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Atomic K-shell excitation at ultrarelativistic impact energies
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After ten years of nonsuccessful experimental searches for a "density effect" in inner-shell exci-
tation, a recent experiment has shown pronounced moderation —although not full saturation —in

K-vacancy production in aluminum and copper foils at ultrarelativistic impact energies. In the
present paper a comprehensive theoretical investigation of atomic K-shell excitation by charged
CxeV projectiles is presented with special emphasis on the influence of target polarization. The
gradual onset of polarization and "transition radiation" emitted near the target incidence surface
is shown to compensate partly the reduction due to the density effect. Inner-shell excitation yields

depend on the depth penetrated into the target. To lowest order, this depth dependence may be
described by means of a simple relation for the equivalent photon pulse responsible for the distant
collision contribution. In the comprehensive treatment, the target response is examined in detail,
a priori splitting between real and virtual photons is avoided, and influence of actual target
geometry (tilt and finite thickness) is considered. Upon inclusion of a relatively small intensity
component, the simple relation produces K-shell excitation yields, which are accurate to the per-
cent level at any sample thickness for target atomic numbers above ten. The theory developed ex-

plains all existing experimental data.

I. INTRODUCTION

In 1940, Fermi' demonstrated theoretically that the
ionization energy loss experienced by a charged-particle
penetrating matter saturates at ultrarelativistic impact
energies. The saturation appears as a result of the
reduction, due to target polarization, in the action radius
of the electromagnetic field of the projectile inside the
medium. Accordingly, it is known as the density eQect.
The energy-loss phenomena studied by Fermi which, by
now, are well-established experimentally too are directly
connected to the excitation and ionization of the indivi-
dual target electrons. In consequence, the strong
influence of target polarization should also be found in
measurements of cross sections for the latter processes.
This fact was first pointed out by Dangerfield in 1973.

Already three years earlier, Middleman et aI. had
published detailed experimental measurements of E-shell
excitation using 0.15—0.9-GeV electrons incident on a
wide range of targets (29&Z &83). Rather than show-

ing any sign of saturation, the recorded yields increased
proportionally to the logarithm of the Lorentz factor y,
the projectile energy in units of its rest mass. With the
appearance of Dangerfield's paper, the lack of the densi-
ty effect mystery was established. In the following years
many new electron experiments were set up in order
to resolve the apparent discrepancy with theory.
Despite a larger range of impact energies and target ma-
terials, and inclusion also of I. and M shells, no modera-
tion in the increase of yields was recorded even at the
highest energies (Fig. l). This pattern was not broken
until 1983, when the experiment reported in Ref. 10 re-
vealed some, although not full, density effect in K-shell
excitation in aluminum and copper foils (Fig. l). A large

y variation was obtained by the use of a secondary 5
GeV/c beam for which the yields of characteristic x rays
induced upon pion and positron impact were measured
relative to the x-ray yield recorded for protons.

The apparent inconsistency between theory and empir-
ical data, Fig. 1, led us to a reconsideration of the
theoretical situation. Through this work we realized
that many speculations brought up by other authors to
explain the lack of the density effect should be discard-
ed. " ' Further on, it became clear that full density
effect is not reached until after some depth in the target
and that, during the setting up of the polarization fields,
transition radiation is emitted which acts as an x-ray
source located in the surface region of the target. To ac-
count for such effects, we have developed a new theory.
Even in its most primitive form it provides good agree-
ment between measured and calculated yields for all
cases considered. '

In the present paper a comprehensive account is given
of the new theoretical model for K-shell excitations
caused by ultrarelativistic charged projectiles. We adapt
the Weizsacker-Williams method of virtual photons'
in our calculations as this allows, in a simple way, for a
transparent discussion of the influence of target polariza-
tion. The method is often abandoned by specialists since
it is less accurate at nonrelativistic impact. However, at
the ultrarelativistic energies of interest in the present
context, the accuracy is comparable to that of much
more elaborate theories. The lowest-order version of our
model for the depth dependence of the K-shell excitation
yield was presented earlier. "' It essentially boils down
to a summation of the intensity dIo/des of virtual pho-
tons traveling along with the projectile throughout an
infinite polarizable medium and the intensity dI /d~
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I dIp GjI+dc' dc' d co
(2)

of transition-radiation photons which, being real, is dep-
leted with increasing depth, z, penetrated into the target,
i.e., the total photon intensity responsible for the distant
collision contribution to the excitation yield is approxi-
mated by the expression

dI dI 0 dI —& l~, (~)+ e
dc' dc' dc'

where A,, denotes the absorption length of photons of
frequency ~. For z=0, dI/den reduces to the virtual
photon spectrum dI /dc@ applying for motion in vacu-
um,

the influence of the actual target geometry is examined.
The main conclusion of the detailed analysis appears

to be that, except for extremely low-Z materials, the
simple model, as based on Eqs. (1) and (2), provides a
fairly accurate first estimate of the inner-shell excitation
yield at ultrarelativistic charged-particle impact. It
should be emphasized, however, that through the
comprehensive study deep insight is gained into the in-
terplay and competition between the various polarization
phenomena which determine the depth dependence of
the excitation yield at high energies and, as a result, the
very interpretation of experimental data is revised. We
complete the discussion by comparing our results with
experimental data and by quoting a few scaling relations
(Secs. III and IV).

This observation was crucial for the understanding of ex-
perimental data which mostly have been recorded for
thin targets. ' ' In the comprehensive theory, Sec. II,
we avoid the dubious ingredients of the simple model,
especially the a priori splitting between real and virtual
photons and subsequent incoherent addition. Splitting
seems doubtful inside the formation zone for transition
radiation which is comparable in thickness to A,, (co) for
low-Z materials. As a first step, general expressions, val-
id in any dielectric, are obtained for the various com-
ponents of the total photon intensity. Then, for a medi-
um responding like a free-electron gas it is shown how a
relatively small interference term emerges in addition to
the intensities included in Eq. (1). Thirdly, through the
construction of a realistic model for the dielectric func-
tion, where an imaginary term accounts for absorption,
correct depletion of the various intensity components is
automatically assured. Further deviations from the
free-electron gas results introduced by the adoption of a
realistic target response are explored. As a fourth step,
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FIG. l. E-shell excitation yield as a function of y for pro-
jectiles of unit charge impinging on solid copper targets. The
theoretical curves correspond to, respectively, inclusion (solid)
and neglect (dashed) of the density effect. The experimental
data are taken from Refs. 4, 6, 7, 9, and 10. The yields of Ref.
10 are displayed relative to that recorded for protons, the
remaining data, and the curves are normalized to a cross sec-
tion determined theoretically for 5 GeV/c protons (cf. Sec. III).

II. THEORY

In the semiclassical treatment Williams' groups col-
lisions between the projectile and an atom into close and
distant encounters. The cross section splits correspond-
ingly,

1 dI
erg

—— dao o y(co),
15co d co

(4)

where Acoz denotes the minimum excitation energy, i.e.,
the energy at which the K absorption edge appears. The
intensity dI/der of virtual photons of frequency co is
defined by the Fourier component E(co) of the total elec-
tric field according to the relation' '

=c dpp E pcs

where p denotes the impact parameter relative to the
struck atom. The minimum d, which divides between
close and distant collisions, is of the order of atomic di-
mensions. As a result of the integration in Eq. (5), d ap-
pears underneath a large logarithm. Consequently, the
exact choice is not important. Following Williams, we
use d =(fi/2mcoz)', which essentially reflects the ra-
dius of the electronical orbit under consideration.
Through E(co), the distant collision contribution reflects
the polarization of the target.

In order to avoid ab initio splitting of photon intensity
into real transition radiation and virtual photons, we
shall use the full expression for the total electric field in
Eq. (5). Let Eo represent the solution to the inhomo-
geneous Maxwell equations, which corresponds to the

o =oc+~d
The contribution due to distant collisions, o.d, is com-
puted by application of the method of virtual quan-

13, 14

The basic idea of the Weizsacker-Williams method of
virtual photons is to replace the perturbing fields of a
rapidly moving projectile by an equivalent pulse of radi-
ation and, then, determine the interaction between pro-
jectile and target through known cross sections for pho-
ton interaction. ' '' For our case o.

z is relevant, the
photoelectric cross section for E-shell excitation. As a
result, o.d is given as
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charge and current density of a rapidly moving charged
particle embedded in an infinite polarizable medium
characterized by the dielectric function e(co). In the
penetration of the target surface it is necessary to fulfill
the proper boundary conditions, namely, that the normal
component of B and the tangential component of E be
continuous. Hence, to obtain the total electric field, we
add to the partial solution Eo a component E' which
solves the homogeneous Maxwell equations in such a
way that

i' e
E, (co)=—

]/2
Zpe

E„(co)=

&~(~)=e(co)PE„(co),

Ey ——8 =B,=0.

1/2
12

Ko(Xp),
e( co

Ki(Xp),
e cd

E„,:—Eo+E'

fulfills the boundary conditions. When the total electric
field is determined for a given target geometry and
dielectric function, we shall convert it to a photon inten-
sity, i.e.,

=c dp p Et,t p, ~
dco

=c J dp p[ ~
Eo

~
+

~

E'
~

+2Re(E'. Eo )]

dI dI t dI mix

Here K„denotes a modified Bessel function of order n
and the quantity 7 is defined by the relation

2
X'= [1—P e(co)] (10)

and chosen to lie in the fourth quadrant. At high values
of y—:(1—/3 ) ', the field is similar to that of a pulse
of electromagnetic radiation which justifies the
Weizsacker-Williams construction, Eqs. (4) and (5), cf.
Refs. 14 and 15. Since the field Eo, Eq. (9), as well as E'
is linear in the projectile charge, all photon intensities
scale as Z~. For convenience in writing we drop such
factors below and consider unit projectile charge. By
means of Eqs. (9) and (5) we then obtain

As in Eq. (5), the lower limit of integration in the first
term, dI0/den, is p;„=d. For the last two terms we
may choose p;„=0, since E' falls off appreciably for
distances smaller than the screening length in the elec-
tron gas, c/su~ —10 A, and essentially has vanished at
the very short distance p-d -0.5 A/Z (see below). In-
sertion of the intensity (7) into Eq. (4) yields o d.

In close collisions, the momentum transfer to the tar-
get electron attains values ~A/d. This leads to an ener-

gy transfer in excess of the excitation energy, m ~Ace+,
with the choice d=(fi/2mcotc)' . Hence the contribu-
tion o., essentially may be obtained from the diA'erential
cross section dcr/die for collisions between free particles
as

~max

der�(w)

where the maximum energy transfer m, „ is determined
by the kinematics. Clearly, a, is independent of target
polarization. It therefore appears as a z-independent
background contribution whose magnitude is only of in-
terest when comparisons are made with experimental
data (Sec. III).

A. General expressions for photon intensities
in semi-infinite target

In order to determine the total photon intensity, Eq.
(7), inside a target consider first the component dIo/d~.
For a projectile of charge Zze and constant velocity
v=/3cz penetrating an infinite medium characterized by
a frequency-dependent dielectric function e(co), the total
electromagnetic field as observed at the point
(z,x,y) =(O,p, O) is given by standard expressions'

dIo = ——uA i Im K((Xd )Ko(gd )
X(1— e)

P Ime E

with the definitions
U

E ~0
CO

2
CO

C

g=k —Roe,
2

ko —— — —k
c

el
Eii(k) 2'g

V—1+—
A, o

CO

2
CO

c 2

(13)

(14)

2

k =e — —k
CO

c

where A, o and A, are chosen in the third and first qua-

where a = e /Pic denotes the fine-structure constant.2

The notation z is used for the complex conjugate of z.
Let us next turn to the intensity components dI'/der

and dI '"/de [Eq. (7)]. For a projectile incident along
the surface normal (z axis) on a thick (i.e., semi-infinite)
target characterized by a dielectric function e(co), the
correction E' to the asymptotic field Eo attains the value

E'(r, t)= J E'(k)e'"r+ ' "dk, co=k, U (12)

according to Garibian' (see also Ref. 17). The quanti-
ties ~ and p denote the transverse components of k and
r, respectively, and E'(k) is given as
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drant, respectively. The transform E'(r, (v) is obtained
as

E'(r, co) =&2vr f E'(k)e'('('"'~+ '~di(: dP/v, (15)

where it) denotes the angle between Ir and p. The front
factor (/2n is included to follow our previous conven-
tion for Fourier transforms. With the identity'

f e""'~ cos(n it()dP =2~i "J„(z), (16)
0

we may write Eq. (15) in terms of Bessel functions as
1/2

e 2
EI (r, (v) = ——

U 7T
d(r)( e' 'J(()rp)

1/2
. e 2E'(r, co) = i—

U

dKK e' 'J0 Kp—
(17)

where Elllp.
Let us determine the photon intensity dI'/dc@, Eq. (7),

corresponding to
I

E'
I

. With the relation'

and we obtain

dI mix 3

= ——aA Re f d(~1()) 77 )33 0 i(. +g

(24)

Similarly, the result for the photon intensity belonging
to the longitudinal field component is

dI mix
4 1 U= ——aA
1T g Q)

3 12g I XZ —IZCc7/U

+X ge
(25)

B. Application to free-electron gas

The sum of the expressions (11), (20), (21), (24), and
(25) defines the total photon intensity. In the present
form, the result is valid in general for any dielectric.

dp pJ„K'p Jq Kp
0 K

(18)

we get for the intensity belonging to the transverse com-
ponent E z the expression

dI,' =c dpp Ei

In the determination of the distant collision contribu-
tion to the K-shell excitation cross section according to
Eq. (4), only frequencies above the K edge enter. In this
region, which essentially is beyond all atomic reso-
nances, we expect the screening electrons to respond, to
a good approximation, as a free-electron gas. Hence for
the dielectric function we substitute the expression

2 2

d ~ f d &i&2&I 2e —i l(w')z i X(v)z
2 0 0

~2 e
2

c ~
K

~
K

I
K K e

~ ~
~

I

e e( co ) = 1 —(vp /co, (v~ =4wne /m (26)

Hence

X
A, ()r')k((()r)((r')ri(~) 1

g(~')j()~)

X |)(i(.—~') . (19)

where co~ denotes the plasma frequency of the gas of
density n.

In order to obtain simple analytical expressions for the
various photon intensities entering Eq. (7), a few addi-
tional approximations are applied. Firstly, since co )co&,
we have

cr)re
—2 f d& &3ei(x —K)z I I I I

2
COp

2

(27)

Similarly, the result for the intensity belonging to E) 1s

I 2

pp
—2 f d s () —i) I'9I

dco m o
(21)

Among the mixed terms which correspond to
2Re(E'. Eo), consider first dI, '"/dio. For E, Eq. (9) ap-
plies except than an extra phase e"" ' must be included
to account for the observation point being moved from
(O,p, O) to (z,p, O). Hence we have

1/2

E) =—— —K)(Xp)e" ~', (22)
U 7T E

For e.g. , copper, the latter ratio is smaller than 10 . In
front factors in equations such as (24) —(25), it is there-
fore adequate to put a=1. Secondly, in discussing the
density eAect, we consider y ) 10, cf. Fig. 1, corre-
sponding to 1 —P ( 10 . It is therefore also adequate
to put P= 1 in front factors as well as replace /3y under-
neath logarithms simply by y. Finally, we shall apply a
long-distance approximation in the expressions for
dI'/dao, dI '"/den. Since the adjustment of the projec-
tile field at high y values takes place at distances
p) c/(v~ (see below), we have ir '-p) c/(v~, and there-
by

where X, defined by Eq. (10), lies in the fourth quadrant.
The p integration may be performed by virtue of the
identity'

CC)p COp

CO CO CO~
(28)

f n

dppJ„(~p)K„(Xp)= . . . n )07"(7'+ i(')

With the response function (26) of a free-electron gas,
ImE' is infinitesimal and e„=Re@ is less than 1. We
therefore expand the expression (11) to yield
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dIp a—fi gEO(g)I(. )(g)
dc@ vr p2

/

g
/

~
CO 1 KC

1 ——
0 c 2 co

Ã i (k) —&o(k) )4'

(29)

2
co 1 ~p

1 ——
c 2

1 Kc

2 co

2

(33)

Ql —e„P 2
3 cop

2 ——
2

KC
2

dIo 2 1.123cy y~p=—aA ln 1+
dCO de CO

2 —1/2
1

2

For co-cuz and U-c, we have dao/v «1. Consequent-
ly, in view of the inequality (27), and with P close to 1,
the quantity g is small. Expansion of Eq. (29) leads, with
e„=e given by Eq. (26), to the result

yc

With @=1=13in front factors and Py replaced by y, we
therefore get for the quantity Xg/g to be inserted in Eqs.
(20) and (24), g being defined in Eq. (14), the result

2 2 2 —1 '2 —1

~p 2 co ~p 2 co
v + + K +

C yc

2=—aA ln
'TT

1.123p

d
1

2
(30)

In Eq. (30), factors of e and Ig have been set identical to
1 as described above [i.e., where explicit in Eq. (29) ex-
cept in the expression for g]. According to Eq. (9), the
range of fields is -p,„=g ' since the modified Bessel
functions K„ fall off exponentially for arguments larger
than 1. As indicated by the last equality, the expression
(30) is defined essentially by the logarithm of the ratio of
this range to the dividing distance d.

For the special case of motion in vacuum, the virtual-
photon spectrum (30) reduces to

(34)

Similarly, q/g, to enter Eqs. (21) and (25), is given as

2 2 2 —1

~p C 2 COic+ +
c yc

2 —1

K +
yc

5 max(y ', cop/co) ((1, (28')

(35)

From these expressions it is evident that the photon in-
tensities dI'/dao and dI '"/des, Eqs, (20), (21), (24), and
(25), only receive contributions from Ic values which
fulfill the condition

dI 2=—aA ln
ddt

1.123cy 1

de) 2
(31)

in accordance with the approximation (28).
The conditions (27) and (28) assure that the quantity A.

is real, k=k. It is then a simple exercise to insert Eq.
(34) into Eq. (20) and perform the ic integration. The re-
sult is that

corresponding to an effective maximum impact parame-
ter of p,„=cy/co.

In case y attains values lower than the critical mea-
sure

dIi
ddt

2 1 co= —eA
2 ycop

2
y COp

ln 1+
2

yc =~/cop, (32)

which for, e.g., copper attains the value 154 at co=co&,
the virtual-photon spectrum, Eq. (30), is essentially
unaffected by medium polarization, p,„=p „. The
spectrum is defined by the vacuum value, Eq. (31), which
increases with lny. On the other hand, for y ~y, the
spectrum dIp/den saturates into a y-independent con-
stant as the range of fields saturates towards the limit
c/~p. This reduction, which is directly reflected to the
excitation cross section, is the density effect. The limit-
ing value reached at high impact energies is intimately
connected to the Fermi plateau appearing in ionization
energy loss. We note that with a typical value for cop
in solids, fi~p —20 eV, the asymptotic range c /co

0
~amounts to —10 A, i.e., it is considerably larger than

the interatomic distance.
Let us now consider the contributions dI'/dao and

dI '"/dc@ By virtue of Eq. (2. 8), we obtain from Eq. (14)
by insertion of the dielectric function (26) the expres-
sions

dI TR

d Cc)
(36)

2= —aR 1+ 2

(Pmax /P max )

V
pmax

)& ln
pmax

(36')

i.e., the standard expression for the intensity of transi-
tion radiation' is obtained for dI~/den. By comparison
to Eqs. (30) and (31), the approximate relation (2) is easi-
ly verified. For y & y„ the transition radiation spectrum
falls off very rapidly since essentially no field adjustment
takes place. For y ~ y„a substantial burst of radiation
is emitted. The correlation to the appearance of the
density effect is clearly displayed if the transition radia-
tion spectrum is expressed in terms of maximal impact
parameters,

dI TR

ddt
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dI
~~

dt's

dIi
dco

KC
2

(37)

We emphasize that the result (36) holds at all depths z,
especially also inside the radiation formation zone,
0 &z & l. From Eqs. (34), (35), (20), and (21) it is further
apparent that

dI mix
2 z=—aA cos(z/l )+ —si(z/l)
7T l

2
yC

2 [ sin(gz )si(g'z ) —cos(gz )Ci(g'z )y'

+Ci(z/l )]

dI
dc'

dI mix
+C

2

(38)

The ratio should be understood as the ratio before the
final I~ integration. By virtue of Eq. (28), the contribu-
tion dI

~'~ /de is totally negligible.
For the ratio of the mixed intensities a relation similar

to Eq. (37) holds, namely,

2

1+y'/y'
(43)

where si, Ci denote the sine, cosine integral. ' '
Let us evaluate the general expression (43) in various

limits. For z =0 a small argument expansion of the si
and Ci functions leads to the result

We therefore again concentrate on the transverse contri-
bution. This may be rewritten as

(z =0)= afi 1 —— ln 1+
d co 77 y yC

(44)

dIm 2
P R d 3 1[(co/v) —A]z

c

and in turn, by comparing to Eqs. (36), (30), and (31), to
the exact relation

2
CO COp

K + +
yc c

2 —2
dIo dI' dI " dI v

+ +dc' de) dco o dc'
(45)

X K +
yc

2 —l

(39)

2

2C CO

KC
2

where the phase in the exponential may be expressed as

Hence continuity is maintained at the target surface,
where the intensity dI "/d co accounts for the term
missing in the simple model, [cf. Eq. (2)].

The dependence on penetrated depth of the mixed
photon intensity, Eq. (43), is illustrated in Fig. 2 for vari-
ous values of the parameter y/y, . The intensity is larg-
est for y »y, where the density effect also appears.
Here Eq. (43) reduces by neglect of the last term in large
parentheses to

Z Q)z KC

l (co ) 2c co
+

2

(40)

dI m"
=—afi cos(z/l)+ —si(z/l), y »y, .

d cO 7T l
(46)

The formation length l(co) is defined as

2ycC /Q7&
l(co) =

1+(y, /y )'
(41)

By a change of variable we write Eq. (39) as

dI mix

dc'
Z COp

2 2

= —efi dt cost
1 zoo/2y c

7T COC z /I r'(r —gz )

2

2COC

l
—]

1+y,'/r'

(42)

After the second term has been split into partial frac-
tions, we may perform the t integration with the result
that

The amplitude of the oscillating function in Eq. (46) is
damped with increasing depth z so that the function at-
tains its maximum at z =0, namely 1, whereas for l &z it
decreases as —( l /z) sin(z /1 ) (cf. Ref. 18). [For
z &ly /y„where it is no longer permissible to neglect
the last term in Eq. (43), an even more rapid decrease is
encountered. ] Hence the contribution due to the mixed
term is always small, never exceeding the formation zone
maximum of 2aA/~ which corresponds to, typically,
10% of the total photon intensity. In the opposite ex-
treme, y «y„ the intensity dI "/des essentially van-
ishes. Indeed, already for y/y, =0.5 the quantity in
large parentheses is smaller than —0. 1 at all depths (cf.
Fig. 2).

It is now clear that if we neglect the small mixed in-
tensity, we retrieve our previous simple ansatz (1), for
the moment without the exponential since absorption
has been ignored. It should be emphasized again that
the relation holds at all z, especially also inside the for-
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k —1/4A, , =~ e, /c

k„/A. =co e;/c
(48)

1.0—

lh 05
C

3

0,0

-0.5
z/l

10

The absorption length k, (co) is determined by the total
photoelectric cross section o'~"(co) as X, '=n, o'~" with
n, =n/Z denoting the density of target atoms. As we
consider K-shell excitations, the frequency co is never
smaller than co+, which typically corresponds to an ener-
gy of a few keV. Consequently, k, is of order 1 A
On the other hand, the absorption length attains values
of the order of 1 pm, i.e., A,, ' —10 A '. It is there-
fore completely safe to neglect A,, in the first of Eq. (48).
As a result we get

FIG. 2. The mixed intensity, Eq. (43), as a function of
penetrated depth for y/y, =1/2, 1, 2, 4, and y/y, ~ oo. The
quantity l denotes the formation length. Note that absorption
is neglected.

mation zone z &I. On the other hand, it is also obvious
that for z &l we can no longer interpret the two terms
separately as belonging to the projectile field and real
TR photons, respectively. The separation process is in-
herent in the appearance of dI '"/des. This interference
term survives as long as the shaking off of real photons
takes place. For z & l the process of creation of real TR
photons is essentially finished, and dI '"/dco drops off
(cf. Fig. 2). It should be stressed that the physical
reason for the lack of the density effect in experiments
where the target thickness attains values of t & l

[ & k, (co)] is that such targets are too thin for a field ad-
justment to develop. As a result the virtual-photon in-
tensity inside the foil remains essentially unchanged with
respect to its vacuum value and no transition radiation is
emitted. Also in this case Eq. (1) therefore remains valid
but the full intensity should be interpreted as belonging
to virtual photons.

e; =Qe, —A., '(co)= —I,, '(co) .
CO CO

(49)

Here the last equality holds since e, generally remains
very close to 1 above the K edge, as we shall discuss
below. It may be noted that e;/e„=(kA, , )

' —10
The real part of the dielectric function may be ob-

tained by use of the Kramers-Kronig relation'
It

E„=1+'cop P f dec)
0 CO —CO

(50)

where P denotes the principal value. The generalized
atomic oscillator strength f(co) relates to the imaginary
part e; as

2

e;=— f(co), f des f(co)=1 .
2 CO 0

(51)

In view of Eq. (49) it is further proportional to the pho-
toelectric cross section f =2cn, o'~" /arced If we as.sume
o.z" o:co, which scaling applies fairly well for many tar-
get materials above the E edge, cf. Refs. 20 and 21, Eq.
(50) reduces, with the definition (47), to

CO&(CO) CO» )
&

~» f(~')
=CO dCO

CO O CO —COp

C. Photon intensities for realistic dielectric function
2

COIL CO1+ ln —1
CO CO

f da)'f(co') .

In Sec. IIB we considered a target responding as a
nonabsorbing free-electron gas. Let us now construct a
more realistic expression for the target dielectric func-
tion, valid for frequencies above the K edge, and com-
pute the corresponding changes introduced in the vari-
ous photon intensities.

To account properly for absorption in the target medi-
um, a positive imaginary term is included in the dielec-
tric function which we express as

CO pE=6„+l&;= 1 —
2 +lE;

CO

(47)

In general the quantity co p entering the real part e, of e
depends on frequency. From the dispersion relation
k = ecvo/c, where k denotes the wave number for a pho-
ton of frequency co, it follows that e„and e; are connect-
ed to the real and imaginary parts of k, k„=—Rek, and
(2k, ) '=Imk through the relations

(52)

Since the oscillator strength decreases rapidly with in-
creasing photon energy between the well-separated L
and K edges, we shall neglect co' in the denominator in
the first term and Eq. (52) simplifies to

2

= 1+ ln —1 f de'f (co') .
COp CO CO A

(53)

The integral in Eq. (53) attains values 52/Z, the rela-
tive number of K electrons. For instance, in copper the
oscillator strength, which remains above co+, amounts to
1.3/Z. It is then clear that the quantity cop is close to
the square of the plasma frequency, cop, except near the
E edge. In this region, which is extremely narrow for
targets of not very low-atomic numbers, e„may turn
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dIp

dc'
2 1 1123 1 —Pe= ——aA —Im ln
'/T

(54)

It is safe also to put
~

e
~

=1 in the front factor and
with X=

~

X
~

e' Eq. (54) may be rewritten as

dIp 1. 123= —crt ln +
den m. /X/d

(55)

Here

larger than 1 cf. Eq. (78), and emission of Cherenkov ra-
diation is allowed for. A simple analysis shows that
such an emission leads to corrections in the total K-shell
excitation yield of less than 1% as soon as Z ~10. In
the following it is therefore assumed that the real part of
the dielectric function is less than 1, 0& 1 —e, &&1, and,
in consequence, that

~

1 —e
~

&& 1.
Let us now turn to the photon spectra. The general

expression for dIO/de corresponding to an infinite medi-
um is given in Eq. (11). With the above dielectric func-
tion and

~

1 —P
~

&&1, the inequality
~

1 —P e
~

&&1 is
fulfilled. Since also cod/c is small compared to 1 for
d —a o /Z and frequencies of the order of cox.

(coxd/c-aZ), it is again a very good approximation
indeed to perform a small argument expansion of the
Bessel functions in Eq. (11). As usual, powers of P will
be dropped in front factors and as a result we obtain

yc
COp

( I+R 2) —i/4 (59)

dIp
ln

d CO 7T

1 1231 c
[1 ( ) ]

1
tan '(y2e, ) (60)

with a critical y value of y, =e, '

In order to apply the general expressions for the pho-
ton intensities dI'/des and dI '"/d~, Sec. II A, to a
medium characterized by the dielectric function (47), we
shall proceed as in Sec. II B. In analogy to Eq. (33), we
then have

2
1 ~p

1 ——
67

r

1 KC

2 co

2

2 1.+ lC

(61)
co 3 ~p

2 ——
c 2

KC 3+—ie;

This result indicates that as long as R is small we shall
only expect minor corrections to the simple formulas
Eqs. (1) and (2), where now co& is replaced with co

However, the density effect is also encountered in the ex-
treme situation where co&~0. Here the spectrum (57)
reduces to

2
E;0= ——tan

1+v
v = cc) /y cop

[( 1+ —2)2 (
2 )2]1/4

yc
(56)

the expression for A, o given in Eq. (33) being unchanged.
As an immediate consequence of the relation for k, the
exponential in the integrand in Eqs. (20) and (21) leads
to depletion of dI'/des with penetrated depth,

since 7 lies in the fourth quadrant, and as a final expres-
sion we get

dIp =—aA ln

dt's

1233 c
[( 1+ —2)2+ (R —2)2] —1/4

1+v2

2R
R

1+v
(57)

R:—
1 —e„

=CO E; /CO (58)

It may be noted that for e; =0, Eq. (57) reduces to the
expression (30).

Due to the inclusion of finite e;, the y value around
which the density effect sets in is changed from expres-
sion (32) to the general critical value

A term of order e;( «1) has been neglected compared
with the logarithm which attains values of 5 —10 at high
y. The quantity R is defined as

i (A. —A, )z a [~e' '=e
dc'

(62)

This is in agreement with our previous considerations
which led to the simple formula (1). As to the mixed
terms we get from the exponential in Eqs. (24) and (25),
besides the phase given by the right-hand side of Eq. (40)
with ~p ~cop, a damping

dI —z /'2X (co)
oc e

dc'
(63)

It should be emphasized that Eqs. (62) and (63) hold at
all depths, especially also inside the formation zone.
This fact, which might seem somewhat surprising since
the individual photon intensities have no simple inter-
pretation for z 1, justifies the way damping appears in
the simple formula (1).

In order to evaluate the remaining changes introduced
on the photon intensities dI'/den and dI '"/dao with
respect to the expressions given in Sec. II B, consider
first the major component dI~ /des [Eq. (20)]. Use of the
approximations (27) and (28) leads to the relation

2 —2 2 2 4 2 4
2

———+ 2
—,y=v +(co/yc), y& ——y+co~/c, r=y, +co e;/c (64)
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By insertion of Eq. (64), the v integration in Eq. (20) may be performed to yield the intensity

2=—aAe
dco 2

1 v—+ 2
ln[(1+v ) +(Rv ) ]—1+R ' v —1 tan—22 —22 —I 2R

2 R +1
R

1+v
(65)

which for e; ~0 reduces to dI /den, Eq. (36), times the exponential damping.
The formula for the mixed intensity dI~ '"/des, Eq. (24), may be rewritten as

dimlx

de)
4 —z/2X. 1 1= ——o.Re 'Re d~ ~

0 yy2

—i (cz/2')y
&e

y2 ——yl+i~ e;/C
(66)

dI mix

(z =0)
dc'

1+v
R

vR
tan —'

1+R

with the notation introduced in Eq. (64). We have put
F= 1 in the integrand. As noted above, the phase factor
remaining underneath the integral is the same as in Eqs.
(39) and (40), except for the substitution co~ ~co~. Hence
the formation length l(co) remains unchanged by intro-
duction of a finite e; as does its physical interpretation.
For convenience we shall therefore only consider the
simple case z =0. Here it is straightforward to perform
the ~ integration

"Fermi level" obtained from Eq. (30) for R =0 in the
limit yahoo with co~~coz. The total intensity for z =0,
being equal to the vacuum intensity, is independent of R
and the mixed intensity is always small, attaining its
maximum of 2Ae/m. for R =0. On other hand, with in-
creasing R value, the density effect sets in at a still lower

y value and the level of the Fermi plateau is reduced
correspondingly, cf. Eq. (59).

Except for very low-Z materials (see later), and apart
from a narrow frequency range near co+, the quantity R
actually attains only small values. For R,

~

1 —co~ /co&
~

& 1, the changes introduced in the various
photon intensities given above, upon replacement of the
simple dielectric function (26) by the expression (47), are

1 v
2 1+R' ln[(1+v ) +(Rv ) ]

(67)

In the limit e; ~0, Eq. (67) reduces to the previous result
(44). It may be noted that dI '"(z =0)/des always at-
tains values of order 1 [in units of (2/vr)afi] to be com-
pared with total intensities of order —10. In the ex-
treme case, where @~~0, the mixed intensity actually
vanishes.

At the target surface, z =0, the total photon intensity
obtained by adding the three spectra, Eqs. (57), (65), and
(67), equals the vacuum value dI /der given by Eq. (31).
Hence continuity at the target surface is maintained also
in the general case, where the dielectric function is given
as in Eq. (47). Besides providing the exponential damp-
ing, Eqs. (62) and (63), the introduction of a finite e; as
we11 as the substitution coz~co~ therefore leads merely
to a redistribution of intensity among the various terms
dIo, dI', and dI '". In Fig. 3 are shown dIo/dco (full
drawn), d(I +Io')/dc' for z =0 (dotted) and the total
photon intensity also for z =0 (dashed) as functions of
y/y, for R =0 and a few relatively large R values,

y, —:co/G~ =yv. All intensities are given relative to the

3
O

0

R 0

-8
10

I

10

YJYc

l

10

I

10 10

FIG. 3. The various photon intensities as a function of
y/y, for R =0, 1,4, 16. The intensities are given in units of
2%a/m and relative to the Fermi plateau obtained for R =0.
Solid curves correspond to dlo/dao, Eq. (57), dotted curves to
the sum of dIo/den and dI'/den at the target surface, while the
dashed curve represents the total intensity, for z =0, which
equals the vacuum intensity. The solid curves for R =0, 1 are
hardly distinguishable whereas a dotted curve, corresponding
to R = 16, essentially would fall on the vacuum result.
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2—Re max 1—CO

R
2

in order of magnitude

(68)

wave) and the other, E', propagating backwards
(reflected wave). Being sufficient to consider normal in-
cidence, it is straightforward, although a bit lengthy, to
write up the equations for E'. It turns out that inside
the target we have in order of magnitude

Such corrections are clearly negligible. Also the changes
in the total K-shell excitation yield deriving from the fre-
quency range where R or

I
1 —co~ /co~

I

attains values of
the order of or larger than 1 are small for targets of not
too low Z. As an example, even for aluminum overall
changes in the excitation yield of less than 1% are en-
countered with respect to the results applying for a free-
electron gas, Sec. II B, when exponential depletion, Eqs.
(62) and (63), is included. We note that neither the
%'eizsacker-Williams scheme applied here nor the exper-
imental performance justifies discussion of such low
effects. Nevertheless, we mention that, in any case, the
changes in the total photon intensity are small near the
target surface due to continuity.

D. Influence of target geometry

g (y
—2+ 2 / 2)l/2

P (69)

which, in our case, is always small compared to 1, we
may conclude that the formalism derived in Secs.
II A —II C, in general, applies also to the case of oblique
incidence. Indeed, since polarization effects are impor-
tant only for y) y,:—co/coP, exclusively situations with
grazing incidence at angles to the surface smaller than

8-y P

CO~
(69')

are not covered. For e.g. , copper, the estimate (69')
amounts to 6 mrad.

In setting up the expressions for the electromagnetic
fields inside a target of finite thickness, the reader might
find the book by Ter-Mikaelian' helpful. The idea in
constructing the fields is that the solution to the homo-
geneous Maxwell equations, E', appearing in Eq. (6),
should be chosen such as to insure that the proper
boundary conditions be fulfilled at each of now two tar-
get surfaces. Inside the target E' consists of two com-
ponents, one, E'+, propagating forward (transmitted

All considerations so far have been based on the as-
sumption of a semi-infinite target and of incidence at
right angle to the target surface. Clearly, in the experi-
mental situation none of these conditions hold in general
and we shall therefore evaluate the changes introduced
in case of oblique incidence on a target of finite thick-
ness.

As to the importance of non-normal incidence, it
sufIices to refer to the existing standard literature on
transition radiation. As discussed by, e.g. , Artru et al.
and Garibian the transition-radiation spectrum is in-
dependent of the incidence angle as long as the radiation
cone is completely contained inside the second medium,
i.e., inside the target upon entrance and inside the vacu-
um on the back upon exit. As the opening angle 0 of
the radiation cone for a target described by the simple
dielectric function, Eq. (26), is of order

E' /E+ —max(
I

1 e
I y 2) (70)

Hence the component E' is negligible, cf. Secs. II B and
II C. Further, the relative change of E+ with respect to
the expression for E' given, e.g. , in Sec. II B, in order of
magnitude is the square of the right-hand side of Eq.
(70).

In total, we see that the actual target geometry intro-
duces no changes in the photon intensities with respect
to those derived for the specific case of normal incidence
on a semi-infinite target.

III. COMPARISON WITH EXPERIMENTAL DATA

2y —1
lnwrr' (71)

wr =Pickax/mc (y —1), —

to first order in wr. It should be noted that a factor of 2
has been included in Eq. (71) to account for the fact that
each target atom appears with two K electrons. In the
form (71), the cross section cr, agrees with expressions as
given by Tawara (in Ref. 8 a minor misprint appears).
For y 10, the correction to 1 in large curlies in (71) is
below 1%, except, perhaps, for the very heaviest ele-
ments, and o., is well approximated by the limiting value

24nro mc2 mc=1.00 barns&
P Acox. E

(72)

The conclusion of the detailed analysis of K-shell exci-
tation by ultrarelativistic charged particles is that fairly
accurate results are expected by application of the sim-
ple model [cf. Eqs. (1)—(4) and (8)]. Indeed, if the yield
due to distant encounters in targets of atomic numbers
~ 10 is computed as being due to the sum of the intensi-
ty given in the simple model, Eq. (1), and the small
mixed intensity (43) with damping included, Eq. (63), the
results obtained are correct within the overall accuracy
of the applied theoretical method.

In order to compare our results with experimental
data, Fig. 1, we need explicit expressions for the cross
sections err and do /dw entering Eqs. (4) and (8), respec-
tively. For the former we apply the total photoelectric
cross section o.&" as tabulated by Veigele and assume a
simple scaling err o'r"(J——x —I)/Jx, where Jx- =125/Z
+ 3.5 is the K-jump ratio for the element with atomic
charge Ze. Interpolation between tabulated values is
made through a linear fit to ~ 0.&. Upon electron im-
pact, the Mgfller expression should be used for the
differential cross section do. /dw. With ro denoting the
classical electron radius, ro ——e /mc, Eq. (8) then leads
to the result

2
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For positron impact one should use the Bhabha rather
than the Mgtller differential cross section, for heavier
particle impact, the Mott cross section. For high
values of y, the results for the contribution o„Eq. (8),
all approach the limiting value given in Eq. (72) (for the
Mott cross section, cf. Ref. 26). However, also for
moderate values of y the differences encountered in the
total K-shell excitation yield by changing between equal-
velocity projectiles of, e.g. , positrons, pions, and protons
remain low, for y —5 smaller than —1% (cf. also Ref.
10). We shall therefore use the electron result. We em-
phasize that through this construction the total K-shell
excitation yield will be independent of spin and mass of
the projectile. The yield depends only on the velocity,
through the parameters P, y. It is noted that for Z~&1
an overall factor of Zz should be included.

The accuracy of the K-shell excitation cross sections
obtained according to the above scheme has been
checked against more elaborate theories. In the latter,
density effects have been neglected corresponding to in-
sertion of the intensity dI "/de in Eq. (4). For y ~ 10,
our results for, e.g., copper, are only =10 b, correspond-
ing to &3'Fo, lower than those reported in Ref. 27 but
11—13 b, corresponding to &3%, higher than those of
Amundsen and Aashamar. This is a fairly high accu-
racy in view of the rough procedure of dividing col-
lisions into just two groups which represent opposite ex-
tremes. At low values of y, our model is less accurate,
leading to too high a cross section. For instance, for
y-5, the result for copper is -7% higher than those
given in Refs. 27 and 28. In order to compare the rela-
tive data of Ref. 10 with theoretical predictions, as well
as with earlier measurements, Fig. 1, we have therefore
chosen to normalize both the latter to the cross section
computed for 5 GeV/c protons by Amundsen and Aa-
shamar.

In Fig. 1 the solid and dashed curves represent the re-
sult of our model with and without inclusion of the den-
sity effect, i.e., the curves correspond to, respectively,
the photon intensity dIo/des of Eq. (30) and dI /des of
Eq. (31). The data of experiments other than that of
Ref. 10 fall close to the dashed curve (or, in some cases,
even above, cf. Ref. 12). This is explained in our model
by the fact that in those experiments the targets used
were thin compared to the absorption length A., (co ),
whereby the total photon intensity is close to the vacu-
um intensity [Eqs. (2) and (45)]. For instance, in the ex-
periments of Ishii et al. and Middleman et a(. copper
foils of, respectively, 0.05 and 0.1 —0.5 pm thickness
were used. These numbers are very low compared to the
absorption length which attains values A,,(co)) 3.8 pm
for co) co+.

Figure 4 repeats the data and curves of Fig. 1. On the
basis of the intensity (1) we have further produced the
dot-dashed curve which corresponds to the conditions of
the experiments reported in Refs. 10—11. Here the
thickness of the copper foil was 25 pm which
significantly exceeds A,, (co). In producing the curve we
have taken into account selfabsorption of the outgoing K
x rays which are observed at right angle to the target
surface at the incidence side of the primary beam, which

hits the foil at an angle of 45' to the surface normal.
From the figure it is evident that the theory, even in its
most simplified version, reproduces the experimental
data very well.

IV. A FEW SCALING RELATIONS

For the sake of practical applications let us quote a
few scaling relations. In general, the K-shell excitation
yield depends on the ratio of the target thickness to the
selfabsorption length of the outgoing K x rays, A,, (K ),
and on the ratio of the latter to the absorption length for
primary photons, A,, (co). For A, , (K )/k, (co) we have by
assumption of the approximate scaling o'~" ~ m, apply-
ing for co) co+, the estimate

3
A,, (K ) A,, (K ) cox 125 cox.

+3.5
A,~(co) g (~x ) ci) Z co

3

(73)

where the symbol co+ indicates the limiting value ob-
tained at the top of the K edge. The last relation follows
since the ratio in question for co~cuz+ is given by the
K-jump ratio, Jz. Due to the rapid decrease of crz" with
frequency, the contribution to the yield comes from a
narrow range above co+ and in a rough estimate we may
therefore neglect the co dependence in Eq. (73). As a re-
sult we see that A,, (K ) for all targets is several times
longer than A,, (co). Consequently, with an x-ray detector
mounted at the entrance side of a thick target, it is pos-
sible to look into the region where dI'/d co and
dI '"/dec have been effectively quenched, that is, to re-
gions where the density effect is dominant. On the other
hand, for a target thicker than X, (K ), an observer
placed at the exit side will essentially only measure a
yield corresponding to dIO/den —plus, of course, the
close-encounter contribution.

For the contribution due to the mixed intensity, also
the ratio of the formation length l to the damping length
2A,, (co) is important. Since only y values above y, are

C)

UJ

Z 3-
C)

UJ

UJ

I

1—
C)
UJ
IU

cr Q0 1Z
I

10 1Q2

~ Hoffmann et al.
Genz et al.
Middlemann et al.

~ Ishii et al.
& Bak et al.

103
I

104 1Q5

FIG. 4. Same as Fig. 1 but including the prediction for the
experiment of Ref. 10 (dot-dash curve) obtained on the basis of
the simple model [Eq. (1)].
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of interest, we obtain
2

I
Rp==

coc
=Ro(co~+ )

A, ~ (Q7 )Ci)&

(74)

Here the last approximation follows from the assump-
tion of an co scaling of cr'r" T. he quantity Ro(co+ ) at-
tains the value

application of the estimate (76). The quantity L is a
suitable effective logarithmic factor attaining a value in
the interval between the large square bracket factors of
Eqs. (30) and (31). It typically is of the order of 10, i.e.,

distant collisions dominate. Since the ratio (80) is essen-
tially Z independent, the total excitation yield scales
roughly as o.„

Ro(co~+)=1.43X10 keV 'b ' ficozor"(co++)/Z .

(75)

OdY= 1+ o, = [1+0.9L(co+ )]barns X
%cog

(81)

For hydrogenlike atoms we get Y~Z . As noted ear-
lier, an overall factor of Z~ should be included for pro-
jectiles of charge Z~e.

For the last characteristic parameter of interest, name-
ly, the critical y value, y„of Eq. (32), it is more difficult
to find an approximate scaling relation since the atomic
density and thereby the plasma frequency has no simple
Z dependence. However, for solid elements fico~ remains
within the range 15—90 eV, which means that within
roughly a factor of 2 we have

For hydrogenlike atoms the product fico~or(co++) is in-
dependent of the atomic number Z. In practice, some
variation is observed. However, from the table of photo
cross sections given by Veigele we find

ficoz o 'r" ( coK ) = 3 X 10 keV b, (76)

the largest deviation for nongaseous elements with
Z & 35 being 20%. The result (76) is also in good agree-
ment with the one obtained for hydrogenlike atoms. '

With Eq. (76) inserted in Eq. (75) we get

Ro(co~+)=4/Z . (77)

Hence, except for the very lightest targets, the formation
length is always short compared to the damping length
for the mixed intensity.

A major interest in the relations (74) and (77) also
stems from the fact that the size of the quantity R p pro-
vides information about the quality of the simple model.
This is seen as the quantity R defined in Sec. II C equals
the above Rp, except for a replacement of co by co . In
view of the result (77), it might therefore be necessary
for the very lightest elements to use the full expressions,
Sec. II C, for the photon intensities corresponding to the
general dielectric function [Eq. (47)]. From the discus-
sion in Sec. IIC it is further recalled that for such tar-
gets the frequency region corresponding to e„& 1,

1 (co/co/ 1+—,'e (78)

1 dIo.
d = — (co~)o (co~ ), a —3 .

a deco

For the ratio o.
d /o. , we then obtain

(79)

c
2(x fico~cr ~(co~ )

L(~~ ) =0.9L (co~ ),~a 1.00 barns && mc

where the last result appears by the choice a =3 and by

cf. Eq. (53), should not be neglected.
Among the remaining physical quantities, it is, of

course, of special interest to establish a scaling relation
with atomic number for the total yield. The close-
collision contribution is in the limit of high-y values
given by Eq. (72). Since the virtual-photon intensity, Eq.
(30), depends only logarithmically on co whereas cr ~
scales roughly as co

' for co&co+ with the exponent, a,
attaining values in the vicinity of 3, the distant collision
contribution may be estimated as

%co~

40
(82)

i.e. , if we use co+ corresponding to hydrogenlike atoms,
the result is y, -Z /3.

V. CONCLUDING REMARKS

We have presented a comprehensive theoretical dis-
cussion of the dependence upon penetrated depth into a
target of the K-shell excitation yield for ultrarelativistic
charged-particle impact. In our description, due ac-
count is taken for target polarization and phenomena as-
sociated herewith, such as the density effect and the
emission of transition radiation. A main result is that to
a very good approximation the simple model, postulated
earlier and discussed above, applies. By means of this
model, all available experimental data have been ex-
plained. Thereby the so-called lack of the density effect
mystery, which has persisted for a decade, is resolved.
The model has further proven to stand all experimental
tests —especially also a recent one, where extra foils pro-
ducing transition radiation were included. " Besides ex-
ploring the validity of the simple model, the detailed dis-
cussion provides considerable insight into the underlying
polarization phenomena. At shallow depths the inter-
pretation of the depth dependence appears to be different
from what is indicated by the simple model.
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