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Inertial response to nonstationary stimulated Brillouin backscattering:
Damage of optical and plasma fibers
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Nonstationary stimulated Brillouin backscattering of a laser pump wave, exhibiting nonlinear

pump depletion when propagating in a long material medium {optical or plasma Aber), generates
strong acoustic field modulation combined with amplification and compression of the backscat-
tered wave. The complete evolution equation for the sound wave {without the envelope approxi-
mation) is needed for describing the inertial response of the material. The strong sound pressure
produced may explain the observed damage and even the mechanical fracture of an optical fiber

supporting high laser Aux intensities. This effect can be important too in laser electron accelera-
tors using plasma fibers, and in laser-plasma interaction experiments on inertial fusion devices,
where a long-scale-length plasma surrounds the target.

In laser-rnatter interaction experiments, a problem of
importance is stimulated Brillouin (back)scattering (SBS)
of the incident pump wave, since this effect is capable of
reflecting a large fraction of the laser energy. SBS is one
of the most important nonlinear phenomena which limit
the intensity of a laser pulse propagating along an opti-
cal or a plasma fiber: The coupling of the electromag-
netic (em) pump wave with the thermal acoustic fluctua-
tions of the medium stimulates light reflection. A large
amount of literature is devoted to SBS in laser-plasma
interaction problems, mainly in order to avoid stimulat-
ed reflection in inertial fusion devices. ' More recently,
several experiments and theoretical studies have been
done on SBS in monomode optical fibers. This pro-
cess is so efficient that it has been conjectured in the
pioneering paper of Kroll that it could cause the
mechanical fracture of the optical material. In a recent
paper one of the authors has studied the nonstationary
SBS evolution governed by the nonlinear three-wave
coupling equations within the envelope approximation.
An initial electromagnetic wave packet grows backward
at the expense of a constant input pump wave. For long
interaction times the backscattered wave envelope exhib-
its a set of large peaks of decreasing amplitude, the in-
tensity of the first one growing like t while its width
shrinks like 1/t. However, the sound-wave amplitude
saturates at a low level. The mechanical effects on opti-
cal fibers could be due to the strong compressed back-
scattered em peak.

In this paper, however, we look for the same nonsta-
tionary problem but without the envelope approximation
for the acoustic field evolution equation, because the
characteristic evolution time ~ for the sound amplitude
can be of the same order as co,

' (where co, is the sound
or the ion-acoustic frequency) for high em flux intensi-
ties. Now the acoustic field amplitude generated by the

SBS interaction is much greater and strong acoustic field
pressure can directly explain the observed damage and
even mechanical fracture of an optical fiber supporting a
large laser pulse. It can be also a disadvantage in laser
accelerators using plasma fibers. '

The nonlinear equations governing coherent SBS in
plasmas" or in optical media ' ' concern three cou-
pled waves having some damping y;. In one-
dimensional material media of density p and dielectric
permeability e, we can write

(B,+2@,at —c B„)E,= —B,[(Be/Bp)p, E ],
(a', +2l,at c'a'„)E—, = a', [(ae/—ap)p,*E,],
(a, +2@,at —c, B„)p,=p e (Be/Bp)a„(E,E* ) . (3)

The forward em (pump) wave E, (x, t) exp[i(k&x co&t)]-
and the backward em (Stokes) wave E2(x, t)
X exp[ —i(kzx+co2t)] couple together through the en-
ergy (or frequency co;) and momentum (or wave vector
k; ) conservation laws for resonant interaction

(4)

giving rise to the ponderomotive force which acts on the
acoustic wave density p, (x, t) exp[i(k, x co, t)]. Equa-—
tions (l) —(3) apply to optical material where the pon-
deromotive force is the electrostriction pressure. ' In
plasmas it is due to the electron response to the Miller
force. '

Until now almost all the literature devoted to SBS in-
troduces the envelope approximation for the waves: The
complex amplitudes E], E2, and p, are assumed to be
slowly varying so that in the development of the second
derivatives,

0, ~ + 2l Q7& 0, +0, —co&
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a.' *2ik,a, +a,' —k,', (6) [1+ia(B, +2p)]B,E, =E,Ez p—E, . (12)

only the first derivatives with respect to time and space
are retained. This is a good approximation for the em
waves since their frequencies co~ are high compared to
the nonlinear time variation 8, of the amplitude, but it
can be unfortunate for the acoustic wave amplitude evo-
lution. Indeed, the elastic response time u, ' of the ma-
terial can be greater than the nonlinear characteristic
time ~, which measures the inertial response time, and
the dynamics associated with the second time derivative
must be considered. Therefore, we shall only take the
envelope approximation for describing the em wave evo-
lution, by neglecting the second derivative term in the
right-hand side of expressions (5) and (6), but we retain
all the terms of (5) and (6) for the sound equation (3).
The electrostatic field E, associated with the sound am-
plitude p, is given by p, =o.E„where
o =(pon eo/2cc, )', po is the unperturbed density, eo is
the vacuum dielectric constant, n is the refractive index,
c is the light velocity, and c, is the sound velocity. We
write Eqs. (1)—(3) in dimensionless form after introduc-
ing time ~= 1/XE~ and length A =c~ scales, where
K=(eoc/2poc, )' (mnp i.2/A, ) is the SBS coupling con-
stant for optical materials, p, 2 is the elasto-optic
coefficient, A. is the laser wavelength, and E~ is the input
amplitude of the pump E &. Changing
(E; ~E; /E~; t ~ t /r = tKE~;x ~x /A =xKE~ /c ), and
introducing e=c, /c, p=yr=y/KEz, and a coefficient a
(proportional to the em pump field E~), which measures
the rate of the inertial to the elastic response,

1/2
1 P&2

(7)
8 P )

KEp

2Q)

n &oc

3/2
a=

267~ V

Eqs. (1)—(3) yield

(8, +B„)Ei—— E2E, , —

(8, —8 )E2 EiE,*, —— (9)

Here, n is the electron density, n, = 10 '
~

A, /( 1 pm ) )
is the critical density, N is the Aux intensity, and T, is
the electron temperature.

We can observe that e in a fiber is very small
(e= 10 ) and we shall again consider the problem
where the velocity of the sound wave is neglected with
respect to the counterpropagation light speed c. For a
plasma, this approximation is much more stringent since
E- 10 . Equation (10) yields

[(1+2iap)i3, +EB +ia(B, —e 8„)+p]E,=E,E2 . (10)

In order to compare the SBS eff'ects on optical material
with respect to underdense plasmas (n &n, ) satisfying

y, &&co, (ZT, &&T; ), let us take the SBS growth rate
ys =r ' for plasmas of mean charge (Z) and mean
atomic number ( 2 ), ' which gives for the coefficient
a=(2', r) '=ys(2', ) '=a~ the value

(n/n, )'~ [@/(10' W/cm )]'~ [k/(1 pm)]
a =0.53

[T, /(lkeV)] i ((Z )/( 2 ) )'i

For numerical calculation it proves useful to introduce
the variable change (x —+x+t;t —+t) into Eqs. (8), (9)
and (12) in order to follow the dynamics around the
front of the backscattered wave E2. In terms of these
new variables and introducing the auxiliary function
G, =B,E„we have

(8, +28 )Ei —— E2E,—,

a,E2=E,E,',
(a, +a, IE, =G, ,

ia(B, +B„)G,=E~E2 —G, p(E, +—2iaG, ) .

(13)

(15)

(16)

Equations (13)—(16) are four partial differential equa-
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FIG. 1. (a) Spatial distribution of the field amplitudes in the
reference frame of the backscattered wave E2, at time t=40,,
for a=1 and p=0; {b) polar representation of the pump field

E& varying x in the interval (0,20); the phase turns very rapid
during stage III, stops at x =10, and then turns in the opposite
sense more slowly; (c) same for the backscattered field E2, (d)

same for the acoustic field E, which shows the slow periodical
motion, and (e) for field G„which presents a harmoniclike be-
havior.
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tions (PDE) for the complex amplitudes E; and G;,
yielding eight PDE which couple together real and imag-
inary parts, or amplitudes and phases. In the already
considered three-wave envelope problem the phases of
the complex amplitudes E; were time and space indepen-
dent except for sudden m shifts which appear when the
fields vanish. Then the problem was reduced to study
three PDE for the real part of E;. Now the phases are
no more constant and they play a nontrivial role in the
evolution, as we shall see, even if the amplitudes are cou-
pled to linear relations between the phases and are in-
dependent of the initial phases. For the numerical in-
tegration of Eqs. (13)—(16) we use a similar four-step
Runge-Kutta algorithm such as that of Ref. 8 (Appendix
B). In this initial-boundary-value problem we assume
E)(O, t) =1, E2(O, t) =E, (O, t) =G, (O, t) =0, E, (x, O)

E x
, x, =, and we take as initial condition for

z(x, O) a support of maximum amplitude 0.1 and width
20
3

and having a lower bound(x=0)where E&(0,0)=0
The results are plotted on Figs. 1 —3. We need strong

laser Aux intensities in order to have a not very small
inertial coe%cient n. For these field intensities 1nsi ies p«
and we are concerned with the nondissipative problem
(p, =O). Figure 1(a) shows the spatial distribution (in the
reference frame of the backscattered wave E2 ) of the
pump wave amplitude

j
E, (x, t), backscattered wave

amplitude
j
E2(x, t) j, and acoustic wave amplitude

j E, (x, t)
j

at time t =40, for a=1. We can distinguish
four regimes starting from the low boundary (x =0).

(I) Convective rapid growth of the backscattered field

E2 with less rapid growth of the acoustic fields E, and
G„while the pump field E& remains constant.

(II) Saturation of the backscattered field amplitude

j Ez j
accompanied with pump depletion while the

acoustic fields continue to grow.
apid modulation of the electromagnetic ampli-&III~ R
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FIG. 2. Spatial distribution of the field amplitudes in the
reference frame of the backscattered wave E2, at time t =40
and p=O: (a) for a=0.2 and (b) for a=0.5. After the
amplification regime (II), the em field amplitudes show a sto-
chastic behavior.

t
FIG. ~G. 3. For different values of coefticient a, plot of the time

dependence of the first peak maximum: (a) of the backscat-
tered field amplitude

j
E2

j ~» for @=0and (b) of the acoustic
field am litudep

'
~~ E, ~~,„. In (b) the upper (solid) curves corre-

spond to the nondissipative case (p=0), the dashed curve to a
dissipative case (p = 1), and the bottom curve to the three-wave
envelope model (Ref. 8) (a=O) where saturation occurs at the
amplit. ude &2.
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tudes and phases [cf. Figs. 1(b), and 1(c)] while satura-
tion of the acoustic fields E, and G, occurs.

(IV) Periodical regime for the acoustic modulation [cf.
Figs. 1(d) and l(e)]; the dimensionless wavelength is sim-

ply given by A,, =a as we can infer from comparison of
Fig. 1(a) and Figs. 2(a) and 2(b), which shows the spatial
distribution for a=0.2 and 0.5. The electromagnetic
modulation becomes much smaller and presents a sto-
chastic behavior for lower a as shown in Figs. 2(a) and
2(b).

After a transient stage, the sound-wave train, which
moves oft the Ez front at velocity c, becomes stationary
in the reference frame of Ez, only increasing its ampli-
tude with time ( ~ t, with 0& v & 1). For p=0, we can
look for a solution G, of Eq. (16), of the form

G, =It
~
G, (x)

~ I exp[i(x/a)], (17)

where the slowly varying amplitude I
t"

~
G, (x)

~ I grows
during regimes (I)—(III), reaching a nearly constant
value, as we can see in Fig. 1(a). For t »1 its value is
well given by

( i /a)—f EiE& exp[ i(x—'/a)]dx',
0

because the integrant function E&Ez is concentrated
around the maximum of Ez and besides becomes very
small, yielding for

~
G,

~

the almost constant value ob-
served after its maximum, as we can see in Fig. 1(a).
From Eqs. (15) and (17), the periodical behavior of the
acoustic field is given by

three-wave envelope problem already considered, where
saturation occurs at the low-level amplitude V2 (mea-
sured in units of E~ ).

For optical materials we observe, from expression (7),
that the inertial coefficient a is independent of the laser
wavelength. Let us consider an optical fiber of fused sili-
ca with p&z

——0.286, n =1.44, c, =5.96)&10 ms ', and

po ——2.21&10 kgm . We obtain a=1.8&10 ' Ep,
which is of the order of unity (i.e., inertial action compa-
rable to elastic action) only for strong field strength, say,
a=0.2 for Ez ——10 V/m. As we can see in Fig. 3, at
time t =40 [corresponding to an interaction length
L;„,=40nc(KE~) '=0.5 m for a laser of wavelength
X=1.06 pm and coupling constant K=36.5], we have
E, =5 (i.e., E, =5E&). Therefore, the pressure's ampli-
tude of the sound wave is p, =p, c, =crE,c, =200 bars,
which is comparable to the fracture pressure pf of the
fiber (pf —500 bars), though lower than the backscat-
tered radiation pressure p„=eo ~Ez

~

. The total laser
power I'L per cross-sectional area S corresponding to
this pump field is PL /S =(neoc/2)

~ E~
~

=2X 10"
W/cm . This high-Aux intensity launched into the fiber
may overpass the damage threshold and can be respon-
sible for its mechanical fracture. For a plasma fiber irra-
diated with a laser of same wavelength A, =1.06 pm but
much more higher-Aux intensity, +=10' W/cm, we
have values for the inertial coefiicient a, from (11), as
great as a =5. Now the strong acoustic field
amplification shown in Fig. 3(b) takes place for interac-
tion lengths as short as I;„,=40c/yz -0.3 mm.

E, = iat'
~
G,

~ I
—exp[i(x/a)+1]I (18)

We shall develop elsewhere the asymptotic treatment
of Eqs. ( 13 ) —( 16 ) which takes into account the growing
of

~
Ez ~,„with time as in the three-wave envelope

case [cf. Fig. 3(a)], and now also of
~
E, ~,„, as shown

in Fig. 3(b). The bottom curve of Fig. 3(b) shows the
evolution of ~E, ~,„ for a=O, corresponding to the
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