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Energy eigenvalues are obtained for the three-dimensional potential V(r) = —'[r '+ A r '/
(1+gr2)], where X and g are parameters, using the shifted-1/¹xpansion method. Results are ob-
tained for nine sets of n„and / values corresponding to n =0, 1, 2, 3, and 4. It is found that cer-
tain levels which are degenerate in the limit A, =O do not remain so as A, increases. This splitting is
studied as a function of g and of A, . It is also shown that with a negative A, , this potential gives a
sequence for energy levels which is identical with that which occurs in the shell model of the nu-

cleus.

I. INTRQDUCTIQN

There have been several investigations' ' on the en-
ergy levels and wave functions for the one-dimensional
potential

V(x)=x +A,x /(1+gx ) .

As summarized by Mitra, ' this type of interaction
occurs in several areas of physics. In particular, this
type of potential occurs when considering models in
laser theory, ' ' and in quantum field theory with a
nonlinear Lagrangian. ' ' The Schrodinger equation for
potential (1) is not solvable analytically for arbitrary
values of A, and g. A variety of methods have been used
to determine the eigenvalues and wave functions for the
potential (1). Numerical values for the eigenenergies
have been given by several authors' ' ' for various
combinations of A, and g. The existence of a class of ex-
act solutions, when certain algebraic relations between A,

and g hold, has also been demonstrated.
Iri the present paper we investigate the eigenvalues of

the three-dimensional analogue of Eq. (1),

tials, a natural choice for the expansion parameter is 1/k
where k =N+2/, l(l +N —2)fi being the eigenvalue of
the square of the S-dimensional orbital angular momen-
tum. ' The convergence of this method is, however,
rather slow. Recently Sukhatme and Imbo have pro-
posed a modification of this method, called the shifted
1/N expansion, which considerably improves the analyt-
ic simplicity and convergence of the perturbation series
for the energy eigen values. The modification simply
consists of using 1/k as an expansion parameter, where
k=k —a =2V+2l —a, and a is a suitable shift. The
shifted-1/N-expansion method has been discussed and
applied to a number of potentials by Imbo et al.
Several applications of the shifted-1/N-expansion
method have been made.

In Sec. II we summarize the expressions for calculat-
ing the energy eigenvalues. Calculations are carried out
for various combinations of n, and l corresponding to
n=O, 1, 2, 3, and 4. The results are discussed in Sec.
III. A possible application of the potential (2) with neg-
ative A, to shell model of the nucleus is also pointed out.

1 2 A,rV(r)= —r +
1+gr

The procedure for determining the energy eigenvalues
in the shifted-1/N-expansion formalism is given in the
paper of Imbo et al. Hence, for sake of brevity, we
omit the intermediate steps and give here only the final
expressions. We shall use atomic units (A'=m =e =1)
in obtaining the formulas.

The energy eigenvalues in the shifted 1/X expansion
are given in terms of ro, which is determined from the
position of the minimum of the e6'ective potential

using a variant of the 1/N-expansion method. We in-
clude the factor —,

' in V(r) so that in the limit A, ~O, the
eigenvalues will have the familiar sequence —,', —,', —,', . . . .

In recent years, the large-X-expansion method, where
N is the number of spatial dimensions, has been applied
to calculate the eigenvalues for a number of poten-
tials. ' In this method 1/K is used as a perturbation
expansion parameter. For spherically symmetric poten-

(2) II. ANALYTIC EXPRESSION FOR THE EIGENVALUES

3009 1987 The American Physical Society



3010 Y. P. VARSHNI 36

V,s(r)=,+ V(r)
Smr k

For the potential (2), with %=3,

C

«o(1+2gro+g "0+~)
k

(1+gro )

and the equation for determining ro is found to be

4(1+gro2+3g~ro+g3r6o+A, ) 2ro(1+2gro+g ro+A, )'
(2l + 1)+(2n„+ 1)

(1+2gro+g ro+A)(1+gro) (1+gro)
where n„ is the radial quantum number. The oscillator quantum number n=2n„+I.

The final expression for the eigenvalues for the potential (2) is as follows:

k ' 1 1 (1+gr~o)(1+gro+~) y'" y' ' 1

ro 8 8 (1+2gro+g ro+A) k k k

The quantities y'" and y' ' appearing in the corrections to the leading order of the energy expansion are

y'"= —,'(1 —a)(3 —a)+(1+2n„)E2+3(1+2n„+2n„)E4 ——[E i+6(1+2n„)EiE3+(11+30n„+30n„R3],

y' '=(1+2n„)82+3(1+2n„+2n, )54+ 5(3+8n„+6n„+4n„)86

—co '[(1+2n„)Y,z +12(1 +2n„+2n„)sz e~

+2(21+59n„+51n„+34n„)E 4+ 2m i 5 i+ 6( 1+ 2n„)8 i 53+ 30( 1+2n„+2n„)E i5&+ 6( 1+2n„)e35 i

+2( 1 1+30n „+30n „)e353+ 10( 13+40n „+42n „+2 8n„)e 355]

+co [4Z iEz+36(1+2n„)eiE283+8(11+30n„+30n„)e27. 3

+24(1+2n„)E iE4+8(31+78n„+78n„)Z,E3e~+12(57+189n„+225n„+150n„)E3Ez]

co —[8E i 83+ 108(1+2n„)Y. ie 3+48(11+30n„+30n„)cia 3+30(31+109n„+141n„+94n„)e3],

(6)

(7)

in which

EJ =E, /(2')~~, 5~ =51 /(2')J~

4(1+3gro+3g ro+g ro+A, )

2 (1+2gro+g ro+A, )(1+gro)

a =2—2(2n„+ 1)co,

5i ————', 52 ———(1—a)(3 —a)/4,

6,= --', 64-Zc. , = --', c.,=Z —a,
1 r 0( —1+gr o )g A,

C3= — +
2(1+gro) (1+2gro+g ro+A)

ro( —10gro+5g ro+ l)gk,

8(1+gro)'(1+2gro+g ro+A, )

ro(3gro —1)(gro —3)g k
65 ————+4 4(1+gro) (1+2gro+g ro+A, )

ro( 35g ro+7g r—o+21gro —1)g A.

8(1+gro) (1+2gro+g ro+A, )

For any given choice of n, l, A, , and g, Eq. (5) determines
ro. The energy eigenvalue can then be calculated from
Eq. (6). For the limit A, ~O, ro ——(2n„+1+—', )'~, k=2ro,

and from Eq. (6) we recover the result E =(2n„+I + —,
'

)

for the three-dimensional harmonic oscillator.

III. RESULTS AND DISCUSSION

Before coming to the results for potential (2), it is use-
ful to consider the results for the three-dimensional har-
monic oscillator. The levels having n„and I values
which satisfy n=2n, +l are degenerate. The n„and l
values for n =0—4 are shown in Table I.

TABLE I. n, and l values for various levels.

Spectroscopic
designation

1$

1p

2$

1d

3$
2d
1g
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The three-dimensional harmonic oscillator is often
used in discussions of the nuclear shell model to fur-
nish a simple reference set of levels. In nuclear physics
literature, in spectroscopic notation, the levels are usual-
ly labeled by (n„+1) and I values. Thus n„= 1, 1=1 is a
2p level, and so on; we shall also use the same notation.

Calculations of eigenenergies for the potential (2) were
carried out for 225 sets of (A. ,g) values (15 values each of

A, and g). A fraction of these results is shown in Table
II. In each case nine values are shown corresponding to
the various n„and l combinations for n =0—4. The sub-
sequent discussion and figures are based on all the results
obtained and not merely on Table II.

There are no other eigenvalue results available by any
other method, consequently it is not possible to infer the
accuracy of the present results by a direct comparison.

TABLE II. The first nine energy levels for different values of A, and g in increasing order of excita-
tion.

0.1

10

1000

0
0
1

0
1

0
2
1

0

0.1

1.5600
2.5932
3.6156
3.6220
4.6383
4.6472
5.6546
5.6590
5.6694

2.0399
3.3521
4.5835
4.6309
5.8112
5.8803
6.9850
7.0191
7.1037

4.8095
7.9069

10.795
10.918
13.647
13.844
16.305
16.419
16.686

14.891
24.695
34.256
34.401
43.770
44.009
53.045
53.187
53.519

47.271
78.660

109.80
109.95
140.89
141.14
171.74
171.89
172.23

1.5260
2.5328
3.5313
3.5369
4.5354
4.5395
5.5339
5.5382
5.5412

1.7561
2.8261
3.8126
3.8674
4.8528
4.8938
5.8379
5.8815
5.9118

3.7028
5.5357
6.7480
7.0450
7.9813
8 ~ 3600
8.8512
9.2492
9.5688

13.353
21.118
26.910
27.988
32.401
33.980
36.359
37.211
39.119

45.628
74.828

101.68
103.05
128.08
130.31
152.26
153.56
156.58

10

1.5044
2.5047
3.5046
3.5048
4.5048
4.5049
5.5047
5.5048
5.5049

1.5438
2.5471
3.5459
3.5481
4.5475
4.5486
5.5471
5.5483
5.5489

1.9366
2.9704
3.9590
3.9811
4.9752
4.9862
5.9707
5.9827
5.9892

5.8056
7.1819
8.0514
8.3055
9.2414
9.3601

10.195
10.323
10.391

32.370
44.520
46.680
50.363
50.554
52.748
49.720
53.015
54.264

1.5005
2.5005
3.5005
3.5005
4.5005
4.5005
5.5005
5.5005
5.5005

1.5049
2.5050
3.5050
3.5050
4.5050
4.5050
5.5050
5.5050
5.5050

1.5492
2.5497
3.5495
3.5498
4.5497
4.5499
5.5497
5.5498
5.5499

1.9922
2.9968
3.9955
3.9980
4.9973
4.9986
5.9969
5.9982
5.9989

6.4183
7.4675
8.4540
8.4802
9.4733
9.4858

10.468
10.482
10.489

1.5000
2.5000
3.5000
3.5000
4.5000
4.5000
5.5000
5.5000
5.5000

1.5005
2.5005
3.5005
3.5005
4.5005
4.5005
5.5005
5.5005
5.5005

1.5050
2.5050
3.5050
3.5050
4.5050
4.5050
5.5050
5.5050
5.5050

1.5499
2.5500
3.5500
3.5500
4.5500
4.5500
5.5500
5.5500
5.5500

1.9992
2.9997
3.9995
3.9998
4.9997
4.9999
5.9997
5.9998
5.9999
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0.012

D

0.010
B

X = 01
A: 1d—2s
B: 1f—2p
C: 2d-3s
D: 1g—2d

A. = 1000

A: 1d —2s

B: 1f—2p

C: 2d —3s

D: 1g—2d

0.008

0.006

0.004

0.002

0.000
0.1 10 50 0.1 10 100 200

FIG.. 1. AE for the four s

g

e our splittings vs g for X=O 1~ ~ FIG. 3. AE vsvs g for k= 1000.
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X=10
A: 1d —2s

B: 1f—2p

0.4
0.1

8

~

LLJ 0.3

0.2

LLI
C]

0.1

—2s

—3s

0.$

0.01

0.0
0.1

g

FIG. 2. AEE vs g for 1=10.

10 50
0.004

0.1
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FIGG. 4. AE vs A. fs or g=0.1.

100 1000
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TABLE III. Energy eigenvalues for two negative values of

0.1

0.01

Level

1$

1p
1d
2$

1

2p
1g
2d
3$

(A, = —0.5,
g=0.1)

1.1721
2.0000
2.8544
2.8962
3.7291
3.7832
4.6198
4.6800
4.7114

(A= —1,
g =0.1)

0.7806
1.4307
2.1407
2.2549
2.8941
3.0256
3.6806
3.8182
3.9082

0.001

0.0001 i I I & I i I II

0.1

FIG. 5.

10 100

AE vs A, for g=10.

1000

However, some evidence on this point can be obtained
from the magnitude of the y" ' and y' ' terms. For most
values of k and g the contributions of y' " and y' ' terms
are quite small and it would be reasonable to conclude
that the calculated energies are satisfactory. However,
there is a domain of A.,g values where this is not true for
some levels, especially the 2s level. This domain is very
roughly defined by A.

' /g =3—30. In this region the
contributions of y"' and y' ' together sometimes be-
comes as high as a few percent of the leading term for
the 2s level. Three other levels —1s, 1p, and 1d —also
show a somewhat similar behavior but of a lesser magni-
tude. In these cases, the series in (6) appears to be not
strongly convergent and the calculated energies may be
less accurate than the others. When A, is very large and

g is small, the magnitudes of y'" and y' ' terms become
rather large for the 3s level and the calculated value may
have a substantial error. An example of such a situation
occurs in Table II for A, =1000 and g =10. When both A,

and g are large, the eigenenergies tend to the values 2, 3,
4, 5, 6, . . . which correspond to an "elevated" harmonic
oscillator.

A perusal of Table II shows that for k&0, the degen-
eracy between certain levels for n =2, 3, and 4 (see Table
I) is removed. We have studied this splitting as a func-

tion of A. and g. There are four splittings in our data,
E ( ld) E(2s), E—( 1 f ) E(2p), E—(2d) —E (3s), and
E ( lg ) E(2d ).—Figures 1 —3 show these split tings as a
function of g for three values of A, , namely, A. =0.1, 10,
and 1000. It will be noticed from Figs. 1 —3 that in all
cases the splittings tend to disappear when g ~~.

Figures 4 and 5 show these splittings as a function of
A, for g=0. 1 and 10; for g=1000, the splittings are too
small. In this case it will be noticed that AE values in-
crease continuously with k. In Fig. 4 each curve ap-
pears to be approaching a constant value. But in Fig. 5
this tendency is not to be seen, the splittings continue to
increase with increase in A. . These five figures provide a
sampling of the types of behavior of the splittings that
may be exhibited by the potential (2).

In the shell model of the nucleus, the potential is be-
lieved to be intermediate between that of a three-
dimensional harmonic oscillator and a square well.
More accurately, the nuclear potential is such that the
degeneracy of levels in the harmonic oscillator potential
is removed such that the level with the highest l value
lies deepest. Thus the ordering of levels in the shell
model is ls, lp, ld, 2d, 1f, 2p, lg, 2d, 3s, . . . . Exactly
such a result is obtained when we allow A. in the poten-
tial (2) to be negative. Two typical sets of results are
shown in Table III. These results and those for other
negative A values suggest that with a suitable choice of A,

and g values, Eq. (2) may closely approximate the nu-
clear potential. This possibility is being pursued.
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