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Complex-basis-function treatment of photoionization in the random-phase approximation
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Complex-basis-function techniques are used to implement the equations of the random-phase
approximation (RPA) in matrix form. This approach allows the direct extraction of total photo-
ionization cross sections from a finite series of (complex) transition energies and oscillator
strengths. The RPA is an effective means for including electron correlation effects on the photo-
ionization of closed-shell atoms and molecules. The procedure demonstrated here provides a

rigorous way of solving the RPA equations for continuum photoabsorption without resorting to
numerical integration. The results of calculations on He and N& are presented. Correlation effects

are found to significantly infIuence the threshold behavior of the N2 photoionization cross sections.

I. INTRODUCTION

The development of reliable theoretical methods for
calculating molecular photoionization cross sections is
one of the most active fields in molecular physics. In
contrast to atomic photoionization, the difticulty due to
the nonspherical potentials in molecules has delayed the
explicit calculations of final-state continuum wave func-
tions even in the simple static-exchange approximation.
This difficulty has led to the development of various L
methods. ' One of the advantages of such methods is
that many-body effects can readily be taken into account
to any degree by adapting many existing techniques
developed in bound-state theory.

We have previously shown that the complex-basis-
function method provides a unified approach to the cal-
culation of atomic and molecular photoionization cross
sections with resonances incorporated naturally. These
methods can be employed at various levels of approxi-
mation from simple static-exchange to large-scale
configuration-interaction (CI) calculations, and in some
applications the working equations can be shown to arise
from a variational principle for the frequency-dependent
polarizability, the imaginary part of which yields the
cross section. Although most applications of these
ideas have yielded total cross sections, we have recently
shown that both partial cross sections and angular distri-
butions can also be calculated with these techniques.

An extension of this approach to the random-phase
approximation (RPA) level is presented here. The RPA
has been shown to provide a simple, effective way to
study correlation effects in atoms and molecules; its
strengths and limitations have been well documented.
The RPA has also been shown to be of great utility in
atomic photoionization calculations, first by Altick and
Glassgold and later by Amus'ya and co-workers. In
these atomic applications the continuum RPA equations
were solved by numerical integration, an approach not
easily extended to molecular systems. More recently,

Stieltjes imaging techniques, together with approximate
channel decoupling procedures, have been employed by
Williams and Langhoff in RPA photoionization calcula-
tions using finite basis sets on H20 (Ref. 10) and Nz. "
Interesting applications of the RPA to atomic and
molecular photoionizations were also performed by
Zangwill et al. ' in the local-density approximation.

The computational advantages of the RPA arise from
the fact that only two-electron integrals involving two
occupied (hole) orbitals and two unoccupied (particle)
orbitals are involved. Therefore the integrals required
are the same type [(pphh ) and (phph ) ] as those in the
static-exchange approximation, and the calculations
presented here require little more computational effort
than such calculations.

II. THEORY

The total photoabsorption cross section, o(co), can be
written in terms of the imaginary part of the negative
frequency component of the frequency-dependent polari-
zability, a(co),

1
a(co ) = —lim %cttt P+pe~p Ep +co—H + l 6

o.(co)= Ima(co),4&CO
(2)

where 4p is the initial-state wave function with energy
Ep, p is the component of the dipole operator parallel to
the polarization vector of the applied field, and c is the
speed of light. Atomic units are used throughout this
drscussron.

The energy spectrum of the Hamiltonian, H, of course
contains one or more continua. If H is approximated in
a finite basis, the matrix eigenfunctions N„and eigenval-
ues E„provide an approximate spectral representation
of Eq. (1) of the form
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dOn dn0a(~) = —g E0+ co —E„
(3)

and hole states, respectively, and the two-electron in-
tegrals are given by

where d„0 is a dipole transition moment (4„~p,
~

%0).
The eigenstates N„and eigenvalues E„satisfy

Vijkl i 1 j ~2 k 7 1

12

(e„ iH
i
a. ) =|'„E„. (4) XP~(r2)d r~d r2 . (10)

If the usual Hermitian matrix representation is used, the
eigenvalues will be real valued, as will the product of
transition moments. Thus a(co) in Eq. (3) has no imagi-
nary part in such a finite-basis approximation and it
yields no information directly about the photoabsorption
cross section.

On the other hand, the method of complex basis func-
tions produces complex eigenvalues in the discretized
continuum as well as complex dipole transition mo-
ments. We have previously shown that this procedure
provides a rigorously convergent approximation to a(co)
for real co.

The random-phase approximation is a simple ap-
proach to the study of correlation eff'ects in the electron-
ic spectra of atoms and molecules. It is most easily de-
rived from the point of view of the equations of motion
method' in which one solves for the operator A+(E)
which generates an excited state of the Hamiltonian with
excitation energy AE=E —E0 when it operates on the
ground state,

W+(E)
~

0) =
~

E),
and satisfies the equation

The dipole transition moment for a transition from the
ground state to state

~

E ) is given by

d0g ——&2y [g (E)(a~p~m)+h (E)(m ~p, ~a)].
m, a

As mentioned above, the complex-basis-function im-
plementation of the RPA equations which yields com-
plex values of AE for continuum transitions is obtained
by providing a complex basis of particle states. In addi-
tion, it is necessary to redefine the inner product without
complex conjugation of the radial variables. This is the
same prescription used in all previous complex-basis-
function and complex-coordinate calculations and has
been discussed in several review articles. ' In the calcu-
lations presented here which ultimately make use of
Cartesian Gaussian basis functions, the inner product is,
in fact, defined with no complex conjugation at all.

The hole and particle orbitals are both eigenfunctions
of the closed-shell Fock operator

[H, A+(E)] ~0) =bE ~E) .

In the RPA, the operator A+(E) is restricted to have
the form of a sum of single particle-hole excitations and
deexcitations,

FP; =e;P;,
with

F = —
—,
' V'+ V„„,+ g (2J —K ),

(12)

(13)

A+(E)= g(g c c —h c c ),
m, a

(7)

where, for the singlet coupling case which follows
throughout this study, the matrices 3 and 8 are given
by

where c and c are second-quantized creation and an-
nihilation operators and the indices a and m refer to
Hartree-Fock hole and particle states, respectively, in-
cluding the spin functions.

The working equations of the RPA are derived from
Eqs. (5)—(7) by a linearization procedure which has been
extensively discussed in the literature. The result is an
equation for the amplitudes, g and h, and the tran-
sition frequencies AE

g g=DE (8)

where V„„, is the nuclear attraction potential and J and
are the usual Coulomb and exchange operators.

There is no need in general to use complex basis func-
tions to describe the hole states. Thus the complex basis
of particle states can be obtained by diagonalizing F in a
basis consisting of both real and complex Gaussians as
described in Sec. IV.

III. IONIZATION THRKSHOLDS
IN THE RPA EQUATIONS

A note on the structure of the bound and continuous
spectra of the RPA equations is in order at this point.
The matrix RPA equations written in Eq. (8) are simply
the matrix form of the following coupled integro-
difFerential equations for the amplitudes g (r) and h (r),

~manp ( sm sa )'8mn 8ap+ anm p ~anpm

m an p Vapmn Vapnm

(F —e —bE)g (r)+vs/ (r)=0,
(F e+ bE)h (r)+ v„P (r) =0—,

(14a)

(14b)
From now on, the orbital indices refer to only the spatial
part. In the above equations, c and c denote the
closed-shell Hartree-Fock orbital energies of the particle

where the coupling operators (for singlet spin coupling)
are given by
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vga (1)=g d r2hp(r2) (2 —P)2)gp(r2)(b (r) )+ f d r2$p(rq) (2—P)2)gp(r2)P (r) )
3 1 3 1

p
(lsa)

v„g.(1)= y f d r2g~(r2) (2 —P&z)Pf(rz)P (r&)+ f d ref l(r2) (2 —P&2)h~(r2)P (r&)3 1 3 1

P 112 112
(15b)

The amplitudes h (r) and g (r) are related to the g
and h vectors of Eqs. (7) and (8) by

htvo= —pV + Vnuc+ g (2Jp —Kp)+Ja+Ea .
/3~ a

(18)

g (r)= gg P (r), (16a)

h (r)= gh P (r) . (16b)

(hFvo —e —bE)g (r) ~ 0, (17a)

(htvo —E +b,E)h (r) ~ 0, (17b)

where h, vo is the familiar improved virtual orbital (IVO)
Hamiltonian which describes the interaction of an elec-
tron with the ionic target obtained by removing an elec-
tron from orbital P, '

10

We wish to exhibit the limiting form of these equations
as r~ oo. The first sums in Eqs. (15a) and (15b) both
approach zero exponentially in this limit since they are
all proportional to bound occupied orbitals Pp(r) or
P (r). The remaining terms in Eqs. (15a) and (15b) all
approach zero in the limit r~ ~ at least as fast as 1/r
with coupling between the various channel functions
g&(r) and h~(r). Thus by dropping all terms in Eqs.
(15a) and (15b) except those proportional to g (r)
[h (r)], we obtain the limiting forms

This Hamiltonian supports an infinite series of Ryd-
berg states accumulating at zero energy, and thus the
spectrum of Eq. (17a) for each a consists of bound states
and a continuum beginning at AE = —c . Therefore
g (r) satisfies bound or continuum boundary conditions
depending on whether AE is greater or less than —c .
On the other hand, h (r) behaves like a closed-channel
solution and decays exponentially because AE &0 in all
cases. Thus we see that the ionization thresholds in the
RPA are in fact identical to the Koopmans theorem ion-
ization potentials. Although the RPA does not improve
the ionization potentials over those from Koopmans
theorem, it does introduce coupling between the ioniza-
tion continua. One effect of this coupling is that the
Rydberg states converging to ionization thresholds cor-
responding to removal of electrons from inner-hole or-
bitals appear as autoionization states. On the other
hand, the RPA does not include continua corresponding
to the ionization of a target electron accompanied by ex-
citation from a target-hole state to an unoccupied bound
particle state. These continua are double excitations
from the ground state.

The complex-basis-function implementation of the
RPA equations moves the continua, which are discre-
tized by the finite basis, into the lower half complex-
energy plane. This important computational phenomena
is illustrated in Fig. 1.

IV. RESULTS

0— A. Helium

UJ

E —20—

We performed a test calculation on ionization of the
He ground state in a (10s13p) basis of uncontracted
Gaussians. In this calculation the s-type Gaussians are
all real valued, while the p-type Gaussians all have com-
plex exponents and are thus of the form (p„, for exam-
ple)

—iO 2

-30—

-40
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I
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FIG. l. Complex discretized spectrum for the case of N2 in
a two-channel (3o.~~ko.„and lm. „~km~) RPA calculation.
See text for computational details.

where the normalization constant, N(g;e '
), is complex

valued and is determined by requiring the integral of the
square of the function, without complex conjugation, to
be unity in accordance with the redefinition of the inner
product in these calculations.

In Fig. 2 we show the results of this calculation using
Eq. (3) for the frequency-dependent polarizability with
transition energies and dipole transition moments com-
puted with the RPA equations, Eqs. (8) and (11). The
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FICs. 2. Photoionization cross section of ground-state He.
Solid curve, complex RPA results (length and velocity forms
are graphically indistinguishable); triangles, measurement of
Samson; crosses, measurements of Lowry et al.

close agreement between the cross sections obtained us-
ing the length and velocity forms of the dipole operator
attests to the completeness of the complex and real parts
of the basis set. These would agree identically in an ex-
act numerical solution of the RPA equations. ' Close
agreement is also found between our calculations and
previous numerical RPA calculations' (not shown in the
figure) as well as with the experimental results. ' The
resonance structure near 60 eV which is evident in the
experimental results is not present in the calculated cross
section. This comes about from doubly excited states of
the type (2s2p)'P which are not included in the RPA.

B. Np

The Hartree-Fock equations for N& were solved in a
real basis of (9s5pld)/[4s3pld) Gaussians. ' Several aug-
mentations of this basis with real and complex Gaussians
were tested in determining the particle states for these
calculations. The complex functions in each case have
exponents of the same form as those in Eq. (19), namely,
gje ' with the same value of 0 being used in all com-
plex functions. For the results presented here, the aug-
mented basis was chosen as follows.

In o.
z symmetry, real s-type functions with exponent

0.45 were centered on the nuclei along with complex
functions whose exponents had moduli of 0.15 and 0.05.
At the midpoint of the molecule, we used four additional
complex s-type functions with g„=0.0179/2. 8",
n =1, . . . , 4, and eight additional d-type functions with
$„=0.26, . . . , 0.076/2. 1", n =1, . . . , 7. The value of 0
used in these calculations was 25'.

Previous separated-channel IVO (static-exchange) cal-
culations of cross sections for ionization from the 3o.

~
and 1~„orbitals of Nz were dominated by ~~~* and
o.~a* resonance structures. In the case of the
1m„~kent~ process, the IVO model produces a spurious
m' resonance feature at a photon energy of approximate-
ly 19 eV, ' which should properly be a bound state of Nz
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FICx. 3. Separated-channel IVO results for photoionization
of Nz. Solid curve, velocity form; dashed curve, length form.

(O' 'X+) with a vertical energy of 14.4 eV. This cross
section is shown in Fig. 3 together with the static-
exchange cross section for the 3o.

~ ~ka „channel. Cou-
pling these two channels in the RPA moves the ~ reso-
nance into the bound part of the spectrum. The result-
ing total cross section for ionization of the 3o.

~ and 1~„
orbitals (in 'X+ overall symmetry) is shown in Fig. 4.

Adding the 20.~~kcr„and 2o.„~kcr~ channels to
this calculation, as shown in Fig. 5, brings the length
and velocity forms of the cross section into better agree-
ment, but does not qualitatively change the dominant
features of the total cross section for X '2~+ ~k 'X+ ion-
ization. Apart from a slight broadening, the 3o.

~
~ko.„

shape resonance is fundamentally unchanged from the
two-channel result. The RPA cross section shows a
significant threshold feature which must be associated
with ionization of the 1~„orbital because this is the
lowest-energy channel in the RPA ionization spectrum.
The Koopmans theorem ionization energies are 16.79 eV
(lrr„), 17.27 eV (3crs), 21.26 eV (2o „), and 40.28 eV
(2o.s). Thus below 17.27 eV the total cross section is
unambiguously associated with production of the A H„
state of Nz+. It should be noted that the 3o.

~ ionization
energy leading to the X X~+ state of Nz+ is physically
the lowest threshold, and as is well known the Koop-
mans theorem ordering of the first two thresholds is re-
versed.

Evidently, a strong perturbation of the nor~ Rydberg
series by the b' 'X+ state of Nz is responsible for the
threshold feature in the A H„channel which is seen at
the RPA level. Calculations employing several choices
of the basis set parameters show that the threshold value
itself is uncertain in our calculations by about 30%%uo, but
the sharp decline from threshold is apparently not a
computational artifact. The width of this threshold
feature, which is shown in the inset of Fig. 5, is evidently
sensitive to channel coupling; the four-channel RPA cal-
culations give a feature which is much narrower than
the two-channel result shown in Fig. 4.
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FIG. 4. Two-channeI RPA photoionization cross section of
N& in 'X„+ final-state symmetry.
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This threshold feature is the only significant
discrepancy between the calculations presented here and
earlier RPA calculations of Williams and Langhoff using
Stieltjes moment theory techniques. " We do not know
whether the absence of this threshold feature in the
Williams-Langhoff calculation is the result of inadequa-
cies in the ~s basis they employed (lack of diffuse func-
tions) or the approximate channel decoupling parameters
used in their calculations. Experimental data for the
partial photoionization cross section for production of
the 3 II„state, does show a general decline from
threshold with autoionizing features superimposed.

The theoretical results shown in Fig. 5 do not include
contributions from 1'�„~k 6g and 1w„~k o-g transi-
tions, which are not part of the 'X+ final-state symme-
try, but which do contribute to 3 H„production. We
have not attempted to employ any channel decoupling
approximations, such as those used by Williams and
Langhoff, to separate the l~„ ionization from 3o.

g
ion-

ization.
The photoabsorption spectrum of Nz in the 17—19 eV

region is dominated by Rydberg series converging to the
(2o „) 'B X+ state of N2+. Inclusion of the
2o.„~kog channel in the complex RPA calculations did
produce several autoionizing states in this region, but
the basis sets employed were evidently not rich enough
to reliably resolve the resonance profiles against the
background cross section. Moreover, the Koopmans
value of 21.26 eV for the 2o.„binding energy is almost
2.5 eV higher than the experimenta1 ionization potential
(IP) for the B state, which leads to errors of this magni-
tude in the positions of the autoionizing states. It would
be possible to carry out RPA calculations by substituting
experimental values of the IP's for the hole-state orbital
energies, thereby forcing the Rydberg series to converge
at the appropriate positions. One might also employ
basis-set projection techniques of the type we previously
used to remove basis-set-dependent autoionizing states
from the spectrum. We have not investigated these ap-
proaches in the present case.

V. CONCLUDING REMARKS

We have shown how complex-basis-function tech-
niques can be used to solve the equations of the
random-phase approximation in matrix form for contin-
uum photoabsorption. The complex-basis-function im-
plernentation of the RPA provides an effective method
for including electron correlation effects in the photoion-
ization of closed-shell atoms and molecules, with compu-
tational effort comparable to that required in complex
self-consistent-field (SCF) calculations.

We have illustrated the procedure with calculations of
photoionization in He and N2. Separated-channel IVO
treatments of N2 photoionization produce a spurious

resonance in the photoionization continuum.
The principal result we have found is that channel cou-
pling in the RPA moves this resonance into the bound
region of the spectrum, but does leave a sharp threshold
peak in the cross section associated with production of
the 3 H „state of Nz+. The broad o' shape resonance
near 30 eV, however, does not appear to be sensitive to
channel coupling effects.

0
10 20 30

Photon energy (eV)

40

FIG. 5. Four-channel RPA photoionization cross section of
N2 in 'X+ final-state symmetry. The inset shows the cross sec-
tion in the threshold region. The interval between 18 and 20
eV (not shown) is dominated by autoionizing Rydberg states;
converged results were not obtained in this region.
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