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A gas displacing a high-viscosity liquid in a porous medium generates a fractal finger structure
similar to that obtained in diffusion-limited aggregation (DLA). This structure is controlled by the

surface dynamics of the growing active zone.

The dynamics of viscous fingering in a two-

dimensional porous model has been investigated. We have studied the radius of the active zone and
the screening length of the active zone as a function of time in the DLA regime. In this regime the
fingering structure grows mainly at the tips, and the inner region is screened by the outer fingers.
The length of the longest finger as a function of time is accurately described by the results of a new
form of DLA simulation which in addition to DLA structures gives the time dependence in a form

suitable for comparison with experiments.

I. INTRODUCTION

The displacement of a high-viscosity fluid by a low-
viscosity fluid in a porous medium in a process of both
scientific and practical importance. It has recently been
shown by Chen and Wilkinson' and by Maldy, Feder,
and Jdssang® that viscous fingering in a random porous
medium at high capillary numbers @ >>10"* generates
structures with a fractal’ geometry. This fractal structure
closely resembles that obtained from the diffusion-
limited-aggregation (DLA) model of Witten and Sander.*
Similar structures have also been obtained by fluid-fluid
displacement in radial Hele-Shaw cells using non-
Newtonian viscous fluids.® The relationship between
fluid-fluid displacement in porous media and DLA was
first discussed by Paterson® and a more detailed analysis
has been presented by Kadanoft.’

A wide variety of non-equilibrium processes, such as
dielectric breakdown,? electrodeposition,”!® random den-
dritic growth,'"!? and the dissolution of porous materi-
als!? has also been shown to lead the formation of struc-
tures similar to those associated with the DLA model.
Here we describe a study of viscous fingering of Newtoni-
an fluids in a porous medium at high capillary numbers
(C=up/o~0.15). Here u is the mean velocity of the
longest finger, u is the viscosity of the viscous liquid, and
o is the surface tension. Under these conditions growth
occurs mainly at the relatively unscreened (most exposed)
tips of the fingers and can be described in terms of an ac-
tive zone'* which leaves behind a “frozen™ structure that
does not evolve further with increasing time. Since the
frozen interior, which forms the majority of the cluster, is
formed by the advance of the active zone, it is reasonable
to expect that a more complete description of the dynam-
ics of the active zone might lead to a better understanding
of the viscous finger structure.

The original DLA model of Witten and Sander specifies
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a time-ordered sequence of events but is not explicitly
time dependent. While the time-dependent aspects of
DLA and closely related processes have been explored
theoretically'>!'® and by means of computer simula-
tions,'”!® this aspect of DLA has only recently been ex-
plored experimentally.?

Here we describe the results of experiments carried out
to explore the dynamics of fluid-fluid displacement in a
two-dimensional (2D) porous medium. The results of
these experiments are compared with simulations carried
out using a modified DLA model which allows the time
dependence of the growth process to be investigated in the
zero concentration limit.

II. EXPERIMENTAL METHODS

The experimental setup is shown in Fig. 1. The porous
model consists of 1-mm glass spheres sandwiched between
a stiff plexiglass disk and a thin plastic sheet held in con-

cIto,

FIG. 1. Experimental setup. a, porous model with glass
spheres; b, plastic film; ¢, external aluminum ring; d, camera; f,
pressure gauge; e, pressure reduction system; g, light board.
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tact with the spheres by compressed air. The model was
made by coating a Plexiglass disc (6 mm thick and 40 cm
in diameter) with a 0.1-mm layer of transparent epoxy,
and spreading a layer of 1-mm glass spheres onto the
disk. The epoxy was allowed to partially harden before
spreading the glass spheres so that the spheres would stick
on contact and not move later. After the epoxy layer har-
dened, the excess of glass spheres was removed, leaving a
monolayer. The disc with the monolayer of spheres is
placed, face down, onto a plastic film. This assembly is
supported from above and below by 10-mm-thick glass
discs and clamped in an aluminum ring, as illustrated in
Fig. 1. We connected the space between the plastic film
and the lower glass plate to a compressed air supply in or-
der to force the film into contact with all of the glass
spheres. This air pressure was higher than the pressure of
the air injected into the porous model, and was held con-
stant during the experiment. Filling the model before in-
creasing the pressure on the plastic film, makes it easier to
fill pores with high-viscosity fluids without trapping air
bubbles.

In a typical experiment, air injected at the center dis-
places glycerol, filling the pore space of the model. Air at
a constant pressure is introduced into the porous layer
through a 1-mm hole at the center of the Plexiglass disc.
A stable pressure of the air displacing the glycerol was ob-
tained using a Mortanair B11-M3 pressure regulator and
a Norgren low-pressure regulator connected with an
external reservoir of about 5 1. The pressure of the air
during the injection process was measured with a Texas
Instrument fused quartz pressure gauge, and the pressure
fluctuations at the center were typically less than 0.5%.

The resulting finger structure was photographed with a
Nikon F3 camera controlled from an IBM PC XT (per-
sonal computer). Uniform lighting on the transparent
model was provided from below. A typical time between
each picture was 0.6 s. The pictures were enlarged using
an Agfa Gevaert Reprodoline 716 transparent film. Fig-
ure 2 shows a typical viscous finger pattern obtained in

FIG. 2. Fractal viscous fingering with a fractal dimension
D =1.64+0.04 in a two-dimensional porous medium. Air was
injected in glycerol with a pressure (p; —p,) of 20.2 mm Hg and
a capillary number € of 0.15.

FIG. 3. Active zone of a viscous fingering structure in a two-
dimensional porous model. The time between each picture used
to construct this picture of the growth zone is 2.6 s. Air was in-
jected in glycerol with a pressure (p; —po) of 20.2 mm Hg and
capillary number @ of 0.15.

this way. Note that the picture in Fig. 2 is obtained by
superimposing a negative picture of the filled model with
a positive picture of the finger structure. We thus sub-
tract out all the features that remain constant such as the
fixed spheres and any uneveness in the illumination. In
effect we obtain the difference between the two pictures.

In order to identify the active growth zone at a given
time, and to filter out noise from the picture, we subtract-
ed the picture taken at the previous time. The earlier pic-
ture was subtracted by superimposing the negative of the
earlier picture below the positive of the last picture. In
this way we obtained the growth zone shown in Fig. 3, for
the finger structure shown in Fig. 2.

The viscous fingers were analyzed by digitizing the pic-
tures using an RCA TC2055CX video camera and a Tec-
mar Video van Gogh interface in an IBM PC. The reso-
lution of this equipment is 256 X256 pixels.

III. COMPUTER SIMULATION

The original lattice model of Witten and Sander* for
diffusion-limited aggregation was modified to represent
the displacement of a viscous fluid by a nonviscous fluid
in a two-dimensional porous medium of finite size. The
modified model which was used for this purpose is illus-
trated in Fig. 4. Figure 4 represents an early stage in a
small-scale simulation on a square lattice. The sites
which are occupied by the zero-viscosity fluid are shaded
and the growth sites (unoccupied sites with one or more
occupied nearest neighbors) are represented by open
squares. To simulate the viscous fingering process, one of
the unoccupied surface sites is selected at random and the
random walk is started from that site. After each random
walker is launched from an unoccupied surface site, the
simulation time is incremented by 1/N, where N, is the
total number of surface sites. The random-walk trajectory
is stopped and the site from which the random walk ori-
ginated is filled if the random walker moves a distance
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FIG. 4. Schematic representation of the model used to simu-
late fluid-fluid displacement in a two-dimensional porous medi-
um. The shaded sites on the square lattice represent regions oc-
cupied by a nonviscous fluid. The unoccupied surface sites are
represented by open squares and the rest of the regions occupied
by the viscous Newtonian fluid is blank. Two typical random-
walk trajectories (¢, and t,) are shown. The origin of each trajec-
tory is indicated by a dot and the termination is indicated by a
square. Trajectory ¢; reaches the edge of the “cell” at a radius
of r =R, and the site at its origin is filled. Trajectory ¢, returns
to the cluster and does not result in growth. The original *‘seed”
or growth site which represents the point at which the non-
viscous fluid is injected is darkly shaded.

greater than R, from the original seed or growth site.
The circle of radius » =R, represents the edge of the cell.
The random-walk trajectory ¢; in Fig. 4 shows a random
walk which results in growth. If the random-walk trajec-
tory reaches a second unoccupied surface site, the random
walk is stopped but growth does not occur; this process is
represented by trajectory ¢, in Fig. 4. After each random
walk has terminated a new random walk is started at a
randomly selected surface site and the time is incremented
by 1/N,. The simulation is continued until the growth
reaches the edge of the cell.

This model is based on the equivalence of a field obey-
ing Laplace’s equation [in this case the pressure field p (r)]
and particles undergoing random walks subject to the
same boundary conditions. The pressure field p (r) at po-
sition r is proportional to the number of times the lattice
site at position r is visited by the random walkers. By
starting the random walkers with equal probability at
each of the unoccupied surface sites and terminating them
if they return to the surface, we satisfy the boundary con-
ditions p (r;)=p,=const for all the surface sites. Ter-
mination of the random walkers at the outer boundary
with a radius of R, corresponds to the boundary condi-
tion p (ry)=po=0 for all the positions at the edge of the
cell.

In our simulation the random walkers are launched at a
constant rate from all of the surface sites. Consequently,
the simulations correspond to experiments in which a

constant pressure difference is maintained across the
viscous fluid. The total number of particles AN launched
from the cluster surface within a time interval Az is pro-
portional to the pressure p; =const at the surface times
the total number of surface particles N;. We then get the
time interval At ~AN /N; used in the simulations. In
Fig. 4 the model is illustrated for the case of a square lat-
tice. In practice, a hexagonal lattice was used to mini-
mize the effects of lattice anisotropy.'’

The simulations could equally well have been carried
out by launching the random walkers from the outer
boundary representing the edge of the cell. In this case
the time would be incremented by a constant amount
(1/N, where N, is the number of sites at the outer
boundary) after each walker had been launched. In the
early stages of simulation most of the walkers would re-
turn to the outer boundary (and be removed) before con-
tacting the growing cluster. Growth would occur each
time a random walker reached the surface of the cluster.
The equivalence of these two simulation methods is a re-
sult of microscopic reversibility under the quasistationary
growth conditions which are assumed in these models.
Growth occurs each time a path connecting the cluster to
the outer boundary is found. Because of the time-reversal
symmetry of random walks, each path has an equal prob-
ability of being found in both simulation methods.

At early stages in these simulations, random walkers
launched from the outer boundary would have a low
probability of reaching the cluster and there would be
many time increments between each growth event. If the
random walkers were launched from the cluster, there
would be a higher probability of finding the outer bound-
ary but the time increments would be large because there
would be few surface sites at this stage. In the later stages
of growth many of the random walkers launched from the
cluster would originate from well-screened interior sites,
but almost all of these would recontact the cluster before
reaching the outer boundary. At this stage the time incre-
ments are small but a relatively large number of random
walkers must be launched in order for one of them to
reach the outer boundary.

In order to improve the efficiency of the simulation, the
random walkers were allowed to make large off-lattice
jumps when they were a long distance from both the clus-
ter and the outer boundary.?’ If the random walker is at
a distance s from the nearest occupied site on either the
cluster or the outer boundary, a move by a distance which
is a few lattice distances smaller than s was permitted in
any direction. In the vicinity of either the cluster or the
outer boundary the random walker was transferred to the
nearest lattice site and moved via lattice steps until it ei-
ther reached a boundary or moved a longer distance from
both the cluster and the outer boundary. Despite the im-
provements resulting from this procedure, quite large
amounts of computer time are required for these relatively
small-scale simulations.

IV. GROWTH OF VISCOUS FINGERS

Saffman and Taylor?' developed a theory of viscous
fingering in a Newtonian liquid between two plates of gap
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a with rectangular symmetry. They supposed that the
fluid is described by Darcy’s law

u=Fvyp (1)
7

for each of the two fluids separately. U is the fluid flux
and k =a?/12 the permeability. Paterson?’ solved the
same problem for a 2D circular Hele-Shaw cell and found
that, when the circumference increases beyond a critical
value A,/a =@~ '2, it becomes unstable and splits into
fingers with a width of A.. However, the structure of
viscous fingers in a porous medium is fractal, and is there-
fore qualitatively different from the structures in an ordi-
nary Hele-Shaw cell which is not fractal at the same capil-
lary numbers.

For an incompressible fluid and a porous medium with
homogeneous porosity, Darcy’s law equation (1) and
V-U=0 gives the Laplace equation

Vip =0. )

Here we are concerned with a gas injected with a constant
pressure p, and with constant pressure pg at the rim. The
ordinary Hele-Shaw cell and a Hele-Shaw cell with a
porous medium will satisfy the same differential equations
[(1) and (2)]. However, the boundary conditions are clear-
ly not the same. In the case of a porous medium a new
length scale, the size of the pore b, must be taken into ac-
count. In a porous medium, the direction of the propaga-
tion and the width of the viscous fingers depend on the
pore size and the geometry of the porous matrix. In an
ordinary Hele-Shaw cell, the finger width is controlled by
A.. Note that Darcy’s equation (1) only applies in an
averaged sense, and the permeability k is defined only
when one considers the porous medium on length scales
much larger than typical pore dimensions. The dynamics
of displacement fronts which advance on the pore level is
therefore not described by the Darcy equation alone, and
the random pore geometry influences the displacement
dynamics.

Nittmann, Daccord, and Stanley® have studied viscous
fingering of water into a non-Newtonian liquid with zero
interface tension. Using a radial Hele-Shaw cell they
found a fractal dimension D = 1.7 consistent with our re-
sult and the DLA result. On the other hand, there are
differences between the structure they observed and the
finger structure generated in a random porous medium.
One difference is that their main branches tend to be
much more straight and do not have the same treelike
structure as seen in Fig. 2. Another important difference
is that their side branches grow with an angle very near
40° out from the main branches. In the random model
the viscous fingers grow in a direction determined by the
porous matrix and the largest pressure gradients at the in-
terface between the two fluids, and do not have a narrow
angular distribution.

In a continuum description of fluid-fluid displacement
the fingers will grow in the regions where the pressure
gradient at the interface is largest. In the diffusion-
limited-aggregation model an additional component is in-
troduced by the stochastic nature of the random walk. In
a random porous medium the pressure gradients across

the pore necks will fluctuate along the interface because of
the capillary pressure fluctuations and the viscous drag
fluctuations at the pore level. This pressure fluctuation is
important and should not be neglected, even at high capil-
lary numbers. To understand the dynamics of viscous
fingers at high capillary numbers, it is therefore important
to consider both the global pressure given by Darcy’s law
and the pressure fluctuations at the pore level.

In Fig. 2 the result of an experiment at a capillary
number € of 0.15 is shown. The fractal dimension of this
cluster is D =1.64+£0.04. The viscous fingering structure
was analyzed by digitizing pictures such as that shown in
Fig. 2. The number N (r) of black pixels was calculated
as a function of distance r, from a point near the injection
center. We expect N (r) to have the scaling form

N(r)=No(r/R)Pf(r/Ry,) . 3)

Here, R, is the radius of gyration and N, is the total
number of black pixels. The crossover function f(x) is
constant in the range a /R, <x <1 and tends to x D for
x > 1, and we find N(r)—N, for r >>R,. In Fig. 5 we
plot log,o[N (r)/Ng] as a function of logo(r /R, ) for the
structure shown in Fig. 2. By fitting Eq. (3) in the range
2a <r <R,, we find a fractal dimension D =1.64+0.04.
This value is the mean value of D obtained by choosing
different centers (on the cluster) inside an area with a ra-
dius of a about 8 pixels from the center of injection. The
uncertainty given expresses the range of D values obtained
within this area. This value for the fractal dimension
differs somewhat from that obtained from simulation re-
sults?® (D~1.71). However, the shape of the viscous
fingers shown in Fig. 2 bears a striking resemblance to the
shapes generated by two-dimensional DLA models and
we believe that a DLA model describes the essential phys-
ics of our experiments.

One important feature of the pressure field given by
Darcy’s law is the screening of the inner region by the
longest fingers. This is easily seen in Fig. 3 where almost
all the growth is at the tips. In Fig. 6 the distance r,,
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FIG. 5. Normalized finger structure area N (r)/N, as a func-
tion of the reduced radius r/R,. Experiment on glycerol at
¢@=0.15. The solid line, obtained from a linear fit to the experi-
mental data, has a slope of 1.64.
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FIG. 6. Length r, /R, of the longest finger as a function of
time ¢ /tg. Four experiments on a two-dimensional system of 1-
mm glass spheres. The dashed curve is Eq. (4), the thin solid
curve represents the same equation but with exponent 1.64. The
thick solid curve is the result of our simulations.

from the center of injection to the tip of the longest finger
is plotted as a function of ¢/ty,, where t, is the break-
through time when r,, =R, and ¢ is the time when the
picture was taken. Four different experiments with the
same pressure p, at the center of injection and the same
size of glass spheres (I mm in diameter) are shown. For a
circular bubble of radius » at a fixed pressure p; expand-
ing into the viscous fluids, Eqgs. (1) and (2) give the rela-
tion

t/ty=(r/Ro)*[1—In(r /Ry)*] . 4)

This gives the dashed curve in Fig. 6, and it describes the
data well. This indicates that the longest fingers control
the potential flow and generate a ‘““Faraday cage” with a
radius almost equal to r,, screening the internal structure
of shorter fingers. Clearly, Eq. (4) should be modified for
fractal growth. Matsushita et al.® studied the fractal
structure of two-dimensional zinc-metal leaves grown by
electrodeposition and obtained D =1.66+0.03. They pro-
posed that the ‘“effective” radius of the structure should
grow as r~t'/P, This proposal suggests that the ex-
ponent 2 in Eq. (4) be replaced by D, in order to account
for the fact that less of the fluid is displaced by fractals
than by a bubble. This replacement gives the thin fully
drawn curve in Fig. 6. We expect this replacement to be
valid for the effective radius. We find, however, that the
exponent 2 fits the results for the dynamics of the longest
finger better than the exponent 1.64.

We have compared our results with the DLA simula-
tions described above. The simulations were carried out
on a hexagonal lattice with the outer boundary having a
radius of 200 lattice units. The results shown in Fig. 6
are the average from 20 simulations. We find the good
agreement between the simulations and the observed dy-
namics of the longest finger very satisfying.

The mean radius of the active zone as a function of
time has also been measured. Here the active zone was

approximated by the growth increment between two suc-
cessive pictures. Similar approximations to the active
zone have been used to analyze the results of computer
simulations.>*

The mean radius of the active zone is defined as

1=Lsp 5)
n

where /; is the distance from the center of injection to one
black pixel on the growth zone and » is the total mass of
the growth zone. The result of three experiments with air
injected into glycerol with the same pressure difference
Ps —Po=20.2 mm Hg is shown in Fig. 7.

Since / describes the growth of the cluster, it must be
related to the fractal dimension D of the frozen structure.
If the mean radius from the same data is plotted as a
function of the radius of gyration R, of the viscous finger
structure of the last picture, we obtain the result shown in
Fig. 8. In the same figure we have also plotted the long-
est finger as a function of the gyration radius of the total
cluster for the same experiments. Linear functions shown
as a solid lines in Fig. 8 fit the data points well. Within
the accuracy of our experiment the mean radius of the
growth zone, the longest finger, and the radius of gyration
of the total cluster have the same functional form:

l=cRy~r,=c,R,~N{” . (6)

The values of the constants ¢, and ¢, from fitting to linear
functions are ¢;=1.494+0.02 and ¢, =1.98%+0.03. This
result is consistent with the DLA simulation of Plischke
and Racz,'* who found the same exponent 1/D for both /
and R, as a function of Ny.

The gyration radius of the growth zone /, is defined as
172

L= |3 %

The relationship between the width of the active zone (the
screening width) and the radius of gyration has been a

0.8 T T T T
06 I <
LRl
=) Pl *d‘ s
< e 0.0
= 04 F e 4
+ o
+ © o= *
7%
0.2 P -
Ot& )
.
L . . "
0.2 0.4 0.6 0.8 1.0
t/ty

FIG. 7. Mean radius / /R, of the active zone as a function of
time t/f, from three different experiments where air displaces
glycerol. The pressure difference (p; —po) was 20.2 mm Hg in
all three experiments.



36 DYNAMICS OF VISCOUS-FINGERING FRACTALS IN POROUS MEDIA 323
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FIG. 8. (a) The longest finger r,, /R, as a function of the ra-
dius of gyration R, /R, for the same experiments used to obtain
Fig. 7. (b) The mean radius //R, of the active zone as a func-
tion of the radius of gyration R, /R, of whole cluster for the
three experiments used to obtain Fig. 7. These results were ob-
tained with air displacing glycerol. The pressure difference
(ps —po) was 20.2 mm Hg.

subject of considerable interest.!#2*~%’ The width of the
growth zone is defined as

E=(1P—1DH)'* . (8)

We have measured this quantity as a function of time and
the result of one of these measurements is shown in Fig.
9.

When we plotted & as a function of the gyration radius
R, of the whole cluster, we found different slopes from
different experiments. Comparing the results of different
experiments, we found that clusters with the highest num-
ber of major branches had a lower slope than clusters
with fewer major branches. This indicates that the
screening width is sensitive to the number of major
branches.
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FIG. 9. Width of the active zone £/Ro as a function of time
t/to. The pressure difference was (p; —po) of 20.2 mm Hg, with
air displacing glycerol.
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FIG. 10. Width of the active zone §/Ry as a function of the
gyration radius Rg /R obtained from the three experiments used
to obtain Fig. 7. The pressure difference was (p; —po) of 20.2
mm Hg, with air displacing glycerol.

Plischke and Racz? argue that since DLA clusters
scale differently in the radial and tangential directions, the
width of the active zone should scale differently from the
radius of gyration of the total cluster. They suppose that
the screening depth is proportional to the mean distance
between the branches. From their simulation'* of clusters
containing 10000 particles they found a=0.83, where a
is the exponent which relates the width of the active zone
(&) to the radius of gyration (R, ) according to

E~RS . ©)

Meakin and Sander®® found that when the size of the
cluster increased the exponent a increased. By using
1000 off-lattice clusters, each containing 50 000 particles,
they found that the effective value of a increased with in-
creasing cluster size. For clusters containing 50 000 parti-
cles they found that @=0.93 and suggested that the limit-
ing value for (Ny— o) should be 1.0. The asymptotic
value for the exponent a is still un unresolved question.
In Fig. 10 we have plotted § as a function of R, for three
different experiments in a double logarithmic plot. There
is too much noise in our data to give an answer to this
question. If we assume a power-law behavior (§~R/"),
the exponent « lies between 0.8 and 1.2 for our data.

V. DISCUSSION

The dynamic properties of viscous fingers with fractal
dimension 1.64+0.04 in the DLA regime have been stud-
ied. The growing cluster is screened by the longest
fingers. We have measured the longest finger as function
of time and found that the data fit very well to DLA
simulations. Our results have also been compared with
the analytical expression for a growing bubble, Eq. (4).

Both the mean radius ! of the growth zone and the
length of the longest finger r, are proportional to the
gyration radius R, of the total cluster. I, r,, and R,

therefore follow the same scaling law / ~R, ~ 7, ~N}/P.
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The result /~N}/P has also been found in DLA simula-
tions by Plischke and Racz.

Our statistical uncertainties were too large to resolve
experimentally the question concerning the relationship
between the width of the active zone (£) and the mean ra-
dius of the active zone or the radius of gyration. Addi-
tional experiments will be carried out in an attempt to
reduce these uncertainties.
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