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In several perturbative calculations, such as the Lamb shift and decay of positronium into two

photons, it is necessary to calculate the wave function of the S state, or the first derivative of the P
state, etc. at the origin. This value diverges for the Dirac-Coulomb wave function. A method sug-

gested by Bethe and Salpeter is used and the result is obtained in analytically closed form. For the
hydrogen atom in the ground state (1S&~z ) our result for u (0) is equal to the traditional result, cal-
culated by using the nonrelativistic Schrodinger wave function, multiplied by a factor slightly
greater than unity, 1.000118. For the 2Slq2 state, the multiplication factor is 1.0000041.

I. INTRODUCTION

vr= p+e A/c,
cr; = —i ak at (i, k, l =cycl. perm. 1,2, 3 ) .

(1.2)

(1.3)

For small distances of r, the eP term on the denomi-
nator of (1.1) is quite large, and one has to replace u (0)
by the integral

In several perturbative calculations, it is necessary to
use the wave function of the bound state, either in an
atom or in positronium, at the origin. Practical cases in
physics are the Lamb shift and the decay of positronium
into two photons. In the latter case, one also needs to
obtain the first derivative of the wave function for the p
state, the second derivative of the d state, etc. at the ori-
gin. In all these cases, if the Dirac-Coulomb equation is
used, the result diverges. Therefore so far only the non-
relativistic Schrodinger wave function has been used for
these results.

This difficulty was recognized by Bethe and Salpeter'
and explained as follows. The exact relation for the
operator a acting on the bound state wave function u is

C
QQ = [sr+i mXtT+ m.c (1—/3)a]u,

mc +E +e i'
where

they did not calculate the exact value in Eq. (1.4).
In a previous paper, Wong and Yeh have obtained a

simplified solution to the Dirac-Coulomb equation, a re-
sult subsequently confirmed by Su. We use this solution
for u (p) in Eq. (1.4) and find that the integral in Eq.
(1.4) can be expressed analytically in terms of incomplete
I functions. Thus we are able to obtain an exact value
for the bound-state wave function at the origin using the
relativistic Dirac-Coulomb equation. Moreover, we find
that our result di6'ers from the standard result by a fac-
tor which is extremely close to unity. For the 1S&&2

ground state of hydrogen, our factor is 1.000118. For
the 2S&&2 state, it is 1.0000041.

II. ANALYTIC EVALUATION
OF THE DIRAC-COULOMB WAVE FUNCTION

AT THE ORIGIN

In this section, we give the analytic evaluation of the
value in Eq. (1.4) using the Dirac-Coulomb wave func-
tion. We shall only give the results for the S state. It is
obvious how one can use the same procedure to obtain
the first derivative for the p state, the second derivative
for the d state, etc. Using the notation of Ref. 2, we
have

Z 2

u (pp) = —J dp 1+
0 2p

u (p),d
dp

(1.4)

1=0, j = —,', co= —1,

ZZa2)1/2 g ( 1 Z2 2)1/2

(2.1)

(2.2)

where p is the radial distance in atomic units. Bethe and
Salpeter then indicated that the error committed when
one replaces the Dirac wave function by the Schrodinger
wave function is of the order (Za) ln(Za). However,

p, =(m E), =A, +1+—n„
2 2 1/2

p)

(n„=0, 1, . . . ), (2.3)
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' 1/2
Z A1+

[(1—Za )' +n ]

(2.4) with

p =2p]r (2.7)

The large component QI is then
1/2 —1/2

&s (2.5)

For the 1S]/2 ground state, the radial wave function u is

u =ce "(2r), c =2 ~ [I (2A, +2)] ' (2k+2)

(2.8)

)&p e ~~,F, ( n„—, 2k+2,, p), (2.6)

where Rz is the normalized Schrodinger wave function
with A, replacing I, and p, replacing Z/n E.xplicitly,

&s —[I (2A, +2)] '(2p, ) [I (n„+2k, +2)]'
&& [2(n„+k,+1)I (n„+1))

where

c =2.0000492 for Z =1 and A, =0.00002664 .

Then Eq. (1.4) becomes

(2.9)

Za2 2 2 —2 2 2 Zcxu~(po)= c I (2—2y, Za )I (2y —1)(2y —2)e (Za ) ~ —c I (1—2y, Za )1(2y)e (Za ) ~

where y =
~ y ~

and
—X g a

I (a,x)= I e 't' 'dt= f dt
x 1(1—a) 0 x+t

(2.10)

(2.1 1)

is an incomplete I function.

For the hydrogen atom in the 1$&&2 state, we find that u (po) is equal to the Schrodinger result u (0) multiplied by
a factor 1.000 118.

For the 2S&/2 state, a similar calculation has been made. We shall give only the final result

u (po)=(2y —2)e "x " I (2y —1)I"(2—2y, x)+(1—3y)y 'e x ~ 'I (2y)I (1—2y, x)
+(3/2y)e x I (1+2y)I ( —2y, x)—(4y ) 'e x2~+'I (2+2y)I ( —2y —l,x)

where

x = 1.000 000 684Z a /2 .

Compared to the Schrodinger result, the multiplication factor is 1.000004 1.

(2.12)

(2.13)
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