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Dynamics of two-dimensional soap froths
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We have studied experimentally the dynamics of soap froths in two dimensions. We observe two
temporal regimes: a transient in which the average bubble area increases in time faster than a power
law, and long-term behavior in which the average bubble area increases (over the decade observed) as
a power law with exponent a=0.59+0 O9. The crossover between these two regimes depends on the
initial preparation. In initially disordered systems the rate of area growth increases smoothly and
monotonically, whereas in initially ordered systems the rate first overshoots its long-term value and
then decreases. The system does not, however, equilibrate during the lifetime of the bubble lattice.
We have also verified that Von Neumann's law for the growth rates of bubbles holds statistically.
Lewis's hypothesis of a linear relation between a bubble's number of sides and its area fails for few-

sided bubbles. Finally we present a simple phenornenological model for the growth of the average
area. This model allows us to define a parameter 8(t) quantifying the disorder as a function of time.

I. INTRODUCTION

Cellular patterns are common in nature, e.g. , magnetic
domains in magnetic systems, crystalline domains in
ceramics and alloys, biological tissues, etc. The dynamics
of such patterns are generally poorly understood. '

We have studied two-dimensional soap froths as one of
the most experimentally accessible of such cellular pat-
terns. The basic mechanism of evolution is the diffusion
of gas across the soap membranes, due to pressure
differences between adjacent bubbles.

Smith studied the two-dimensional soap froth as a mod-
el for crystal grain growth in metals. He concluded that
the average area (a ) of a bubble increased linearly with
time. However, his limited number of observations did
not allow definite conclusions. Weaire, working with data
collected by Aboav from additional photographs taken by
Smith, concluded that (a ) grows as the square of
time. Computer simulations also conducted by Weaire
have yielded a variety of long-term power laws.

We have studied the rate of area growth in detail and
find two distinct temporal regimes: a transient in which
(a ) increases approximately exponentially in time and a
long-time tail in which, over the one decade observed (up
to 400 h), (a ) increases as t, where a=0.59+o o9. The
nature of the transient depends on initial conditions. For
initially well-ordered states, i.e., states in which almost all
bubbles have six sides, dlog(a )/dlog(t) increases to a
value greater than a and then decreases smoothly to a.
For initially disordered states dlog(a )/dlog(t) increases
smoothly and monotonically to e.

We have also checked experimentally two other theoret-
ical predictions, that of Von Neumann and that of Lewis.
Von Neumann proposed that the growth rate of a bubble
should depend solely on its number of sides, i.e., that
da; /dt =tc(6 n; ), where i indexes the ith—bubble and n;
its number of sides and ~ is a constant. We find that this
relation is not true for individual bubbles, but does hold

when the rates for all bubbles with a given number of
sides are averaged at a fixed time.

Lewis proposed that the area of a polygonal cell should
be a linear function of its number of sides. While this re-
lation was originally proposed for biological systems, it
has been assumed to hold for two-dimensional soap
froths. ' We find that it fails for few-sided bubbles (i.e.,

those with three and four sides), though it seems approxi-
mately true for many-sided bubbles.

Finally, we propose a model which reproduces the ob-
served pattern of bubble growth and allows us to define
the system disorder, a parameter 8(t) ranging from 0 (fully
ordered) to 1 (fully disordered) which quantifies the de-
gree of disorder in the system.

II. EXPERIMENTAL PROCEDURE

We performed the experiments in two rectangular Plex-
iglass cells, one with internal dimensions 6—,

' &9—,', & —,
' in.

(the —„'-in. cell) and the other, 7 —,', && 10—,
' X —,', in. (the —,', -in.

cell). We filled the cell entirely with a soap solution con-
sisting of water (85% by volume), Dawn brand liquid
detergent (10%), and glycerol (5%). Our results seem in-
dependent of the exact composition of the solution. We
next tipped the cell on edge and injected gas bubbles at
the bottom of the Quid. Excess fIuid drained through a
valve at the bottom of the cell. The variation in the size
of the injected bubbles determined the initial degree of
disorder in the froth. In different runs we used bubbles
either of helium or air, helium froths evolving roughly five
times faster than air froths, but being otherwise similar.
When necessary we "annealed" the filled cell by injecting
excess Quid and gently tipping the cell to remove obvious
irregularities. We then drained the excess fluid (we did
not measure the volume of Auid remaining in the cell), in-
jected a small amount of ink, and sealed the cell with
corks and vacuum grease. The ink made the Plateau bor-
ders, the thickened region of fIuid between the membranes
and the walls, easily visible. ' Finally we placed the

36 306 1987 The American Physical Society



36 DYNAMICS OF TWO-DIMENSIONAL SOAP FROTHS 307

prepared cell level on a photocopier and copied as the rate
of evolution required (at intervals of 15 min at early times
and 12 h at long times). The photocopies show the Pla-
teau borders and not the soap membranes themselves.

III. RESULTS

In Fig. 1 we present plots of the number of bubbles as a
function of time, defined as the total cell area divided by
the average area of the bubbles not in contact with the la-
teral walls of the cell (bulk bubbles). The number of bulk
bubbles was counted by hand and the bulk area measured
using a digitizing tablet. In Fig. 2(a) we present details
(corresponding to 15% of total area) of photocopies of an
initially ordered run [the initial disorder Bo—=8(0)=0.17]
taken at the times indicated in Fig. 1(d).

We may qualitatively distinguish these figures as fol-
lows.

(A) The bubble lattice is essentially ordered, being com-
posed of hexagonal crystal grains with defects consisting
of five- and seven-sided bubbles at the grain boundaries.
All bubbles are essentially the same size. Most are six
sided. A few are five or seven sided. The rate of evolu-
tion is slow.

(B) The grain boundaries become visibly marked as
five-sided bubbles shrink and seven-sided bubbles grow.
However, six-sided bubbles do not evolve. The number of
bubbles with n&6 increases, as does the rate of evolution.

(C) The grain boundaries grow into patches of disorder
which eat away at the ordered regions. The ordered and
disordered regions occupy essentially equal areas. The
normalized width of the area distribution ( (5a ) /(a ) ) is
maximal. Many-sided bubbles are common as there is a
large probability for a large bubble to be surrounded by
much smaller bubbles.

(D) The ordered regions have almost entirely disap-
peared. The width of the normalized area distribution
and the rate of evolution begin to decrease. The number
of many-sided bubbles decreases. The fraction of five-
sided bubbles, p(5), increases monotonically, while the
fraction of six-sided bubbles, p(6), decreases.

(E) and (F) Long-term states. The evolution rate is
essentially constant. There are almost no three-sided bub-
bles and many-sided bubbles are rare. However, the frac-
tion of bubbles with more than seven sides, p(n), n ~ 7,
increases slowly. There is no sign of a theoretically pre-
dicted collapse in the width of p(n). "

For large initial disorder, the rate of evolution increases
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FIG. 1. Number of bubbles and disorder 8( t) vs time for increasingly disordered initial conditions: (a) Bo=0.04+0.02,
P=2.58+0.08 (helium —,

' in. cell); (b) Bo=0.08+0.01, P=3.01+0.03 (helium —' in. cell); (c) Bo=0.11+0.02, @=2.99+0.16 (air —,
' in.

cell); (d) Bo=0. 17+0.04 f3=2.48+0.05 (helium —,
' in. cell) (e) Bo=0.33+0.01, P=2.89+0.04 (helium —,

' in. cell); and (f)

Bo=0.85+0.05, P=2.24+0. 12 (air —' in. cell); where Bo——8(0). Errors are at 90% certainty. Capital letters in (d) and (f) indicate times
referred to in the text and in Fig. 2. Dots are experimental values. Solid lines and values of g are best fits computed from the model.
Dashed lines are the disorder as calculated from the model. Initial times are offset to 1 h.
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FIG. 2. Detail photographs of (a) an initially ordered run, see Fig. 1(d) (initial disorder ho=0. 17). Times are (A) t =1 h, (B)
t =2.52 h, (C) t =4.82 h, (D) t =8.63 h, (E) t =19.87 h, and (F) t =52.33 h. (b) An initially disordered run, see Fig. 1(f) (initial dis-
order 8&=0.85). Times are (A') t =1.95 h, (C') t =21.50 h, and (F') t =166.15 h. Capital letters are keyed to Fig. 1 and the text.

monotonically to its final value without overshoot. We
present detail photos of such a run in Fig. 2(b) and the
corresponding counts in Fig. 1(f). The labeled letters cor-
respond to the time domains discussed above.

While we had expected that finite-size effects would be
important in the latter stages of pattern evolution, the
range of rollover points observed [ranging from 1000 bub-
bles for runs (a) and (d) to 100 bubbles in run (c)] suggests
that the rollover is not an edge effect. To further control
for edge effects we counted the number of bubbles touch-
ing the lateral walls of the cell (edge bubbles) as a function
of time. If the average area of a bubble in contact with
the edge is a constant times the average area of a bubble
in the bulk, we would expect N, dg, ~Nb„~k. This would
be the case if the edge behaved as a noninteracting win-
dow on an infinite cell or as an infinite network of hexag-
onal bubbles. We find that Nedge ~Nb&]k which is
consistent with either hypothesis.

Previous authors have claimed that only three-sided
bubbles can disappear directly and that four- and five-

sided bubbles must lose sides as they shrink. ' However,
we observe that both four- and five-sided bubbles can
disappear directly, the ratio of direct disappearance to side
shedding being nearly 1 for four-sided bubbles and ap-
proximately 0.1 for five-sided bubbles. This result sup-
ports recent theoretical work on this question. '

Many theoretical studies of soap bubble froths have as-
sumed that the dominant mechanism for side redistribu-
tion is the pairwise exchange of sides among four vertices
(the Tl process). ' We find this is true only at short times
when there are large residual stresses present from the
filling. However, these stresses dissipate rapidly and after
the first five minutes less than 1% of side redistribution is
due to Tl processes unrelated to the disappearance of
bubbles.

IV. VON NEUMANN'S LAW AND LEWIS'S
HYPOTHESIS

Von Neumann proposed that the evolution of a two-
dimensional soap froth could be modeled as a pure
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diffusive process depending only on the geometrical struc-
ture of the bubble lattice. He assumed that the gas was
incompressible, so the rate of area transfer across a wall
between two bubbles is simply proportional to the product
of the wall area and the pressure difference between the
bubbles. This pressure difference is, in turn, proportional
to the curvature of the wall. Assuming that bubble walls
are of constant curvature and thickness and that all walls
meet in 120 angles, he obtained the following.

(i) The rate of growth for all n-sided bubbles is the
same at a given time.

(ii) At a fixed time (da„/dt ) =Ir(t)(6 n).—
(iii) Rates are time independent, i.e., that Ir(t) =a. at all

times.
We have evaluated (da„/dt ) at three stages of evolu-

tion corresponding to ordered, early disordered, and
long-term disordered states. We find that, at any given
time, different n-sided bubbles evolve at different rates
contradicting rule (i). We present the results for
(da„ /dt ) taken from the helium run shown in Fig. 1(d),
in Fig. 3. The error bars show the spread in observed
da„; /dt. Linear regressions on these data yield a value of
a(t) =4.57X 10 +3.8&& 10 mm /min for all three
times. We are not interested in the actual value of ~, but
in its constancy, which is better than 4%.

It is not clear why rule (i) should fail, since the deriva-
tion of Von Neumann s law is local. Spatial variations in
system parameters, such as local film thickness or vertex
angle, could affect local rates of diffusion. We have not
attempted to measure these parameters, however. Some-
what surprisingly, rules (ii) and (iii) hold. While several
factors would be expected to contribute to a time depen-
dence in ~ and hence in the rate of evolution, they do not
seem to be important in practice. ' In particular, if edge
effects were important we would expect to see a change in
the value of ~ at long times.

D
t =252 hours

0,
E
o 7
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(b)

Since film creep and pressure equilibration times are
very short compared to the typical diffusion time, ~ is the
only constant determining the rate of evolution. Thus the
basic time scale in the experiment is constant to better
than 4%. However, we cannot predict a priori the
effective time scale of the redistribution of sides during the
initial transient and this results in an uncertainty in the
effective K.

Lewis's hypothesis states that (a„)=c~+c2n at any
fixed time, where c~ and cq are undetermined constants. '

We estimate areas by connecting the vertices and centers
of sides of bubbles by straight lines and measuring the
area of the resulting polygon using a digitizing tablet.
Since few-sided bubbles are convex and many-sided bub-
bles concave, we systematically underestimate the area of
few-sided bubbles and overestimate the area of many-
sided bubbles by up to a few percent.

We present experimental measurements of normalized
bubble areas (i.e. , A,„—= (a„)/(a ) ) as a function of n in
Fig. 4. In spite of the bias noted above, we observe at all
times that the area for few-sided (n =3,4) bubbles is
larger than that predicted by Lewis's hypothesis. Indeed,
for many runs, a linear fit actually predicts negative areas
for three- and four-sided bubbles. Though the number of
many-sided bubbles is too few to permit definite con-
clusions, the many-sided (n & 8) bubbles in Figs. 4(b) and
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FICx. 3. Von Neumann's law, at t =1.82 h, t =12.10 h, and
t =39.23 h, for the run given in Fig. 1(d) ~ The measured
K= 4.57)& 10 +3.8 )& 10 mm /min at all times. Error bars
indicate the variation in K among individual n-sided bubbles at
95% certainty.

FICx. 4. Normalized area vs number of sides [k„(rl] at (a)
t =2.52 h, (b) t =8.63 h, (c) t =12.45 h, and (d) t =64.32 h.
All values are normalized by dividing by the average bubble area
at the time of measurement. Error bars are 1 standard deviation
and indicate the natural spread in distribution.
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4(c) appear to be smaller than predicted. This discrepan-
cy may be due to memory of the initial length scale. Sta-
tistical limitations prevent us from determining any more
complicated law for the relation of area to number of
sides. Significantly, the distributions of normalized area
are constant within experimental errors (typically 5%) at
all times. There is no sign of relaxation to an equilibrium
state. We note that theoretical work by Rivier indicates
that, by itself, a violation of Lewis s hypothesis implies
that the distribution functions are not in statistical equilib-
rium. '

V. MODEL

D(t)
0 (t)+D (r)

(3)

The parameter 8(t) gives information about the transi-
tion from order to disorder and has the practical advan-
tage that it can be computed without calculating the dis-
tribution functions. While we can determine 8(t) directly
from the data, we find it more convenient to fit N(0), P,
Ici, K2, and 8o—=8(0) to give a minimal least-squares error
against the experimental N (t). ' Values for 8(t) are
shown in Fig. 1. For initially ordered runs, Figs.
1(a)—1(e), 8(t) increases smoothly to 1, reaching its final
value where the experimental value of N(t) rolls over into
a power law. For the initially disordered run shown in

Based on the above observations we propose the follow-
ing phenomenological model for the transient. We divide
the population into two classes, the bubbles in ordered re-
gions and the bubbles in disordered regions, and denote
the number of bubbles in each class by 0 (t) and D (t), re-

spectively, with the total number of bubbles
N(t): O(t)+D—(t). We assume that ordered regions do
not evolve but are converted to disordered regions at a
rate proportional to the contact area between order and
disorder (that is, we make use of the observation that or-
der is stable except where it is eaten away by disorder at
the edges). To lowest order, assuming random distribu
tions, the contact area is proportional to
O (t)D (t)/[O (t)+D (t)] which implies

dO(t) O(r)D(t)
dr O(t)+D(t) '

where K~ is a constant to be determined.
We also assume that the rate of disappearance of bub-

bles in disordered regions is independent of O(t). Von
Neumann's law (see Appendix) leads us to expect a
power-law dependence N(t) cct which is what we ob-
serve experimentally at long times when the system ap-
pears completely disordered. We therefore write an equa-
tion for D(t) including terms for the conversion of order
to disorder and for power-law dissipation,

dD(t) O(t)D(r)
=K&

dr O(t)+D(t)
where a= 1/(/3 —1). Both O(t) and D(t) are abstract
quantities. We have not attempted to put them in quanti-
tative correspondence with the observed disorder. We can
now define the abstract disorder

Fig. 1(f), the rate of conversion from order to disorder is
slower than the rate of loss of disorder and 8(t) decreases
slightly before increasing to 1 at the rollover. As expect-
ed, 8(t) is small for apparently well-ordered conditions,
e.g. , p(5)/p(6) &0. 1, and large for disordered conditions,
e.g. , p(5)/p(6) & 1.0. We obtain similar qualitative
correspondence between 8(t) and other measures of disor-
der based on the distribution functions.

Results for the fits for N(t) are also presented in Fig. 1.
We obtain P=2.7+0.3 corresponding to o. =0.59+o o9.
The typical error of the fits is better than 3%. The max-
imum observed error is 5%. In our two best runs, Figs.
1(d) and 1(f), the power-law behavior holds over a full de-
cade. While we obtain consistent results for initial condi-
tions ranging between 8000 and 1500 bubbles, we cannot
rule out the possibility that other behaviors would be ob-
served in much larger systems. We have tried, without
success, a variety of other models based on chemical equi-
librium equations and the master equation. None yield
the desired exponent, though the master equation does
reproduce certain features of the evolution of the distribu-
tion functions. Marder, using a Von Neumann's law
based mean-field model, obtains excellent qualitative
agreement with the experimental results. However, while
he observes the two regimes of exponential and power-law
growth, he obtains o, = 1 and different values for the

t7

VI. CONCLUSIONS

We conclude that the two-dimensional soap bubble lat-
tice exhibits two distinct states: a transient characterized
by the presence of crystalline order and a long-term fully
disordered state characterized by a power-law growth in
bubble area, a=0.59+o O9 ~ Smith and Weaire obtained an
incorrect value for this exponent because both mistook the
high-evolution rate transient for limiting behavior. Previ-
ous authors have interpreted the broad area distribution of
the transient as indicating a fractal structure; ' however,
our observations of the distributions of bubble areas and
number of sides rule out such a structure for the
developed bubble lattice. We have not, however, calculat-
ed higher moments of the distribution functions. Ap-
parently disordered states can contain residual order, i.e. ,

have 8(t) &1, as seen in Fig. 1(f). The disorder produced
by an irregular filling process is not the same as that pro-
duced by natural relaxation nor do initially disordered
systems necessarily reach a long-term state faster than ini-
tially ordered systems.

We have experimentally verified the statistical form of
Von Neumann's law to 4%%uo. This law poses strong con-
straints on the dynamics of the lattice. It implies that
there is no nontrivial equilibrium. More generally we
have argued on dimensional grounds that if K is constant
Von Neumann's law implies (a ) ~ t. We observe no sign
of such behavior in any of our experimental runs. Neither
do we see any tendency for dlog(a )/dlog(t) to increase
in time, which would indicate a gradual drift towards
such an equilibrium. There must be a hidden time scale
in the evolution. We conclude that there are no long-term
equilibrium states except for the perfect hexagonal lattice
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and the empty lattice. The origin of the anomalous ex-
ponent a remains an open question.
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APPENDIX: CALCULATIONS OF LONG- TERM
BEHAVIOR FROM VON NEUMANN'S LAW

We wish to calculate the behavior of the system assum-
ing that it has reached an equilibrium, i.e., scaling state.
We present two arguments, one dimensional, the other ex-
plicitly based on Von Neumann's law.

We may argue dimensionally as follows. ' We have as-
serted that the only significant parameters for long-term
states, i.e., states which are independent of initial condi-
tions, are a, (a ), and t. We have checked this experi-
mentally by observing that behavior is independent of cell
size, cell thickness, and the diffusing gas. The combina-
tion

—=f(r, (a))1 d(a)
dt

(A 1)

is dimensionless. However, there is no way to form a di-
mensionless number using only t and (a ), therefore the
right-hand side must be constant, and we conclude that in
equilibrium either (a) ~t and Ncct ', where N is the
number of bubbles in a fixed area, or (a ) =const and
N =const. The first case corresponds to /3=2 in the
model, the second to an empty or pure hexagonal lattice.
In general any power-law dependence of the various "con-
stants" on N (e.g. , of Ic as experimentally observed) will
add a correction term to the exponent e and hence also to
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/3 in the model.
Alternatively, we may argue from Von Neumann's law

as follows. Let p(n) be the probability that a bubble
selected at random has a given number of sides. Let
(a„) be the average area of an n-sided bubble in the inte-
rior of the cell. Let No(t) be the number of bubbles in the
interior. Let Ao(t) be the area of the interior of the cell.
Let A be the total area and define N(t) =No(t) A /Ao(t)
to be the corrected bubble count. Let N„=p(n)N be the
corrected number of n-sided bubbles and
iE„—= ( a„)N (t) / A. Then

lV„

dt
(A2)

dt N„

where i„ indexes all n-sided bubbles at time t. Taking the
derivative and substituting Von Neumann's law we obtain

d (a„) 1 dN„
(a„)+Ic(n —6) .

dt N„dt (A3)

If we assume that both A.„and p(n) are constant at equi-
librium we obtain

d(a) 1 dN (a ) =Ic(n —6) .
dt N dt

(A4)

But the left-hand side is 0 since

(a)—1 dN
N dt

d(a)
dt

1 dp„dkn v(n —6)
A,„+ = N.p„dt " dt

As noted previously, we observe experimentally that k„ is
constant.

so this situation is possible only in the trivial cases of the
pure hexagonal and empty lattices. Thus there is no strict
nontrivial equilibrium. If we allow variation of k„and
p(n) we obtain from Eq. (3) the conditions
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