A 21 )+~2( A 23+ A 32)+~ A 11 +~2A222.5a
(2.10)

(P,, (t)Pk(t'))=26(t —t')X '

y„g&k . (2.5b) L, W«= [A „W«) (2. 1 1)

(E,'"(t ) ) =0, (2.6a)

Here y„represents any cross correlations that may be
present between the lasers. Note that this model implies
purely Lorentzian line shapes. It is known that the real
laser linewidth may be more nearly Gaussian than
Lorentzian, particularly in the wings. A model of non-
Lorentzian laser line shapes is provided if we assume

(~t ) to be an Ornstein-Uhlenbeck process. ' Incidently,
this model has been employed in Ref. 15 to discuss the
cross-correlation effects on the optical double-resonance
spectra. The formulation of the present paper requires a
nontrivial extension to treat this case and needs a
separate discussion. The amplitude fluctuations are as-
sumed to be described by a Gaussian colored noise with
the mean and correlations given by

I., W«=[A „+A „,W«],
L 3 W« = [ A 12 + A 21, W«],

L4W =[A23+ A32 W~ )

aj =d) E~' ',

(2.13)

(2.14)

(2.15)

The next step is to obtain the master equation for
X~ =( W~ ), the transformed density operator averaged
over the distributions of the phases p (t1) and $2(t ).
Since PJ pl(t ) represent 5——-correlated Gaussian process-
es, it is possible to apply immediately the theory of mul-
tiplicative stochastic processes to obtain an exact equa-
tion for the evolution of J~~,

dX~q(t)ldt =[L0—y, (p+L, )' —y, (q+I. , )'

e2 exp[@, t t'
l ] j=k-

(E, (t)Ek' '(t')) =
&12 exp[1 - l

t —t'
l l j~k

—2y„(p+L1)(q+L, )

i(d, /2)E—", (t)L3

—i(d, l2)E," (t)L ]X ' . (2.16)

(2.6b)

where ej and y, are the intensities and the bandwidths
for the autocorrelations of the two fields while e&2 and

y „are similar parameters accounting for the cross
correlation between the two fields.

B. Density operator averaged
over phase fluctuations

An advantage of the Wiener-Levy model of phase fluc-
tuations is that it is possible to derive from (2.1) a master
equation for the density operator averaged over the en-

Tr( Akkp) = Tr( Akk+ (2.17)

On the other hand, the phase-averaged expectation
values of the operators connecting the off-diagonal states
are given by

( A 12 ) =Tr( A 12p) = Tr( A 12+' ), (2.18)

The density operator 7~q may be used directly to com-
pute the one-time expectation values of the atomic
operators averaged over the ensembles of the phase fluc-
tuations. In particular, the phase-averaged expectation
value of the operator AI,k connecting the diagonal states
is given by
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( A23 )=Tr(A23p)= Tr( A23+ ') (2.19)

Thus, in principle, within the diffusion model the phase
fluctuations can be treated exactly. In fact, the master
equation (2.16) in the absence of amplitude fiuctuations
has been solved numerically in Ref. 17 to study the
effects due to phase fluctuations on the steady-state pop-
ulations, fluorescent spectra, and intensity-intensity
correlation functions.

C. Strong-field limit and amplitude fluctuations

It is clear from (2.16) that the operators L3 and L4
containing the fluctuations in the field amplitudes do not
commute with the remaining operators in the master
equation. It is therefore not immediately possible to
derive an equation for +~q, the density operator averaged
over both phase and amplitude fluctuations. A consider-
able simplification arises if we assume the fields to be
strong. We shall show below that in this limit, a master
equation for J~~ can be derived.

We first diagonalize the Hamiltonian Ho [Eq. (2.10)]
of the driven atomic system. Denoting by

I f; ) the
eigenstates of Ho corresponding to the eigenvalue —p;,
we express the atomic states

I

i ) by

(2.20a)

p2, 3 =(~i+r)/2
r =(4n2+ S2)'"

a1 ——a2/A,

a2 ——a, [2/I (I +b, , )]'~

a3 =a([2/I (I —b.))]'

61 ——0,
b, = —[(r+a, )/2r]'",
b, = [(r—a, )/2r]'",
C 1

———a1/0,
c2 ——a2[2/I (I +b, , )]'~

c3 ——a2[2/I (I —b, , )]'~

(2.26)

(2.27a)

(2.27b)

(2.27c)

In other cases, we have to obtain the roots of the cubic
equation numerically to obtain the coefficients a;, b;, and
cr ~

We may now express the original operators A,z
ap-

pearing in the master equation (2.16) in terms of the new
dressed operators B;~ =

I P; )(P~ I
by means of the rela-

tions

I»= Xb IW & (2.20b)

3

k, l =1
(2.28a)

(2.20c) k, l =
akblBkl = ~ z1

1

(2.28b)

where a;, b;, and c; have the explicit expressions
k, l =

ak ClBkl ~ 31
1

(2.28c)

a; =a1e2X;,

b; = —a2(p;+b, )N;,

c; = [(p;+h)(p;+ b, 2) a, ]N;, —

where the constants %; are defined as

[a la2+a2(P; +~ )'+ [(P; +~ )(P; +~2) —af]' I

(2.21)

A23 ——

k, l =
bkblBkl

1

k, l =

k, l =
Ck ClBkl

1

~k ClBkl = ~ 32
1

(2.28d)

(2.28e)

(2.28f)

(2.22)

P2, 3 =+& &=(af+a2)'"
a ) ——a2/Il, a 2 ——a 3

——a ) /( &2Q ),
b1 ——0, b 2

—— b3 ———1/&2,—

c, = —a~/I1, c2 ——c3 ——a2/(&2Q) .

(2.24)

(2.25a)

(2.25b)

(2.25c)

On the other hand, under exact optical double-resonance
conditions ( b = b, , +b.2 =0 ), we have

and p; are the roots of the cubic equation

p'+p'(~+&2) —p(a/+a2 —~2~) —a2&=0 . (2.23)

The cubic equation can be solved readily whenever
51——62 ——0 or when b 1

———Az. In these cases the
coefficients a;, b;, c; can be written down explicitly.
Thus, under resonance conditions (b,

&

——b2 ——0) we have
3

Ho= —g pkB„„
k=1

(2.29)

and that under the action of the Hamiltonian Ho, B;~
evolve with time as

B; (t)=BJ(0)exp[ —t(p; —pj)t] . (2.30)

Next, we go over to the interaction representation by
defining

The reciprocal relations between B;~ and 3;~ can be easi-
ly written down by noting that the transformation ma-
trix involving the products of a;, b;, and c; is real or-
thogonal. The new operators B;~ obviously satisfy the
same commutation relations as the old. Also, in terms
of the new operators the Hamiltonian Ho takes the sim-
ple form
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X = exp t—t gpkBkk X exp it gp„B„„, (2.31)
k k

whereby the resulting master equation for P splits into
two parts, viz. , the one containing no oscillatory terms
and the other containing rapidly oscillating terms such
as exp[+i(p; —p~)t], exp[+2i(p; —p~)t], and
exp[+i(2p; —

p~
—pk )t] (i,j,k = 1,2, 3; i &j ). Making

dX~~ldt =[X i(d—,EI")X, i(d—E" ) t ]X~~, (2.32)

where the operators Xo, X„and Xz have the following
structure:

the secular approximation, that is, neglecting the oscilla-
tory terms and finally reverting back to the Schrodinger
picture, we arrive at the master equation

Qpk[Bkk X ] a(p q)X ggk(p 'q)BkkX Qgk( p q) kkX
k k k

+2+ ektBkkX BII+2 g fktBkIX Btk+2 g gki(B, kX B,(+Bk,X B(, )5q O5g, o,
k, l k, l k, l

{k~1 ) {k~1~ 1 )

(2.33)

+1X g akbk[Bkk~X
k

(2.34)

&zX"= g bkck [Bkk»"l,
k

(2.35)

where

a(p, q) =p'y„+2pqy„+q'y, , (2.36)

gk(p, q) =ak[y&+(2p+1)y, +(2q+1)y, +2(p+q+1)y„]+ba[yz+(2q+1)y, +py„], (2.37)

ekl bk bl(y lakat +y2ckcl ) +akai y +y, ( 1 —ck )( 1 —c~ )+y„(2apa, + at bk +ak bI ) =en, (2.38)

fki =bkat y}+ckbt yz+ k I 'Y, +ckct 'Y —2akckaic(y k&l2 2 2 2 2 2 2 2 (2.39)

gk(
—2a)(y, +y, +y„)aka(, k&i&1 . (2.40)

We might mention here that if there are some relations
between the roots p &, pz, p3 of the cubic equation addi-
tional terms may appear in the master equation. An ob-
vious example of this is the case of resonant excitations
where 6

&

——Az ——0. Here, 2p &

—p z
—p 3

——0 and terms
which are otherwise oscillatory now become independent
of time and have to be included in the master equation.
We have explicitly written these terms in the master
equation above. Relations of this type might also occur
for specific choice of the Rabi frequencies a& and az and
detunings 6& and Az. It is easy, however, to evaluate
and take into account these additional terms. As we

shall see subsequently, these terms do not affect the
steady-state behavior of the atomic operator averages.
In particular, they do not affect the equations of motion
of the averages of the diagonal operators 8;;. Physical
consequences of this include that intensity-intensity
correlations are not affected but the Auorescent spectra
are affected, as we shall see in the particular case of reso-
nant excitations (h~ ——bq ——0). Moreover, note that in
the absence of phase fluctuations, these terms do not
contribute at all. Lastly, it may be emphasized that the

dX Idt = [Xo—e)(t )X ~
—ep(t )Xp —e[QX fXp I X

(2.41)

where

e, (t)=djej[1 —exp( —y, t)]ly, , j =1,2

e,z(t ) =2d ~dqefq[1 —exp( —y„t )]/y„.
(2.42a)

(2.42b)

Recalling the definitions of the operators Lo, L&, and Lz
and after some simplifications, we rewrite the master
equation for P in the following form:

equation is valid under the conditions that
I && I

=
I

(p —p&) I »yk y. y. ek fo«j=l-3
k =1,2.

Note that the operators L& and Lz multiplying the
stochastic variables related to the amplitude fiuctuations
commute with each other and also with Lo. We can
therefore invoke the theory of multiplicative stochastic
processes to arrive at the following evolution equation
for the phase- and amplitude-averaged density operator
yW
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dX /dt =i g pk[Bkk, X ]—a(p, q )X —g[gk(p, q )+gk(t ))BkkX
k k

—g [gk( —p, —q)+4(t ) )X"Bkk+2 g [ekl+kkl(t )]BkkX Bll
k k, l

+2 g fklBklX Bik+2 g gki[B]kX B]i+Bk]X B i]]6 l, , o~a, , oi
k, l k, l

(k~i ) (k~1~1)

(2.43)

kk(t ) akbkel(t )+bkcke2(t )+akbkcke12(t )

gkl ( t ) =2ak bk a]hie]( t ) +2bk ck blcie2( t )

+ bk bi(ak cl + alck )e12( t ) klk ( t )

(2.44)

where the new time-dependent quantities gk(t) and

ski ( t ) are defined as
fkk ——Y]ak ( 1 bk —)+ Y2bk( 1 ck —)+ Y, ak2( 1 —ak )

+r, ,(1 c—k )ck +2r „akck

The normalization factor D is given by

D = Tr[exp[ —(p]B]]+]L]2B22)]}

(2.49)

X»= p[ (»»+»B22)) (2.46)

where the subscript SS denotes the steady state and p1
and p2 have the following expressions:

t2]= »[(f»f22 f12f21)/(f]3f22+f]2f23)],

P2»[(f»f 22 f12f21 ) /(f ] If 23 +f13f21 ) l

(2.47)

(2.48)

The quantities f;, (i&j ) are defined in (2.39) while the
constants fkk (k =1,2, 3) are given by

The master equation (2.43) has two remarkable proper-
ties. First, the equation describes a Markov process
despite the fact that it contains time-dependent
coefficients. The Markovian character essentially arises
from the fact that the operator [e,(t)X, +ez(t)Xz
+ e(]2t)X]Ã2] commutes with Xo for all t. The Marko-
vian property of (2.43) implies further that the quantum
regression theorem is applicable. It will therefore be
possible to derive two-time correlation functions from
the one-time expectation values of the atomic operators.
The second property of (2.43) is that it has a steady-state
solution

X+=0 (p, q&0),

= 1+ exp( —j2] )+ exp( —p2 )

=[(f»+f13)(f22+f23)
—(f]2 f]3)(f21 f23)]/(f]]f22 f12f21) .

(2.50)

We note here that under resonant conditions A1 ——62 ——0,
further simplification arises (cf. Appendix A).

III. FLUORESCENT SPECTRA AND INTENSITY
CORRELATIONS

A. One-time atomic operator averages

(O),q
—Tr(OX-) .

The general equation of motion for (Bki )«reads as

(3.1)

The master equation (2.43) can be used directly to ob-
tain the evolution of one-time atomic expectation values
averaged over the ensembles of the phase and amplitude
fluctuations. For an atomic operator 0, we define the
average as

(B; )~ = i(p; —pi)(B—j)zq —[gj(p, q)+g;( —p, —q) —2ej](B& )« —[g j(t~) —g;(t) —g (t)](B; )
d
dt

+2 g fk](B]])pq&ikfijk a(p, q )(B;,)„+
k, l

(k~l )

gk (B1k ) 'fij]+ y g l(BI]) fi']'fi ofih 0'
k, i I,j

(k~i~1) (I&j&1)

(3.2)

d (B,] )~q /dt = —[2f» + a(p, q )](B]1)«
+2f, 2 (B22 )«+2f » (B33 )« (3.3a)

d(B» ) /dt =2f» (B» )„—[2f»+a(p, q ))(B»)„
+2f23 (B33 )« (3.3b)

d (B33 )«/dt =2f3] (B» )«+2f32(B22)«
—[2f, +a(p, q)](B ), , (3.3c)

In particular, when i =j we have the three coupled equa-
tions

j

and for i &j we obtain the six equations

(B; ) = —[1'n; + r;, (p, q )+g;, (t )
d
dt

—g;(t ) —g, (t )](B;i)«
gki (B1k ) fi']

k

(k~i~1)

(g, (B„) )5;, 5 5
I

(1~j+1)
(3.4)
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where fkk, f j (i&j ) are defined as in (2.49) and (2.39),
respectively, and

lJ I l PJ& +J (3.5)

I;,(p, q ) = [g, (p, q )+g, ( —p, —q )+a(p, q ) —2ej ]

=I,;( —p, —q) . (3.6)

Note that the evolution of the diagonal operators
(8;j(t))~q does not depend on the amplitude fiuctua-

tions at least in the strong-field limit. This is indeed a
consequence of our approximate treatment of the ampli-
tude fluctuations, viz. , that the stochastic averaging over
the ensemble of amplitude fluctuation was carried out
only after invoking the secular approximation. Also, as
mentioned before, the additional terms in the master
equation do not contribute to the evolution of
(8;;(t))zq. The three coupled equations can be solved
readily and the solution can be written in the compact
form

(8(0) )~q+ (v) —2h;v)+g; )(8;;(0))~q+ g ( 2f jv)+—g; )(8,(0) )~q exP( v, t—)
V1VP J

(J+i)

+ (V2 2h;v2+—g; )(8;;(0))~q+ g ( 2f jv2+g—; )(8 j(0) )~q exp( v2t—) exp[ —a(p, q)t],
V2 V2 —V) J

(j«)
(3.7)

where

&8(0)&„=y &8,, (0))„,
i =1

h) ——f13+f22+f23,

h 2 =f)1+f13+f23

h3 =fii+f22

gi =4(f13f22+f23f 12)

g2 4(f11f23 +f13f21 )

g3 4(f iif22 f12f21)

(3.8)

(3.9a)

(3.9b)

(3.9c)

(3.10a)

(3.10b)

(3.10c)

Pj '=(a;b; ajbj )(b;—c; —bjcj )d, d2e, 2/y„, (3.15c)

Xk(t)=[1—exp( y, t)] (—k=1,2),

X3( t ) = [1—exp( y„t ) ]—.

(3.16a)

(3.16b)

For future use, it is more convenient to express the
above solution in an alternative form obtained by ex-
panding the Xi, (t ) in a series. Thus

(8,, (t ) )~q = (8,, (0) )~q exp(5, , )

&( g bj( [k } ) exp( —[iQ;, + I;,(p, q )

Ik)

+ j(.([k })+P,, ]t),
and v1, v2 are the two roots of the quadratic equation

( h 1 +h 2 +h 3 )v+ (g 1 +g 2 +g 3 ) (3.1 1)

In the case when 61 and 62 are not simultaneously zero,
the equations for (8;j(t) )~q are not coupled and can be
solved individually. The solution for the off-diagonal
operator averages therefore reads as

3

(8;,(t)),=(8;,(0)& exp p; t+ g 5,'"'(t)X„(—t)
k =1

(3.17)

where the symbol [k} implies that the summation in
(3.17) is over triplet of integers k), k2, k3 each ranging
from zero to infinity. The other notation is as follows:

(3.18)

3

5;, = g 5';,", j(, —:A(Ik})=k)y, +k2y, +k3y„.
1=1

)& expI —[i A;j+I; (p, q)]t }, (3.12)
(3.19)

3

p y p(k)
k =1

5(,') =p(,')jl.„(k=1,2),
(3) (3)

5ij pij ~7 aa

P(ji'=(a;b; ajbj ) d ) e) ly, —

P;', '=(b;c; bjcj) d2eg. y.. . —

(3.13)

(3.14a)

(3.14b)

(3.15a)

(3.15b)

where the coefFicients P;,5(i") and the time-dependent
functions Xj, (t ) have the following meaning: It is clear that the amplitude fluctuations affect the evo-

lution of the off-diagonal atomic-operator averages con-
siderably.

In the special case of resonant excitations, 61 ——Az ——0,
there is a coupling between the expectation values
(812(t))~q and (B»(t))~q and also between (82, (t))~q
and (8,3(t ) )~q. The equations for (823(t ) )~q and
(832(t))&q are, however, uncouPled. The couPling be-
tween (812(t))zq and (831(t) ) q

is to be expected be-
cause under resonant conditions, 812(t) and 83, (t) have
the same behavior in time according to (2.30). The ex-
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plicit solutions of these equations of motion for the
atomic-operator averages are displayed in Appendix A.

B. Fluorescent spectra in the steady state

We now use the one-time atomic-operator averages to
compute the steady-state spectra of spontaneous emis-
sion from the upper and lower excited levels. We denote
the positive and negative frequency parts of the atomic
spontaneous transitions from the level

~
1) to

~

2) and
from level

~

2) to
~

3) by EI+' and E2+', respectively.
The spectra are then related to the Fourier transform of
the two-time correlation function ( (E; (t )E;*(t+r)) ),
where i = 1,2; the bar denotes the average over the
phase and the second angular bracket ( ), stands for
averaging over the amplitude fluctuations. As shown by
Agarwal and others, if the measurements are carried
out in a manner such that the incident laser fields do not
contribute, the operators E +' are related to the atomic
operators by

EI+'(r, t )~k, A2, (t ),
E/2+'(r, t )~k2A3)(t ),

where k1 and k2 are factors which depend on the spatial

G/" (r) = ( ( A /2(r) A „)„)
G2' (r) = ( ( A 23(r) A 3p ) ss ) g

We note that

(3.21)

(3.22)

«A, ( )».=&A, ( ))„
= y a;bJ (B;J(T) ) /o,

l,j
« A„(r)) ).= gb c, &B„(r)&„,

(3.23)

(3.24)

where the solutions for the expectation values (B;~(t ) ),o
and (8;J(t) )o/ can be written down from Eq. (3.7) and
(3.17). Expressing A2/ also in terms of B;J and applying
the quantum regression theorem, we can compute all ex-
pectation values of the type (B;/(t )B» ),o and
(Bo(t)Bk/)o/ and obtain G, 2(co). Explicit expressions
for these spectra read as

dimension r and the dipole moments d] and d2. With
this we can define the steady-state spectra as

G~ 2(to) = Re f exp[ t(to——&~ 2)r]GI'z(r)dr, (3.20)
0

where

BJ(v/) B,(vp)
G, (o/) = + 2 2

(o/ —&, ) +y, (to fl, ) +(y,—+v~) (o/ —&, ) +(y, . +v~)

[r/'I +~([k } )+0k/]&//([k } )
Dk/' Bk/, oo g 2 (,) 2 7

(„~ (~ —n, +n„, ) +[r„~,+x([k})+p„,]
(k~1 )

(3.25)

where j=1,2 corresponds to the spectra of emission
from the upper and lower excited levels, respectively,
and the other notations are as follows:

A, =y, , ya, b, &B„) (3.26)

&B"&m=g, ~v/v2

3'c +~
B,(.)=, y a, b, g.'b(v) &B„)~,

& —&1&2

(3.27)

(3.28)

Q,'I,'( v) =a; b; v —2v(a; b; h; + g a/ b/ f/; ) + g a; b;g;,
l,j l

(j&i)

Dkl ——ak bl Dkl ——bk cl(1) 2 2 (2) 2 2

r,",'=r„,(l,o), r/„", =r„,(o, 1) .

(3.29)

(3.30)

(3.31)

Az, B2(v) are to be obtained from A, and B,(v) by re-
placing therein a; by b; and b; by c;. The other quanti-
ties v;, h;, f1;, and g; have the same meaning as before.

The expression for the fluorescent spectra under reso-
nance conditions 61 ——A2 ——0 is derived in Appendix A

[cf. Eq. (A35)].
The first term in the expression (3.25) for the spectra

represents the coherent peak at the applied laser fre-
quency Qj. The width of this peak clearly depends only
on the phase bandwidth parameter y, while its heightj
depends on all parameters y, , y, , and y'„. The

remaining terms in the expression (3.25) show the nature
of the incoherent spectra. In order to highlight the
effects due to detunings, let us momentarily ignore the
laser-bandwidth effects due to fluctuations by setting all
the parameters related to the phase and amplitude fluc-
tuations as zeros. This has an obvious consequence that
terms corresponding to k1 ——k2 ——k3 ——0 alone survive in
the summation over Ik} on the right-hand side of Eq.
(3.25). The incoherent spectra, in the absence of fiuctua-
tions, are in general asymmetric around the center
co=Qj and consist of as many as seven peaks. These
peaks correspond to the central Lorentzian located at
the excitation frequency and three pairs of side bands lo-
cated at co =Qj +012 ~ +j++23 and cu =Qj+Q31
(j=1,2). However, the resolution of these peaks depend
on the eigenvalues A, ; of the cubic equation (2.23) which
in turn depends on the values of a; and 6; and one may
have spectra varying from five to seven peaks. Note that
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the central peak at co = A~ is superposition of two
Lorentzians of unequal widths and heights. This is in
contrast with the resonance case where, as is clear from
Eq. (A35) in Appendix A, the spectra are symmetric
around the center (DE=II, ) and have five peaks (instead
of seven), located at DI=AJ, DI=A +0, and DI=Q +20
where Q=(a, +a~)'~ . Note also that the central peak
is a single Lorentzian and not a superposition of two
Lorentzians. We may also remark here that under the
optical double-resonance conditions 6& ———62 ——6, the
spectra show five peaks located at cD=QJ, co=flj+(b.

~ /
2 —I ), co=BI+(I +A~/2) and co=IIJ+21, and
I =[0 +(b, /2) ]' . The important feature here is the
asymmetry of the location of the near side bands. This
together with the asymmetric heights and widths of the
side peaks and the two-component nature of the central
peak distinguishes this case from the case where 6& and
b, 2 are both zero.

We discuss next the effects due to phase fluctuations
by ignoring the contributions due to amplitude fluctua-
tions in Eq. (3.25). We may first consider the case when
the two driving fields have opposite detunings
(b, , = —b, 2). In this case, in the absence of phase fiuc-
tuations y, =y, =y„=O, both the upper and lower

spectra show five distinct peaks with asymmetry around
the applied field frequency. Figure 2 shows the essential
effects due to the phase parameters y, and y, on the

1 C2

two spectra when the cross correlations between the
driving fields are absent (y„=0). The major effect of
phase fluctuations y, and y, is to suppress the central

1 2

peak as well as the remote sidebands. The upper spec-
trum responds more to the variation in y, rather than

1

y, (curves D and E in Fig. 2) and vice versa for the
C2

lower spectrum. As the bandwidth y, , y, are increased
1 2

we expect that the Stark quintuplets reduce to the Stark
doublet in complete agreement with the purely numeri-
cal results of Ref. 17.

On the other hand, for a given set of the parameters
y, and y, , an increase in the cross-correlation band-

I

width y„ leads to a suppression of the near side bands
with a slight enhancement of the central peak and the
remote side bands. This is reflected in curves 2 —E in
Fig. 3 where the spectra are shown for several values of
y„and a fixed set of parameters y, . These results are
similar to those in the resonance case. In the latter case,
however, there is another important feature shown by
the analytical spectra in the presence of phase fluctua-
tions, namely, that each of the near side bands at
co=A -+0, arises from a superposition of two Lorentzi-
ans of unequal widths [cf. Eq. (A35) in Appendix A].

In the general case of unequal detunings (b, I&A, 2), the
effects of phase fluctuations on the individual peaks of
the spectrum can be more subtle. As an example of this
we consider a case in which one of the driving fields is in
exact resonance with the corresponding atomic transi-
tion while the other field has a finite detuning (4I =0,
b, z ———20). In the absence of fiuctuations, the upper
spectrum [curve A in Fig. 4(a)] shows seven distinct
peaks while the lower spectrum [curve 2 in Fig. 4(b)]

x]0
to-

A ~ (
= lP O('

p
= lp

a(= l

Q,
(

= —lp

)
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E
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FIG. 2. EfFect of phase fluctuations on the upper fluorescent
spectra when the driving fields have equal and opposite detun-
ings. Curves 3 —D correspond to y, =0 and y, =0, 0.5, 1, 2,

respectively. Curve E represents y, =0 and y, =2, while F is

for y, =y, = 5. In all these curves y„=O.
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—50
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FIG. 3. EfFect of phase cross correlations on the lower
fluorescent spectra when the driving fields have equal and op-
posite detunings. Curves A —E correspond to y, =y, = 2 and

1 2

y„=O, 0.5, 1, 1.5, and 2, respectively.
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FIG. 5. Effect of phase cross correlations on the fluorescent
spectra when the upper field is in exact resonance and lower
field is off resonance. (a) Upper spectra and (b) lower spectra.
Other data as in Fig. 3.
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shows only six resolved peaks. The curves 8 —F in Fig.
4 show the variation of the spectra for several values of
the parameters y, and y, with y„=O. The overall

effect of increasing y, and/or y, is the suppression ofCl C2

the central and side peaks, as is to be expected. The
upper spectrum is more sensitive to the changes in y,

I

values rather than y, and vice versa for the lower spec-C2

trum. Note, however, that for intermediate values of y, 2

(with y, fixed) the second side band peaks have a ten-
]

dency to get enhanced before getting suppressed or
smoothened out for very large values of y, . Similar

2

effects are also seen in Fig. 5 where the effects of cross
correlations y „on the upper and lower spectra are
shown for a fixed set of y, values. In Fig. 5(a) for the

upper spectrum one sees the enhancement of the two re-
mote side peaks on the left and suppression of all other
peaks in the upper spectrum with increasing values of
y„. On the other hand, the lower spectrum shown in
Fig. 5(b) shows the suppression of all peaks except the
first peak at the left as y„ is increased.

Finally, we consider the full expression (3.25) for the
fluorescent spectra from the upper and lower excited lev-
els which contain the effects due to both phase and am-
plitude fluctuations. The analytical spectra are asym-
metric with a central peak at ~=Qj and three pairs of
side bands at ~=A, +A&z, ~——Bj+Az3, and ~=Aj+0, 3].
The contributions to the effective height and width of
each of these side bands come from a superposition of an
infinite number of Lorentzians located at the side-band
center with heights and widths depending on the param-
eters A,(Ik] ) (with kl, k2, k3 ——0, 1,2, . . . ). It is also
clear from the analytical expression (3.35) that unlike the
phase fluctuations which affect both the central peaks as
well as the side bands the amplitude fluctuations do not
show any effect on the central peak at all and affect only
the side bands. This can be attributed to the approxima-
tions made in our formulation. We have carried out the
stochastic averaging over the ensembles of phases exact-

ly in our formulation. On the other hand, the averaging
over the ensembles of amplitude fluctuations could be
carried out only after taking a recourse to the high-field
approximation. The general effect of the amplitude fluc-
tuations is as shown in Fig. 6 for a typical set of detun-
ing parameters. For a fixed set of phase-bandwidth pa-
rameters y, , y, , y„and a fixed set of the amplitude

1 2

fluctuation parameters dj e~ and d&dze]2, the side peaks
show a slight increase in the height and reduction in
width with an increase in any of the amplitude-
bandwidth parameters y, or y„[curve E in Figs. 6(a)

and (b)]. On the other hand, it is seen from the analyti-
cal expression (3.25) and the curves A Dof Fi—g. 6 that
given a set of phase parameters y, , y, , and y„and
amplitude-bandwidth parameters y, , y, , and y„an
increase in any of the amplitude-fluctuation parameters
dj 6'j /y, or d

& dz @]2 /y „results in the reduction of
height and a broadening of the side bands.

C. Intensity-intensity correlation functions

The nature of the fluorescent light emitted from the
excited levels

l
1) and

l
2) may be known from the

second-order intensity correlation functions. The
quantum-mechanical first and second-order correlation
functions are defined by

(3.32)

=((E; (r, t)EJ (t, t+r)E~ (r, t+r)E; (r, t)) ),
(3.33)

We are interested, in particular, in the normalized
intensity-intensity correlations in the steady state defined
by

(3.34)

More explicitly, this expression results in four kinds of second-order coherence functions

g 1 1 (r ) « A 12 A 12( r ) A 21(r ) A 21 ) SS ) a /
l
« A 12 A 21 ) )

= ( ( A „A„(r ) A 21 ) )00/ l
( A 11 )00 l

',
g22 (7 ) —( ( A23A23(7 )A32(r)A32 )ss). /

l
( & A„A32 ) )

(3.35)

=& A23A22(r)A32)00/ & A22)00
l

g 12 (r) =« A 12 A 23 (r ) A 32( ) A 21 ) SS )a /
l
« A 23 A 32 ) )a « A 23 A 32 ) &

& A12A22(r)A21)00/
l

& A22)00& Ail )00 l

g21 (r) « A23A12(r)A21(r)A32)SS) /l « A23A32) )a« A23A32) )

& A 23 A 11 ( r ) A 32 )00/
l

& A 22 ) 00 & A 11 )00 l

(3.36)

(3.37)

(3.38)

The quantity gI1'(r) ([g12z'(r)] is a measure of the correlations between the photons emitted at time t =0 and at time
t =r from the upper (lower) excitation level. On the other hand, gI2'(r) [g21'(r)] is a measure of the probability of
detecting a phonon emitted from the upper (lower) excitation level at time t =0 and another photon emitted from the
lower (upper) excitation level at a later time t =r.
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In order to obtain these correlation functions we have to obtain first the expectation values ( A»(r))oo and
( A22(r) )oo and then apply the quantum regression theorem. The expectation values ( A»(r))oo and ( A&2(r) )oo are
in turn obtained by first expressing the A» and A2z operators in terms of the operators B;/. according to Eqs. (2.28)
and subsequently employing the solutions for the expectation values (B;J(r)). The resulting expression for g '(z)
may be written in the following compact form:

g, '(r)=1+ P~(vi) exp( vi—r)+ P;, (v2) exp( —v2r)
V) —V2 V2 —V)

+R/ exp[ —[P&2+I,z(0, 0)r]j g biq([k] ) exp[ —A([k) )r] cos(Biz')
Ik I

+SI exp [ —[P23+ I 23(0,0)]r] g 623( [kj) exp[ —A( [k I )r] cos(A/37)
Ikj

+T;, exp[ —[p„+I 3 (0 0)]r) g 63/([kI )exp[ —X([k])r]cos(Q /7) (3.39)

The coefficients P;j(v), R,~, S;J, and T;, are to be defined as follows. We first define the four related quantities

P(x,y;v) =
X xkyk v 2v g xkykhk + g xkykfk/ + Q xkgk

k k k~1 k

2 (3.40)

«» = viv2 xix~ye~)e p(&i2) gxkgk,
k

(3.41)

S(x,y ) =2vivz(x2x3y2yp ) exp(523) g x„g„, (3.42)

T(x,y)=2viv2(xix3yiy3) exp(6, 3) gx/g/
k

(3.43)

With this definition P„(v), R», S,i, T» are obtained
from the above expressions by letting x; =a; and y; =b;;
Pzz(v), R zz, S22, T22 are obtained from the correspond-
ing expressions by letting x; = b; and y; =c;; P,2(v), R &2,

S&2, T&z are similarly obtained by letting x; =y; =b;. Fi-
nally P2i(v), R2&, S2i, Tz, are obtained by replacing x;
by a; and y; by c;.

It is clear from these expressions that the correlation
functions gii'(r), g22'(r), and gqi'(r) vanish at &=0 and
tend towards unity for long times ~. On the other hand,
the function giz'(w) does not vanish at r=0, implying
thereby that there is finite probability for simultaneous
emission of two photons of frequency Q& and frequency
Q2. In the absence of fluctuations all g 1 '(r) show the
expected oscillatory behavior through bunching and an-
tibunching cycles decaying to their steady-state value of
unity. The phase and/or amplitude fluctuations do not

change their qualitative behavior but merely tend to
reduce the amplitude of oscillations. This is shown in
Figs. 7 and 8 where g/~ '(~) are plotted versus r for some
typical set of fluctuation parameters. Note that in Figs.
7 and 8 the curves A —E for diA'erent fluctuation param-
eters are distinguished by labeling only a typical peak.
The behavior at other peaks follow the same pattern.
We may remark here that the eÃects of phase (ampli-
tude) cross correlations between the lasers y„(y„) on
the behavior of g J '(r) are not distinguishable from those
of the self-correlations y, (y, ) and y, (y, ). This is

in contrast with the case of fluorescent spectra discussed
previously where such erat'ects are clearly discernible.
Also, in the case of amplitude fluctuations, the curves
A —E Of Fig. 8 indicate that the intensity-intensity
correlations are relatively less sensitive to the variation
in the bandwidth parameters y, , y, , and y„as com-
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f12 f 13 y2I /2+f /2

f11= fzi =2f3i =y irz+f p ~

f22 f33 yirl/4+yz(1 r—z»)»+y, ,
r'/4

+y, , I 2/4 —I,I zy„ l2+fp l2,

(Al)

(A2)

APPENDIX A: SPECIAL CASE OF RESONANT
EXCITATIONS 6 )

——h2 ——0

When both the driving fields are in resonance with the
corresponding atomic transitions, we have 6& ——Az ——0.
In this case the roots p; and the coeScients a;, b;, c; are
explicitly determined by (2.21). This results in consider-
able simplifications. First, the coefficients f;j take the
form

f„=f„=y,r', /4+y, r', /4+y„r', /4

+r, r', y4 —r', r,'y„/2,

fp = r', r'2(y, ~ y, +2y„),
g1=2f i2 z~gz =g3 =2fzivz

v, =2y, l z+yzI 1+31 1I z(y, +y, +2y„),
vz=y, r', +yz+y, ,

r', (I+r,')+y„r', (I+ r', ),
where

I 1
——ai/0, I z

——az/0, A=(ai+t2z)'

(A4)

(A5)

(A6)

(A7)

(A8)

The solution for (8;;(t)&zq given by Eq. (3.7) in the
text then simplifies to the following form:

(822(t ) &pq
=

2f iz 28(0) exP[ —a(P, q)t]+ [2fzi (811(0)&pq f izB (0)]exPI [vi+a(P q)t]I
V) V]

2f zi 8(0) exp[ —a(p, q )t]+ [ —2f21(811(0)& +f izB (0)]exp[ —[vi+a(p, q )t] j
V) V]

+ ,'8 (0) exp—[—[vz+ a (p, q )t ]I, (A 10)

2fzi 1(833(t ) &~q
—— 8(0) exp[ —a(p, q )t]+ [ —2fz, (8»(0) &~q +f,zB+(0)]expI —[v, +a(p, q )t] j

V] V)

'8 (0) e—xp[ —[vz+a(p, q )t ]I, (A 1 1)

where we have used the notation

8(0)= &8„(0)&„+&8„(0)&„+&8 (0) &„,
(A12)

8-(o)=(8„(o)&„+(8„(o)&„, .

Further, when 6]——Az ——0 we have b& ——0 which implies
that

y i(p, q ) = 3y ir i /2+(1+ r z/2) y z+ r iy. /4+ r zy. /4

+rzirzz(y, +y, +y„)+~(p»q) . (A19)

The six equations for ( 8,, (t ) &~~ (i &j ) following from
the general equation (3.4) in the text split into two pairs
of coupled equations and two single equations,

g, ( t ) = (12( t ) = (13(t ) =$31( t ) =gz, ( t ) =0, (A13)

rzi(p, q ) = r3i(p, q ) =y3(p, q ) =yz( —p, —q )

=y(p q)+b(p»q»
(A15)

I »(p, q)=r»(p, q)=yz(p, q)=y(p, q) b(p, q), (A14—)

d (B»(t ) &~, Idt = [10—yz(p, q ) rt(t )](812(t ) &—~,

+f,&8»(t) &„,

d (831(t ) &&~ Idt = [i 0—y3(p, q ) —ri(t )](831(t) &~q

+f11(812(t ) &,q,

(A20)

(A21)

r23(p, q )=r32(p, q ) =y i(p, q ) (A16)

+(ri+ rz»)y, , +2y„(rl+ rl ), (A17)

where

y(p, q ) =a(p, q )+(I 2+ I, /2)y, +yz/2+(1 2+I 21/2)y,

d (Bzi(t ) &1 q
Idt = [ i0 —y3—(p, q ) —21(t )](Bzi (t ) &1,

+fP (813(t ) &~q, (A22)

d (8,3(t ) &~~ Idt = [—

i'll

yz(p, q ) ri(t )](8—,3(—t ) &~q

+f.&8„«)&„, (A23)

b(p, q)=(py, , +qy, )(2I 2
—I, )

+(qy„+py„)(r,' —2r', ), (A18)

d (Bz3(t ) & Idt =[ 2i 0 yi(P, q ) —4rt(t —)](Bz3(t ) &~q,—
(A24)
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d (83z(t ) )~q/dt = [2i 0 —y, (P, q ) 4—ri(t )](83z(t ) )~q,

(A25)

/3;=I;d; e';/y, (i =1,2),

P3 =2f']1 zeiz/y-
(A27)

where the new function ri(t ) is defined as
3

r/(t)= g P;X;(t), (A26)

and P;(t) is defined in the text [Eq. (3.16)]. Taking the
Laplace transform and solving the resulting pairs of
simultaneous algebraic equations, we obtain

[(s+/3/4+ A+y3(p, q ) i A—)(8]z(0) )~q +f]](83](0))pq ]6]
B,z(s) ~q

——V F (s+P/4+A )

[[s+/3/4+&+yz(p, q) —]'&](Bz](0))pq+fp(Bz](0) )pq I~]
83](s) ~q

——'V
F (s+P/4+A, )

[[s+f3/4+X+yz(p, q )+i A](Bz](0))zq+ fp(8]3(0) )~q I/]. ]
Bz](s) ~

= 'V
F+ (s+P/4+ 1.)

[ [s+p/4+X+yz(p, q )+i Sl](B]3(0)) +fp(Bz](0) )&q ]6]8,3(s) ~q
——'V

F+ (s +P/4+ A, )

(A28)

(A29)

(A30)

(A31)

(A33)

p= g/3;, 5= +5;,

az(Bz3(O) &„
Bz3(s) ]q

—— (A32)
s+P+A +y](ptq ) 2EQ

+z(83z(0) )
83z(s ) ~q

——

(&! s+P+A, +y](p, q)+2iA

where (8J(s) )~q is the Laplace transform of (8;,(t ) )~q, [k [ implies summation over integers k„kz, k3 ranging from
zero to infinity, and the other notations used are as follows:

5; =p; ly, (i = 1,2), 53 —f33/y„,
k

& = exp(5/4) / ( —5, /2) '/k, !, (A34)

k.
hz ——exp(5) Q ( —5, /2) '/k, !,

j=1

F+ ——[s+yz(P, q )+i Q][s+y3(P, q ) i 0] —fo . —

These Laplace transformed averages (8;~ (s ) ) are used to com. pute the fiuorescent spectra under resonant conditions.
The expressions for these spectra read as

6;(cp)= + g A][k I
(y; )'+(tp —fl; )'

B;
2+ +(Q —0)

(y,+) +(cp —0; —A) (y; ) +(cp —Q; —0, )

+ g Az[kI
C; +(Q~ —0)

(y ) +(p3 —0; —2A)
(A35)

where i =1,2 stand for the upper and lower spectrum, respectively, and

W, =y', r', (8„)
7i =&2+Pc,0

p2 + p-+ +p+
&8ii &oo Bz*= &Bzz &oo

4q1
'

4q2

q; =(fp+r; )'~, r] b(1,0), rz ——b(0, 1——),
y, =y;+f++&/4+~

(A36)

(A37)

(A38)

(A39)

(A40)
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(1,0), yz=yi(0, 1),
C, =y,'r', &azz &~/4,

yI=yi(1 0)+0+~
yz=y i(0 1)+13+~ .

(A41)

(A42)

(A43)

(A44)

(A45)

In a similar manner, using the definitions in the text, the expressions for the intensity-intensity correlations can be de-
rived as

(I
&

—2I z)f &z v&I
&

exp( —[f3+y &(0,0)]~)g'„'(r) =1+ exp( —v&~) — g bz( [kj) exp[ k( t k})~]—cos(2Q~),
2(l ~»+ I',f» ) 4(rg„+ rzf „)

(A46)

( I zf ) z
—21 )fz )

gzz (r)=1+ exp( —v~r) — expI —[P+y~(0, 0)]rI g bz(Ik I) exp[ —A([k I)w]cos(2Qr),
2fz& 4f zi IkI

(A47)

g Pz (7)= 1 + exp( v, r) + — exp( —[P+y &(0,0)]r) g hz( [ k I ) exp[ —A ( I k I )r] cos(20'r)
2f zi 4f zi Ik I

[3 (I fl z/2 —2( I zf )z+ I (fzt )]
gz)'(~) = 1+ exp( v,r)—

2(l zf )z+I )fz) )

v, I,1 z exp( —[P+y)(0,0)]~)
g b z( I k ] ) exp[ —X( I k ] )r] cos(20~)

4(l zf iz+ I ffzi )

v, I', I', exp{ —[P/4+y(0, 0)]r)
g b, , ( [ k ] ) exp[ —A( I k I )~] cos(Qr ) .

I zf iz+ I if zi Ik I

(A48)

Note that these expressions can also be obtained from the corresponding expressions in the text by setting b
&
——0 and

subsequently using the simplifying relations (Al) —(A5) valid for b,
&

——b, z ——0. This is because the extra terms present in
the master equation do not affect the time behavior of the expectation values of the diagonal atomic operators.
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