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To quantify the extent of validity of the molecular model of atoms with correlated electrons, we

project well-converged configuration-interaction wave functions for doubly excited states of He
and for bound states of alkaline-earth-metal atoms onto simple rotor-vibrator wave functions for
the "linear triatomic molecule" e-core-e. The three independent vibrational frequencies and the

equilibrium electron-nucleus separation are treated as parameters which are varied to maximize
the overlap with the well-converged functions. For intrashell states, the overlaps with harmonic
normal-mode functions are generally quite large, about 85 —95%%uo for the alkaline-earth-metals, and
the corresponding optimized parameters are in rough agreement with the energy-level separations.
The overlaps are improved by using an anharmonic local-mode representation, particularly for
intershell states (corresponding to excited stretching vibrations), though the optimized parameters
appear to lose some of the consistency shown by those in the harmonic normal-mode representa-
tion. A comparison is made of plots of the conditional probability densities based on rotor-
vibrator functions and on independent-particle functions with those based on accurate functions.
This shows clearly the superiority of the molecular picture over the independent-particle picture
as a zero-order model for intrashell states of two-electron atoms.

I. INTRODUCTION

Since the first recognition of a clear breakdown of the
independent-particle model in the spectrum of doubly
excited helium (He**),' there have been extensive in-
vestigations of the nature of electron correlation in two-
electron atoms. It became clear that the individual or-
bital angular rnomenta of the electrons were not good
quantum numbers and thus that a search for alternative
quantization would be desirable. In recent years two ap-
proaches have emerged, each with its associated new
classification: the adiabatic hyperspherical picture and
the moIecular picture; ' these have been connected to
some extent recently by Watanabe and Lin. Here we
focus on the molecular picture in which the atom e-
core-e is viewed as a "linear triatomic molecule" whose
characteristic quantum numbers are those describing ro-
tational or vibrational excitations. This picture was
originally suggested ' on the basis of energy-level spac-
ings in He*' and was furthered by the finding ' that re-
duced probability densities in the interna1 e-core-e coor-
dinate system calculated from accurate configuration-
interaction (CI) wave functions were qualitatively like
those expected for a fIoppy linear triatomic molecule.
The molecular picture was extended to the ground and
low-lying bound excited states of the alkaline-earth-
metal atoms by similar analyses of both energy-level
spacings' and wave functions. "

Here we develop a quantitative characterization for
this heretofore qualitative, intuitive picture of electron
correlation. We do so by projecting well-converged CI
wave functions for He** and the alkaline-earth atoms
onto the corresponding simple rotor-vibrator wave func-

tions of the "triatomic molecule" e-core-e; the parame-
ters of the molecular function are varied to maximize the
overlaps. We then examine the resulting parameters for
their consistency with the observed energy-level spac-
ings. How well can a single rotor-vibrator function (se-
parable into the product of a function depending on the
internal coordinates and a function of the Euler angles
specifying the orientation of the e -core-e triangle in
space) represent the accurate CI wave function? Can the
wave functions of an entire manifold of states for a given
atom be fit well and with a single sensible set of parame-
ters? These are some of the questions which this paper
seeks to address. The calculation of such overlaps is a
crucial step in quantifying the extent of validity of the
molecular picture and especially in seeing how well it
can be extended to atoms with three or more valence
electrons. The graphical representations that have been
so useful in establishing the correspondence of the actual
atomic states with their molecular analogues cannot
readily be extended to cases of more than two electrons.

The rest of this paper will proceed as follows. In Sec.
II we outline the forms of the atomic and molecular
wave functions used, their transformation into a com-
mon coordinate system, and the calculation of the over-
laps. Details are given in the appendices. Results for
the harmonic normal-mode representation are presented
in Sec. III A and those for various local-mode and
anharmonic representations are discussed in Sec. III B.
Concluding remarks are given in Sec. IV.

II. COORDINATE SYSTEM AND WAVE FUNCTIONS

The greatest difficulty in the calculation of the over-
laps arises from the required transformation of the atom-
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ic and molecular wave functions into a common coordi-
nate system. This transformation is facilitated by an ap-
propriate choice for the body-fixed reference frame
x'y'z'. We have chosen the so-called bisector frame.
The nucleus (eff'ectively located at the center of mass)
lies at the origin and the e-core-e triangle is chosen to lie
in the x'z' plane, with the x' axis bisecting the angle 0&2
between the two radius vectors. Thus when the "mole-
cule" is exactly linear, it lies along the body-fixed z' axis
in agreement with the usual convention. Stated
mathematically,

constants; they must be determined directly by evaluat-
ing the appropriate normalization integrals (e.g.,
f 0 dri J o dr2[R, , (ri, r2)] =1) instead of using con-
ventional formulas, since the usual approximation of
very small amplitude motion does not hold rigorously
here. Note that the stretching function is simply a prod-
uct of harmonic oscillator functions in q& and q3 and
that the bending wave function is that of a two-
dimensional harmonic oscillator. The factor of 1/(r, r2)
is introduced so that the wave function can be normal-
ized over the same radial volume element as that for the
atomic wave function (i.e. , r, r2dr, dr2).

By using pseudopotentials, the alkaline-earth atoms
can be treated as quasi-two-electron atoms; thus the
wave functions for both He and the alkaline earths can
be written in the same form. The two-electron atomic
CI wave functions we have employed here are those
from Refs. 9 and 11. They are of the form
form

where r& and r2 are unit vectors in the directions of the
two electrons. In the harmonic normal-mode approxi-
mation, the molecular rotor-vibrator (RV) wave function
may be written as'

+Rv —A R„„(r1, r2 )G„(812)
rlr2

+cI ~ g CI I (t' I (rl )O' I (r2 )+I I (rl r2)
1) n

1 l2n2

where the radial basis functions are

$1(r ) =JVr" 'e ~", n )1 (10)

where

1/2X, &M'k (&18r»
2J+1

8m'

and the angular basis functions are coupled spherical
harmonics

+I I (rl r2) g +I m (81 0 1)1 I m (82 0'2)
m &m2

R, , (r, , r )=2JVe ' ' H, (q, )H„(q3),
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)/2(p2)
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The quantum numbers here have their usual meanings.
Using a method outlined in detail by Nikitin and Ostrov-
sky, ' the coupled spherical harmonics can be
transformed into a form depending on 8&2 and the Euler
angles

The quantum numbers v &, v2, and v 3 specify, respective-
ly, the number of quanta in the three normal modes of
vibration: the symmetric stretch, the (doubly degen-
erate) bend, and the antisymmetric stretch; qi, p2, and

q3 are the corresponding dimensionless normal coordi-
nates and ~&, co2, and co3 are the corresponding vibra-
tional frequencies. J is the total angular momentum (ex-
cluding spin) and M is its projection on the space-fixed z
axis; k is the vibrational angular momentum about the
body-fixed z' axis. 2)Mk(apy ) is a rotation matrix (in the
convention of Brink and Satchler' ), whose arguments
are the Euler angles which effect the transformation
from the space-fixed frame to the body-fixed frame, m is
the electron mass, and r, is the equilibrium electron-
nucleus separation. A is the antisymmetrization opera-
tor. H„(x) is an Hermite polynomial and L„(x) is an
associated Laguerre polynomial in the convention of
Gradshteyn and Ryzhik. ' The JVs are normalization

where

1[12 (812) y ~lim1(81~'Pl )~l2m2(82~%'2)
m &rn2

X ( 11m, l2m2 I
L —& & (13)

and (8,'. , q1,') are the spherical polar coordinates of elec-
tron i in the body-fixed frame. With our choice of coor-
dinate system as described above,

(14a)

(14b)

Explicit expressions for the particular FI I (812)'s that
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we used are listed in Appendix A along with useful sym-
metry relations for these functions. Now substituting
Eq. (12) into Eq. (9), 'Pcq can be written as a function of
the same coordinates as 'PRv.

After a moderate amount of algebra outlined in Ap-
pendix B, which uses the orthogonality of the rotation
matrices with different values of J, k, and M, we find
that

8 2

('P
I

'P ) =( —1) + (I+& o) 2I. +1

1/2

11,n 1,12,n2

C1, , 1, , sin0i2 d0»G, , 0» F1,1, 0»

X f r~dr~ J rqdr2R. ..(r~, r2)[P„ I (r&)P„~ (rz)

+~, ( —1) +"$„,1, (r))P„,I, (rg)], (15)

where n, =( —. 1) is the parity of the atomic wave11+12

k+S+ v3
function, vr =( —1) is the parity of the molecu-
lar wave function, and 5 „ is the Kronecker delta. We
have assumed the M and S (total electron spin) quantum
numbers of the two wave functions to be the same. One
of the integrals over dr can be performed analytically in
terms of the error function, leaving only the simpler
product of two separable one-dimensional numerical in-
tegrations which we performed using Gaussian quadra-
ture. The fraction of overlap is given by

I &'pRv
I

q'ct&
I

'.
The correspondence between the atomic and molecu-

lar descriptions of the states considered here is given in
Table I. In each case we choose the lowest state in a
particular symmetry channel (cf. Ref. 11), regardless of
its nominal configuration. This selection would be espe-
cially questionable for Ba, which we do not treat, and
could possibly be so for Sr, but the results indicate that
the correspondence is satisfactory in that case. This ap-
pears to be a good point at which to clarify a lingering
confusion in the literature concerning "rotor states. "
The states with L&0 clearly have angular momentum;
however, they fall into two distinct types: in the lowest
'P' and P' the angular momentum is the vibrational an-
gular momentum k about the molecular axis z', whereas
for the P' and 'D ' it corresponds to the angular
momentum J—k of end-over-end rotation about an axis

(y') perpendicular to the molecular axis. It is only the
latter which are referred to as rotor states in the usual
nomenclature of molecular physics.

We next calculate the overlaps between the corre-
sponding atomic and molecular wave functions, and
maximize these overlaps by varying the parameters co&,

c02 603 and r, . Generally we obtain at least three
significant figures in the optimization of the parameters.
We have included only the alkaline-earth atoms up to Sr
in our calculations. In Ba there is considerable uncer-
tainty about the classification of states. In addition, the
wave functions from Ref. 11 for Ba are of questionable
accuracy since they include no core polarization or
spin-orbit coupling effects.

In order to examine graphically the behavior of the
various wave functions in their internal coordinates, we
construct conditional probability densities
p(r2, 8&z

I
r, =g), which measure the probability of

finding one electron at a distance r2 from the nucleus
with angle 0&2 between the two r vectors given that the
other electron is at r =g. This is related to the integral
of the absolute square of the wave function over all pos-
sible orientations in space (i.e., over the Euler angles).
The calculation is somewhat involved for the atomic CI
wave functions (see Ref. 9) but quite simple for the
molecular wave functions since they are naturally in the
appropriate coordinates. The plots we present represent

TABLE I. Connection between molecular and atomic quantum numbers. Note that the molecular
J is equal to the atomic L. The nominal atomic configurations are given.

n 1 ~1 n212

nsns

nsnp

npnp
nsnd
ns(n —1)d
nsnp

npnp
npnp

Term

lge
3po
lDe

lpo
3pe
lge

(V1U2U3)

(000)
(000)
(000)

(010)
(010)
(020)

J—k

ns(n+ 1)s
ns(n + 1)s

lge
3+e

(100)
(001)
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r2p(r~, &~2
~

r~ ——g). All of the plots are scaled to con-
stant height.

III. RESULTS AND DISCUSSION

A. Harmonic normal-mode representation

In lowest order the energy levels of a linear triatomic
molecule are given by'

( i, 2, 3, , k)=co&(v&+ —,')+co2(v2+1)

+co3(v3+ —,')+B[J(J+I)—k ], (16)

where B is the rotational constant. By examining the ex-
perimental energy differences' ' between the atomic
states corresponding to different rotational and vibra-
tional excitations, we can arrive at the values for the co s
and r, that should hold if the molecular picture were
rigorously correct. In doing so we have taken
E(0, 1,0, 1, 1) to be the average of the true energies of the
k doublet 'P' and P', and the rotational constant B to
be one half the energy difference between the vibration-
less states with J=0 and 1 (see Ref. 10). The resulting
values serve as our standard of comparison for the pa-
rameters obtained by maximizing the overlaps.

In examining the overlaps we begin with the intrashell
states, which correspond to excitations of rotational and
bending vibrational modes only, and thus are states
dominated by angular correlations. The results are indi-
cated in Table II where the parameters leading to the
best overlaps are listed for each state considered. The
overlaps appear reasonably large for He*', and even
better for the alkaline-earth atoms. The states corre-
sponding to the very lowest degrees of excitation are fit
best, while some of those corresponding to two quanta of
excitation (e.g. , the 'D "s for the heavier alkaline-earth
atoms and the 2p 'S' for He) show the simple model al-
ready breaking down somewhat. There is a fair bit of
consistency among the optimized parameters for the
various states of each atom as well as reasonable agree-
ment of the average parameters for each atom with the
predicted values based on the level separations (see Table
III). The decrease of the predicted vibrational frequen-
cies in going from Be through Sr is well-reproduced by
the calculated parameters. Internal consistency is also
demonstrated in that the overlaps calculated using a sin-
gle average set of parameters for each atom are only
slightly lower than those calculated with the optimal pa-
rameters.

The aptness of the molecular functions as representa-
tions of the accurate functions„and their superiority
over the independent-particle model functions, can be
seen clearly in Fig. 1, where we plot accurate conditional
probability densities for the various states of He** and
compare them with those constructed using the molecu-
lar wave functions and with single-configuration hydro-
genic wave functions. These plots are drawn for the
value of the fixed r near that at the maximum of the
single-particle radial distribution function of the CI
functions. Note that the P ' state is constrained by sym-
metry to look very much the same in the three levels of
approximation considered; the others are not.

Next we move on to examine intershell states, which
correspond to excited stretching vibrations which we
might associate with strong radial correlation. These re-
sults are shown in Table IV. The harmonic normal-
mode model appears to encounter difficulties. The over-
laps are rather small, and there are large differences be-
tween the best-fit parameters for the symmetric and an-
tisymmetric stretches ('S' and S'). The co s are far
from their predicted values and they do not agree well at
all with those obtained from the overlaps for the intra-
shell states. It appears that the intershell states are too
diffuse radially for the harmonic model to work well.
The fit of the S"s is better since they are constrained by
symmetry to have the proper form. The symmetric
stretching motion, on the other hand, is in direct com-
petition with the shell structure.

B. Alternative choices
for molecular wave functions

g„(r)=JVe ~ H„(q),

q =Qm, cv/A'(r r, ) . —
(18)

(19)

We also considered Morse eigenfunctions for the
g„(r )'s,

g (r)=A'e ' z L (z) (20)

(21)

b =~—2n —1,
corresponding to the Morse potential

(22)

~=2&2mD /afi .

(23)

(24)

The number of bound states supported is the largest in-
teger strictly less than (v+1)/2 and the energy levels
are given by

In light of the poor agreement for intershell states we
considered using a local-mode representation for the
stretching vibrations, based on the success of such a rep-
resentation ' for molecules such as HzO in which there
is a large difference in the constituent masses. In con-
trast to the normal-mode picture described above, where
radial correlations are explicit, in the local-mode picture
radial correlation is forced into the wave function only
by the antisymmetrization constraint. Transforming to
the local-mode representation corresponds to replacing
R, , (r&, r ) 2in Eqs. (2) and (15) by another function

which is now separable in r
&

and r2,

R„—(r &, r2) = —,'(2 —6„)' [g„(r& )g~ (r2 )

+g (ri)g. (r»]
where n and m are, respectively, the number of vibra-
tional quanta in the two equivalent "bonds. " In addition
(+1) replaces ( —1) ' in all equations. In the harmonic
approximation
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TABLE II. Molecular parameters leading to best overlaps of normal-mode molecular wave functions with the corresponding
atomic CI wave functions for intrashell states of He and the alkaline-earth atoms. Here and in the following tables the co's are in

Rydbergs and r, is in bohr.

Atom

He
He
He
He
He
He
He

Be
Be
Be
Be
Be
Be

State

2s2s 'S'
2s2p P'
2p2p 'D'
2s2p 'P'
2p2p P'
2p2p 'S'
average

2s2s 'S'
Zs 2p P
2p2p 'D'
2s2p 'P'
2p2p P'
average

0.892
0.831
0.527
0.675
0.551
0.418
0.649

0.953
0.791
0.502
0.586
0.575
0.682

0.250
0.185
0.152
0.136
0.249
0.234
0.201

0.223
0.283
0.241
0.151
0.286
0.237

0.746
0.614
0.418
0.440
0.415
0.256
0.482

0.835
0.671
0.319
0.372
0.417
0.523

7'e

3.44
3.33
3.18
3.46
3.02
3.43
3.31

2.50
2.58
3.00
2.89
2.79
2.75

I &+Rv
I
+cr)

f

'

0.7784
0.7984
0.7583
0.7864
0.9262
0.6537
0.7836

0.9387
0.9228
0.7921
0.8402
0.9254
0.8838

0.7257
0.7875
0.7412
0.7687
0.8994
0.5903
0.7521

0.8945
0.9092
0.7626
0.8176
0.9115
0.8591

Mg
Mg
Mg
Mg
Mg
Mg

3s3s 'S'
3s3p P'
3s3d 'D'
3s3p 'P'
3p 3p P'
average

0.765
0.619
0.357
0.467
0.457
0.533

0.119
0.177
0.210
0.101
0.166
0.154

0.669
0.501
0.187
0.272
0.376
0.401

3.08
3.38
4.14
3.73
3.89
3.64

0.9414
0.8881
0.5796
0.7357
0.9327
0.8155

0.8215
0.8703
0.5158
0.7130
0.9095
0.7660

Ca
Ca
Ca
Ca
Ca
Ca

4s 4s S'
4s 4p P'
4s3d 'D'
4s4p 'P'
4p 4p P'
average

0.555
0.465
0.658
0.403
0.361
0.488

0.075
0.132
0.387
0.105
0.161
0.172

0.492
0.385
0.416
0.282
0.318
0.379

3.96
4.31
3.37
4.51
4.78
4.19

0.9429
0.9040
0.5240
0.8220
0.9394
0.8265

0.8458
0.8950
0.4228
0.7798
0.8592
0.7605

Sr
Sr
Sr
Sr
Sr
Sr

5s 5s S'
Ss 5p P'
Ss4d 'D'
5s5p P
5p Sp P'
average

0.507
0.486
0.415
0.458
0.385
0.450

0.060
0.128
0.231
0.124
0.260
0.161

0.451
0.418
0.360
0.362
0.371
0.392

4.28
4.58
4.26
4.60
4.66
4.48

0.9448
0.9348
0.6847
0.8960
0.9001
0.8721

0.8280
0.9266
0.6669
0.8829
0.7817
0.8172

E„= —a A' (Ir —2n —1)
8m

(25)

For the local-mode wave functions the overlap integral is
simplified since it is entirely separable in r&, rz, and t9&2.

In maximizing the overlaps with these functions, we
vary cu and r, in the harmonic case, and a, ~, and r, in
the Morse case.

Before going to intershell states (which we expect to
improve the most by this better representation), we con-
sider the ground stretching state (i.e. , intrashell states) in
this local-mode representation. Using the harmonic
model we obtain results nearly identical to those shown
in Table II for the normal-mode case; the correspon-
dence between the optimized stretching frequencies is
co (cl)i + cl)3 ) /2. Using the anharmonic Morse functions,

TABLE III. Comparison of zero-order harmonic predictions (based on experimental energy-level spacings) with the calculated
average molecular parameters giving the best overlaps for intrashell states of He** and the alkaline-earth atoms.

Atom

Be
Mg
Ca
Sr

Pred.

0.382
0.498
0.396
0.304
0.279

Calc.

0.649
0.682
0.533
0.488
0.450

Pred.

0.135
0.366
0.324
0.214
0.194

Calc.

0.201
0.237
0.154
0.172
0.161

Pred.

0.354
0.475
0.375
0.287
0.265

Calc.

0.482
0.523
0.401
0.379
0.392

Fred.

5.32
2.23
2.24
2.68
2.73

e

Calc.

3.31
2.75
3.64
4.19
4.48
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TABLE IV. Molecular parameters leading to best overlaps of normal-mode molecular wave func-
tions with the corresponding atomic CI wave functions for intershell states of He* and the alkaline-
earth atoms. No stable optimization was achieved for the Ss6s 'S' state of Sr.

Atom

He
He

State

2s3s 'S'
2s 3s S'

0.137
0.397

0.331
0.111

0.029
0.225

3.24
5.41

I
(+Rv

I
+cr)

I

0.5114
0.6907

Be
Be

2s3s 'S'
2s3s S'

0.200
0.304

0.083
0.032

0.003
0.166

2.59
4.47

0.7257
0.8274

Mg
Mg

3s4s 'S'
3s4s 'S'

0.150
0.272

0.054
0.019

0.001
0.148

3.13
5.28

0.7060
0.8197

Ca
Ca

4s 5s S'
4s 5s S'

0.172
0.335

0.042
0.018

0.040
0.180

4.15
6.06

0.6979
0.8894

Sr
Sr

5s 6s S'
5s 6s S' 0.569 0.019 0.321 5.49 0.9521

TABLE V. Molecular parameters leading to best overlaps of Morse local-mode molecular wave functions with the correspond-
ing atomic CI wave functions for intrashell states of He * and the alkaline-earth atoms.

Atom

He
He
He
He
He
He
He

Be
Be
Be
Be
Be
Be

Mg
Mg
Mg
Mg
Mg
Mg

State

2s2s 'S'
2s 2p P'
2p2p 'D'
2s2p 'P'
2p2p P'
2p2p 'S'
average

2s2s 'S'
2s2p P'
2p2p 'D'
2s2p 'P'
2p 2p P'
average

3s3s 'S'
3s3p 'P'
3s3d 'D'
3s3p 'P'
3p 3p P'
average

1.287
1.190
0.991
1.159
0.972
1.091
1.115

1.059
1.086
1.141
1.211
1.069
1.113

0.872
0.874
1.074
0.965
0.726
0.902

0.695
0.570
0.582
0.475
0.954
1.157
0.739

0.654
0.962
1.179
0.693
1.225
0.943

0.306
0.510
0.999
0.386
0.470
0.534

1.674
1.721
1.790
1.639
1.834
1 ~ 559
1.703

2.118
1.944
1.609
1.612
1.763
1.809

2.235
2.019
1.467
1.679
2.098
1.900

2.01
1.89
1.64
1.83
1.55
1.55
1.75

1.46
1.40
1.36
1.34
1.35
1.38

1.91
1.99
1.90
1.91
2.31
2.00

0.8867
0.8855
0.8160
0.8680
0.9881
0.7110
0.8592

0.9966
0.9836
0.8542
0.9108
0.9856
0.9462

0.9973
0.9505
0.6457
0.7970
0.9928
0.8767

0.8314
0.8722
0.7970
0.8438
0.9580
0.6533
0.8260

0.9682
0.9771
0.8252
0.8848
0.9716
0.9254

0.9160
0.9465
0.5683
0.7665
0.9567
0.8308

Ca
Ca
Ca
Ca
Ca
Ca

4s 4s S'
4s4p P'
4s3d 'D'
4s4p P'
4Ã4p P'
average

0.686
0.635
0.325
0.604
0.477
0.545

0.170
0.308
0.659
0.269
0.343
0.350

2.398
2.344
6.485
2.247
2.811
3.257

2.62
2.80
2.58
2.80
3.24
2.81

0.9963
0.9551
0.5236
0.8649
0.9783
0.8636

0.9217
0.9117
0.4480
0.7774
0.8078
0.7733

Sr
Sr
Sr
Sr
Sr
Sr

5s5s S'
5s 5p P'
5s4d 'D'
5s 5p P'
5p 5p P'
average

0.624
0.448
0.458
0.392
0.271
0.439

0.127
0.234
0.495
0.224
0.413
0.299

2.519
3.554
3.207
3.976
6.529
3.957

2.91
3.38
2.91
3.42
3.70
3.26

0.9944
0.9629
0.7063
0.9163
0.9119
0.8984

0.8779
0.9446
0.6796
0.8885
0.7645
0.8310
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TABLE VI. Molecular parameters leading to best overlaps of Morse local-mode molecular wave
functions with the corresponding atomic CI wave functions for intershell states of He* and the
alkaline-earth atoms.

Atom

He
He

State

2s3s 'S'
2s3s S'

0.609
0.627

0.434
0.495

3.531
3.626

2.50
2.39

I
&+Rv

I
+cr& I

0.8045
0.8691

Be
Be

2s3s 'S'
2s3s S'

0.671
0.648

0.201
0.224

3.486
3.611

1.69
1.68

0.9102
0.9587

Mg
Mg

3s 4s S'
3s4s S'

0.586
0.571

0.120
0.115

3.499
3.635

2.13
2.11

0.9241
0.9648

Ca
Ca

4s 5s S'
4s 5s S'

0.455
0.404

0.091
0.071

3.981
4.315

2.97
3.02

0.9234
0.9578

Sr
Sr

5s 6s S'
5s 6s S'

0.387
0.325

0.122
0.048

4.870
6.369

3.39
3.52

0.7669
0.9684

various approximations for the 2s3s 'S' and 2s3s S'
states of He. [We choose the value 8&2 ~ since this is
clearly the maximum in the distributions p(r&, 8,2 ~

r~
=g) showing the angular correlation in these states. ]
Figure 2 shows clearly the failure of the normal-mode
picture to describe the excited symmetric stretch. The
Morse local-mode picture does much better at reproduc-
ing the accurate density. But what is most striking here
is that the best local-mode plot looks very much like the
single-configuration hydrogenic plot, which in turn is
very close to the accurate plot. That is, the
independent-particle model appears to describe the bulk
of the radial correlations, while the angular part is much
better described by the molecular picture.

We have used three descriptions here for the stretch-
ing modes: the harmonic normal-mode model, the har-
monic local-mode model, and an anharmonic local-mode
model. A fourth model suggests itself, an anharmonic
normal-mode description. Such a model can be con-
structed even though the normal modes lose their spe-
cial, natural character if the anharmonic contributions
to the energy are comparable with the harmonic, "oA'-

diagonal" bond-bond contributions. Developing a
normal-mode model or any more general optimized
model for the two anharmonic stretching modes would
require optimizing all the anharmonic parameters used
to describe the system, and one would inevitably obtain

functions whose overlaps with the well-converged func-
tions are at least as large as those reported here. Such
functions would very likely be useful as basis functions
for testing expansions of the exact eigenfunctions in
terms of a rotor-vibrator series, instead of a series of
independent-particle functions. If one were to develop
stretching-mode functions for this purpose, one would
surely want to start not with a pair of Morse potentials
for the individual electron-nuclear interactions but with
potentials that are asymptotically Coulombic. Indeed,
such a step is part of the intended work of this program.
However, it is not meant to be part of the stage present-
ed here. The goal of this report is simply to show that
for a great many of the states of common two-electron
systems, there are simple rotor-vibrator representations
that are much more like the exact eigenfunctions than
the best independent-particle functions are. For this
purpose the anharmonic, local-mode model based on
Morse potentials is quite adequate.

Finally, we have also considered including anharmoni-
city in the angular part of the wave function. The angu-
lar functions used were Jacobi polynomials that result as
an analytic approximation to the eigenfunctions of two
electrons confined to the surface of a sphere. These
should do better at describing large-amplitude bending
motion than the harmonic oscillator functions employed
above. We will not give details here except to say that

TABLE VII ~ Comparison of predicted values of the stretching excitation energy and experimental
ionization potentials with the calculated values based on the average molecular parameters giving the
best overlaps for intershell states.

Atom
Av. params.

Pred.
Ei -Eo

Calc. Pred. Calc.

He**
Be
Mg
Ca
Sr

0.618
0.660
0.579
0.430
0.356

3.579
3.549
3.567
4.148
5.620

0.368
0.487
0.386
0.296
0.272

0.603
0.675
0.525
0.397
0.459

0.554
0.685
0.562
0.449
0.419

0.635
0.708
0.552
0.458
0.676
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the resulting overlaps for intrashell states are very close
to those given in Table II, and that the resulting average
optimized parameters lead to bending energy-level sepa-
rations which differ from the experimental values by per-
centages comparable to the percentage differences of the
predicted and calculated co2 values given in Table III. (a)

2s3s ~g' 2s3s S'

IV. CONCLUSION

We have shown that the molecular picture of an atom
with two correlated electrons has the ability to describe
well the wave functions of a whole group of intrashell
states in both He** and the alkaline-earth atoms, with a
few parameters that are reasonably well predictable from
experimental energy-level separations. The molecular
wave functions we have considered here have no explicit
coupling between the angular and radial motions. The
harmonic normal-mode functions give a rather good
description of the intrashell states (rotation and bending
vibrations) but fail for intershell states (symmetric and
antisymmetric stretching vibrations). The most satisfac-
tory representation of the states that would be assigned
as stretching vibrations is given by suitably symmetrized
Morse local-mode functions. The implication is clear
that the effective potentials do support vibrationlike
behavior. However, in the radial direction this is so
anharmonic that the normal modes associated with
quadratic potentials have little application to the stretch-
ing modes of two-electron atoms apart from their
correspondence with the correct symmetries. For high
Rydberg states, the angular functions of the
independent-particle model must be recovered. Clearly
a better understanding is still needed of the transition
from independent-particle to collective-molecular behav-
ior.

Now that the molecular picture has been placed on a
more quantitative footing, it remains to establish its util-
ity in making predictions of experimentally observable
quantities. In particular we have in mind examining its
implications for the angular distributions of photoelec-
trons (treated in analogy with photofragment angular
distributions from molecular photodissociation).
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APPENDIX A: EVALUATION OF
THE F (8&2)'s

In order to develop explicit expressions for the
FI I (8&2)'s, we begin by rewriting their definition [Eqs.
(13) and (14)] in terms of a 3-j symbol and define
u—:(m+8ip)/2,

L
Ft I (,2)=( —1) ' ' (2L+1)' g ~ ~ Y(, (m —uO)YI ~(uO) . (A 1)

Using symmetry relations for the spherical harmonics

YI (vr 8,0) =( —1)'+—Y) (8,0), (A2)

YI (8,0)= Yi* (8,0)=( —1) Yi (8,0), (A3)

and for the 3-j symbols, the following relations may be determined directly:
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Fl, l (812) FI I (812)

FLK (8 ) ( 1)L+KFLK (8 )

(A4)

(AS)

(A6)

1/2

Using the diff'erence equations satisfied by the associated Legendre polynomials and their relationship with the spheri-
cal harmonics (see Ref. 26), it can be shown for general 8 that

1/2
(2l + 3)(l —m )

+ ™~70 (21+1)(l—m+1)

(2l +S)(2l +3)
+ ' (I +m +2)(l —m +2)

Yl (8,0)

' 1/2
(I +m +1)(l —m +1)

(2l +1)(21+ 3)

(sin8) Y, +,(8,0)+(cos8) i+m+1
l —m

1/2

Yl (8,0)

(A7)

(A8)

Explicit expressions for the 3-j symbols can introduce factors of m, m, or [(I—m )(I +m + 1)]' into the summation
in Eq. (A1). However, the sum may be carried out analytically using the following identities, which can be derived
starting with the spherical harmonic addition theorem

2l +1g Yl~(m. —u, O)Ylm(u, O)= Pl(cos81z),
4m

g m Yl (~—u, O)YI (u, O)=0,

(A9)

(A10)

2l +1g m Yl (~—u, O) Yl (u, O) = Pl (cos81z) cot
8m 2

g [(I—m )(I+m +1)]' Yl (Ir u, O) Y—l +1(u, O) =—21+1
Pl (cos81z) .

4n

(A11)

(A12)

Using all of the above results, the following explicit expressions were derived for the functions used in our calcula-
tions:

Fll (8,z) = (21+ 1) Pl(cos8, z),00 1/2

4u
1/2

( —1)'+' 3(21+1)
Fll (8,z) = Pl (cos81z),

4~ 21 I+1

(A13)

(A14)

10 1 )I +1
FI, I + 1 ( 812 )

4m

3

2(l + 1)

3

I+1

' 1/2

1/2

12 6'12
(I + 1)cos Pl(cos8, z) —sin Pl'(cos812)

2 2

612
(I + 1) sin Pl(cos812)+ cos P('(cos812)

2 2

(A1S)

(A16)

FII (812)=
4m.

S(2l +1)
(21 +3)(l + 1)l (2I —1)

1/2 T

I(l + 1)PI(cos812)——', cot PI (cos81z) (A17)

20 ( —1)'
F(,(+2(81z)= 4~

15
2(l +1)(l +2)(21+3)

1/2
6'12(2l+3)(l+1) sin
2

—(I + 1) Pl (cos812)

1 6'12
+—(21+3 ) sin8, z+ cot Pl'( cos81z ) (A18)

APPENDIX 8: CALCULATION OF THE OVERLAPS P1zR» (r1, rz)=( —1) 'R» (r1, rz) . (B2)

A =1+(—1) P12 (B1)

to the expressions for the wave functions given in the
text [Eqs. (2) and (9)]. P1z is the permutation operator,

First we obtain explicitly antisymmetrized wave func-
tions by applying the operator

With our choice of the body-fixed frame,

P12&M«(~ P r ) =~~«« ~ ~ I3 2~ r)— —
=( —1)'&M «(rz P )'»

(B3)

(B4)

where identities from Ref. 15 have been employed. Thus
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+RV
P1P2

R. .. (r, , r2 )G,, (g12)
k+S+ v3F+Rv ( 1 ) +Rv (B8)

2J + 1 (2 —5ko)
X

8m 2 I
1 + 1 ~~+cl = ( —1 ) q'cl (B9)

Now turning to the atomic CI wave function [Eq. (9)],
we have

+ [+Mk (apy ) + ( —1 ) '&M k(a—py ) ) . (B5)

This wave function has a definite parity which we deter-
mine by applying the inversion operator P,

Also,

&12&1,1,(rl r2)

2 1
(B10)

~&Mk(a p y)=&Mk(a ~+p 2~ r)—
k(a p r),

(B6)

(B7)
=( —1) ' '

Q Fl, l, (g12)2) MK(a, p, y)
K

(B1 1)

where again identifies from Ref. 15 have been used.
Thus it follows that

where the first step follows from symmetry relations for
the Clebsch-Gordan coe%cients and the second from
Eqs. (12) and (A5). Thus overall

+CI p cl1 112&2 Q F1112(g12)+ MK(a p y )( ) [0 1I1( 1 )0 &I&( 2 )+ ( ) 0 &I&( 1 )(t' 1l1( 2 )]
2 Il n] lynch K

The projection is given by

f Rv+CId

where

d r =r Idr I r 2dr2 sing, 2d g, 2da sinPdPd y .

We need the transformation'

[+Mk(a p r )]*=( 1) + &—'*M k(a p r —)

(B12)

(B13)

(B14)

(B15)

Now, using the expression for the integral of a product of rotation matrices, ' the integral over the Euler angles may
be evaluated with the result

da sin d dy *I kn y+ —1
' *~I, a y ~Ka y

0 0 0

8~2 L+S+v)
oLJ [~K —k + ( 1 ) 'hKk ]+

Thus the only Fl l (g12) term that survives the sum over K is

FL —k(g )+( 1) +"3FLk (g ) [( 1) 1 2+ +( 1) 3]FLk (g )
1 2 1 2 1 2

=( —1) +"(~,+sr )Fl, l, (g12)

=( —1) +"2~,6 F(, l, (g12),

(B17)

(B18)

(B19)

where m, and vr are the parities of the atomic and molecular wave functions, respectively, and Eq. (A6) has been
used. Combining this last equation with those above, Eq. (15) follows immediately.
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