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The Ar+ D, collision is studied in an energy range from 0.750 to 3.00 keV. At small angles the
collision is primarily electronically elastic, but electronically inelastic processes are found to in-
crease in importance with increasing scattering angle and become dominant. The electronically
elastic results are compared to the predictions of Sigmund’s scaling law, which suggests that the
reduced energy loss f depends only on the reduced scattering angle r=E60. At sufficiently small
values of 0 the data do obey this scaling, but at larger values of 6, which fall outside the postulates

of Sigmund’s theorem, they do not.

However, a generalization of the usual definition of f is

presented which does retain the scaling property even at the larger values of 6. We also find that
there is an interesting and systematic development of f(7) in the sequence of collision systems
He+D,, Ne+D,, Ar+D,, in which vibrorotational excitation manifests itself at smaller and
smaller values of 7 as heavier rare-gas projectiles are used.

I. INTRODUCTION

Collisions between projectile atoms and target mole-
cules generally result in the excitation of electronically
and vibrorotationally inelastic processes. Studies of the
vibrorotational excitation are particularly useful since
they can provide information on the energy surfaces of
the triatomic quasimolecule.! Although our quantitative
understanding of collisional vibrorotational excitation is
still at a rudimentary level, these energy-loss processes
have received increasing attention recently, both experi-
mental and theoretical,”? and their underlying details
are now beginning to be understood. As was previously
found in the atom-atom case,’ our progress in under-
standing atom-molecule collisions 1is facilitated by
analyzing experimental results in terms of scaled vari-
ables. This paper is primarily concerned with energy-
loss scaling for “‘quasielastic” collisions: the term ‘‘qua-
sielastic” refers to channels in which no electronic exci-
tation of the target or projectile occurs, although vi-
brorotational excitation of the molecule may occur.
Thus they are electronically elastic, but the qualifying
adjective ‘“quasi” points up the possibility of vibrorota-
tional excitation.

A very useful scaling technique for these quasielastic
atom-molecule collisions results from the reduction of
the measured energy losses in terms of an energy-loss
function f which may be defined by

f=1AE /AE ., . (1)

Here AE is the most probable energy loss in the quasi-
elastic channel, and AE, is the smaller energy loss
which would result if the projectile scattered from the
molecule purely elastically, without any vibrorotational
excitation. Thus f is a dimensionless parameter which
has an absolute minimum value of 1, attained in the case
of purely elastic scattering, without any vibrorotational
excitation, so that the measured AE is equal to AE,.

36

Any experimental data points having values below f =1
provide a measure of the experimental uncertainty,
which has its maximum effect at small 7 values. The
value f =1 can also be interpreted physically. From Eq.
(1), it corresponds to an actual energy loss twice as large
as that which would occur in a purely elastic collision
with the molecule as a whole; but simple kinematics re-
quires (see Sec. III) that elastic energy losses vary in-
versely as the mass of the target in first order, so an
f =1 energy loss is the same loss as would occur in an
elastic collision with a mass half as large as that of the
entire molecule. Therefore, f=1 collisions are sugges-
tive of ““hard” collisions with a single atom of the target
molecule (assumed homonuclear). One might anticipate
from this simple interpretation that empirical f values
would usually fall between the purely elastic limit
(f=1%) and the “spectator” or “binary” limit (f =1),
and indeed all experimental measurements of f to date
do fall between these limits. Another very important ad-
vantage of this scaling procedure is that f—1 is inter-
pretable as a natural, “reduced” measure of the vibroro-
tational excitation energy (often denoted by Q), and the
reduction of results in terms of the f function allows ex-
citation energy to be easily identified and separated in
experimental data sets, as later examples will make clear.

These phenomenological features alone make f a valu-
able parameter for reducing experimental data, but its
value is greatly enhanced by a scaling law due to Sig-
mund.* He proved that f will be a universal function of
the reduced scattering angle 7 for all projectile energies
if certain assumptions are made. His derivation assumed
classical scattering in a sudden (or impulse) approxima-
tion, i.e., the projectile’s speed was assumed to be
sufficiently fast that the motion of the nuclei in the tar-
get molecule could be neglected during the collision. On
the other hand, it was also assumed that the projectile
speed was low enough to allow the interaction to be de-
scribed by a static atom-molecule potential. Sigmund
pointed out that the validity of this assumption of adia-
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baticity is measured by the relative absence of electronic
excitations. The additional assumption was made that
the relative change in the projectile velocity and the pro-
jectile scattering angle were small. In his second paper,
Sigmund* generalized the scaling law from the homonu-
clear, diatomic case treated in his first paper to encom-
pass polyatomic and heteronuclear targets, and also re-
laxed the restriction on the potential function.

By determining f(7) at different collision energies, a
number of subsequent papers®° have confirmed the sug-
gested universality in several collision systems and found
it lacking in others. This paper reports on the third in a
series of experiments which study these energy-loss
effects in an orderly progression of relatively simple pro-
jectiles, the rare-gas atoms, on an important and rela-
tively simple target, the hydrogen molecule. This family
of collision partners is shown to be a useful grouping for
uncovering systematic features in the evolution of the re-
duced energy loss as the rare-gas projectiles progress
through the Periodic Table. The understanding thus
gained can then point the way to the study of more com-
plicated systems. Neon projectiles were historically the
first in this sequence to be studied, by Andersen er al.,’
who found that the universal scaling law predicted by
Sigmund* was very well satisfied in these collisions. In
Ne + D,, the electronically excited channels were very
much weaker than the quasielastic channels, in accor-
dance with the assumption built into Sigmund’s deriva-
tion; however, this was not the case for He + D,, the
second rare-gas-on-hydrogen system to be studied. Yet
Jakacky er al.® found here too that f was a universal
function of reduced scattering angle 7, even though elec-
tronic excitation was strong in those collisions. For this
system ab initio theoretical calculations of the specific
functional dependence of f on 7 were also carried out?
and were in excellent agreement with experiment.

This paper reports on a third member of this family,
Ar + D,. In this case molecular motion during the col-
lision and electronically inelastic processes are not
insignificant, as was required in Sigmund’s proof, but we
find that the f function is still universal here if its
definition is generalized. Thus a central theme emerging
in this research is the broad persistence of a universal f
function in regimes beyond those originally envisioned.
We will also show that the evolution of the f(7) curve in
the sequence He-, Ne-, Ar- D, is systematic, which sug-
gests that this sequence provides a useful classification
containing fundamental information.

II. EXPERIMENTAL TECHNIQUES

The experimental techniques have been previously de-
scribed® and are only outlined here. Briefly, Ar is ex-
tracted from a glow discharge ion source, focused, and
passed between two small plates where it is ‘“‘chopped”
by a voltage pulse (amplitude of 20 V, frequency of
100-300 kHz, and width of 0.05 usec). The Ar beam
then is velocity analyzed by a Wien filter and passes
through a charge-exchange cell containing Ar gas. The
residual Ar™ leaving the charge-exchange cell is
deflected and the remaining Ar beam then enters the
scattering cell containing D, target gas. Following a
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collision the scattered Ar then traverses a 4-m-long drift
tube positioned at an angle 8 with respect to the incident
beam direction and is energy analyzed using time-of-
flight techniques. Figure 1 shows a spectrum of the scat-
tered Ar from 3.0 keV, 8=1.1° Ar + D, collisions. The
peak labeled A corresponds to the quasielastic channel.
The figure shows that there are also significant contribu-
tions from electronically inelastic collision channels.

III. ENERGY-LOSS KINEMATICS
FOR HEAVY PROJECTILES

The purely elastic energy losses, AE,, in Eq. (1), are
of course determined by kinematics alone. The usual
definition of f which has been used in the literature to
date can be obtained from Eq. (1) by using the well-
known “small-angle” elastic-loss result,

AE . =EM /m6? 2)

where M and m are the masses of the projectile and tar-
get, respectively, E is the original projectile energy, and
0 is the scattering angle in the laboratory frame of refer-
ence. However, we will show below that for collisions
with heavy projectiles (M /m >>1) such as Ar + D,, Eq.
(2) can become inadequate at scattering angles of even a
few degrees. We note that a much more general elastic-
loss formula, of which Eq. (2) is a special case, can
equally well be derived from the kinematics assuming
only that M > mj; it is

AE s =E —[cosO+(m?/M?—sin’9)!/2)?
XEM?/(M+m)?*. 3)

In this paper we will investigate the effects of using the
full expression, Eq. (3), without approximation in reduc-
ing AE to f.

Figure 2 illustrates these effects by showing the shift
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FIG. 1. Energy spectrum of the direct scattering of Ar by
D,. The 3-keV Ar projectile is scattered through a laboratory
angle of 1.1°
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FIG. 2. Reduced energy-loss function f vs reduced scatter-
ing angle, 7=FE0, in keV deg. Circles, 0.750-keV data; trian-
gles, 3.00-keV data. Open symbols are based on the full kine-
matics of Eq. (3); closed symbols are based on Eq. (2).

in f that results from using Eq. (3) instead of Eq. (2) to
reduce our 750-eV and 3-keV data on Ar + D, scatter-
ing. The figure clearly shows that the shift is an impor-
tant one, which will very much affect the interpretation
of the results: when the ‘“‘small-angle” result, Eq. (2), is
used, the 750-eV and 3-keV data appear to fall on
separate curves, but when Eq. (3) is substituted the data
are reasonably consistent with a common curve. Thus
we see that for the analysis of these data Eq. (2) is
significantly different from Eq. (3), which we suggest as a
natural extension into the heavy-projectile, large-angle
regime. Using Eq. (3) precisely insures the desirable
bound, f > %, which is lost if Eq. (2) is retained at large
angles. And empirically Eq. (3) extends the universal
scaling of f to smaller values of 7 than does the use of
Eq. (2); however, further work will be required to probe
the theoretical underpinnings of this generalization.
It is useful to consider the expansion of Eq. (3),

AE =EM/m 0?
+(M2/4m?*—M /2m — L)EM /m6*+ - - - (4)

which shows explicitly that Eq. (3) does contain Eq. (2)
as a limiting case and reveals that the fractional shift in-
troduced by using EM/m@? alone is approximately
(M?/4m?*—M /2m — L)0*. Thus for large projectile-
target mass ratios, it is the parameter M60/2m whose
square determines the validity of Eq. (2), and thereby the
significance of the phrase “small angle.”

Next we will show that the shift in f caused by this
effect is bounded in practice, and that we can obtain a
simple estimate of that maximum shift in f due to in-
cluding the higher-order terms. A study of the experi-
mental literature’ % shows that in fact the largest ob-
served scattering angles are only slightly larger than
m /2M; this also occurs in the theoretical calculations of
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Snyder and Russek,'®© who discuss the significance of
that angle. Thus for a collision between a projectile
atom of mass M and a target molecule of mass m one
anticipates maximum fractional shifts in f of slightly
more than (& —m /8M—m?/48M?). For Ar + D,, this
would suggest a 5% shift; the data of Fig. 2 have a max-
imum shift of 7%. Thus for even heavier projectiles
and/or lighter targets, shifts of up to 8 or 9% could be
obtained. The example of Fig. 2 has already made it
clear that such shifts can be very significant in the inter-
pretation of energy-loss scaling.

All f values in the remainder of this paper have been
reduced using the full expression, Eq. (3), for AE .

IV. RESULTS AND DISCUSSION

Figure 3 shows a plot of f versus 7 for Ar + D, at five
different beam energies in the range from 0.750 to 3.0
keV. The experimental results at all energies are reason-
ably well fit by a common f(7) curve, in spite of strong
electronically inelastic channels and significant molecu-
lar motion during the collision. Thus we find that
universal scaling of the reduced energy loss is obtained if
the definition of f is generalized. As an additional point
of interest it should be noted that the center-of-mass en-
ergies lie in the range from 75 to 300 eV and within the
collision model show that a common potential surface
determines the scattering in this transition region be-
tween “low” and “high” energies.

Figure 3 also shows the empirical f(7) for He + D,
and for Ne + D, collisions, taken from earlier work,>®
for comparison with the present Ar 4 D, result. The
figure shows that there is a very systematic development
of f(7) as the mass number of the rare-gas projectile in-
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FIG. 3. Energy loss f(7r) at five different beam energies:
750 eV (O), 1.0 keV (W), 1.5 keV (@), 2.0 keV (X), and 3.0 keV
(A). All f values were reduced using the full Eq. (3) for AE .
Results from two earlier experiments are superimposed on the
plot: Ne + D, (long-dash curve) and He + D, (short-dash
curve).
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FIG. 4. The probability of electronically elastic scattering in
the direct channel P, as a function of 7 for beam energies of
1.5 keV (@), 2.0 keV (X), and 3.0 keV (A).
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creases, in which f(7) leaves its purely elastic limit of 1
at progressively smaller values of 7, and then rises with a
progressively smaller slope. The discovery of this previ-
ously unknown regularity for atom-molecule energy
losses illustrates the possible usefulness of the f function
in the rare-gas-hydrogen sequence. It also suggests that
Kr + D, and Xe + D, experiments would be of interest
to fill out the picture.

Although the present study primarily addresses the
quasielastic channel, detailed energy-loss spectra show-
ing the electronically inelastic channels were also ob-
tained at energies of 1.5, 2.0, and 3.0 keV. Results of
these measurements are plotted in Fig. 4, which shows
P,, the probability of a collision resulting in a quasielas-
tic process, at these energies, as a function of 7. These
results are also seen to be reasonably well fit by a com-
mon curve, showing that 7 is generally a useful variable
in this collision system. This scaling of the P, versus 7
is also consistent with an earlier model® in which the in-
elastic processes are predominantly excited when the dis-
tance of closest approach lies inside a critical value.
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