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The phase diagram of a system of hard parallel spherocylinders with length-to-width ratios L /D
between 0 and op is investigated by Monte Carlo simulation. In addition to a low-density nematic
phase and a high-density crystalline phase, two phases with partial translational order are ob-
served, viz. , a smectic phase and a columnar phase. By computing the absolute free energy of all

phases, their range of stability and coexistence points are determined. For L/D ratios exceeding
0.5, a stable smectic phase is formed at densities well below the thermodynamic melting point.
The nematic-to-smectic transition appears to be continuous. A columnar phase is only observed
for L/D& 3 at densities intermediate between the smectic and crystalline phases. The smectic-to-
columnar transition is first order for L/D (5. In the limit L/D —+ oo this transition becomes con-
tinuous.

I. INTRODUCTION

Computer simulation is a powerful tool to investigate
the thermodynamic properties and phase transitions of
classical many-body systems. Simulations of well-defined
microscopic model systems make it possible to establish
the relation between thermodynamic behavior and in-
teraction potential. A classical example is the molecular
dynamics study by Alder and Wainwright' of the equa-
tion of state of hard spheres. These simulations showed
that a liquid-solid transition can take place in a purely
repulsive hard-core system. The precise location of the
melting transition was subsequently determined by Ho-
over and Ree, who computed the absolute free energy
of both phases. Such simulations are interesting for
three reasons. First of all, they demonstrate the possibil-
ity of crystallization of a concentrated hard-sphere fluid.
But, in addition, they also provide "exact" numerical
data to test approximate theoretical expressions for the
equation of state or statistical mechanical theories of
the melting transition. And finally, they allow us to
gain a better understanding of the formation of real crys-
tals, e.g., colloidal crystals in dispersions with short-
range repulsive interparticle interactions. '

The hard-sphere model has turned out to be a useful
reference system for simple (atomic) fluids and sterically
stabilized colloidal dispersions. It is, however, less well
established to what extent hard-core models can help us
to understand the phase behavior of systems where the
interactions are no longer spherically symmetrical. In
such systems, the ordering of translational and orienta-
tional degrees of freedom need not take place simultane-
ously. In principle, one or several partially ordered
mesophases may form between the low-density isotropic
fluid and the high-density solid. These liquid crystalline
phases are characterized by long-range orientational or-

der, possibly in combination with one- or two-
dimensional translational order. In the absence of exact
numerical results, the role of excluded volume effects in
stabilizing the different liquid crystalline phases is still
an open question.

At sufficiently high concentrations, colloidal solutions
of rodlike ' or platelike particles undergo a first-order
transition from the isotropic phase to a nematic liquid-
crystalline phase. The latter is characterized by orienta-
tional order of the dispersed particles along a preferred
direction. In 1949, Onsager' explained this phase tran-
sition as the result of the competition between the orien-
tational entropy and the entropy effect associated with
the orientation-dependent excluded volumes of hard an-
isometric particles. Recent computer simulations on
infinitely thin hard platelets" and hard ellipsoids of revo-
lution' confirm the importance of excluded volume
effects in the formation of nematic phases in simple
model systems.

In some colloidal dispersions it has been observed ex-
perimentally that upon further increasing the density of
the nematic phase, a smectic-A phase is generated by the
onset of a one-dimensional density modulation along the
direction of alignment. As the translational degrees of
freedom perpendicular to the preferred direction are not
affected, the structure within the layers remains liquid-
like. Following the seminal work of McMillan, ' the sta-
bility of such a layered structure is often attributed to
the action of attractive forces. The loss of translational
entropy involved in the layer formation is then compen-
sated for by the associated gain in internal energy. More
recently, Kloczkowski and Stecki' proposed a more de-
tailed molecular model where hard-core repulsions,
treated along the lines of the Onsager theory, as well as
center-to-center attractions are taken into account.
Their results illustrate, again, the essential role of hard
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repulsions in stabilizing the nematic phase. However,
these authors conclude that hard-core repulsions cannot
explain the formation of the smectic phase. In fact, they
state that "no smectic-2 phase should ever be formed in
systems of hard convex bodies. " This statement seems
to be supported by Dowell's' lattice model for systems
of hard rods with two semiAexible tail chains. In the
latter model, the stability of the smectic phase is due to
the difference in steric packing between the rigid cores
and the semiflexible tails. Inevitably, the smectic phase
becomes intrinsically unstable in this model when these
differences vanish by shortening the chains or by making
them less flexible.

There is, however, experimental evidence that smectic
ordering can occur in colloidal systems even under con-
ditions where the colloidal particles have short-range
repulsive interactions (e.g., /3-FeOOH sols' ). Theoreti-
cal evidence for the possible existence of hard-core smec-
tic phases has been presented by Hosino et al. ' Howev-
er, the approximate nature of the theoretical description
used in Ref. 17 does not rule out the possibility that the
hard-core smectic phase predicted by Hosino et al.
would disappear if a more rigorous approach were used.

Computer simulations on nonspherical hard-core mod-
el systems can help us to gain insight in the role of ex-
cluded volume effects in stabilizing a smectic phase and,
more generally, any liquid-crystalline phase with parti~1
translational order. As we want to focus on the
density-induced freezing of the translational degrees of
freedom, we eliminate the orientational degrees of free-
dom by artificially aligning the particles along the z axis.
Parallel ellipsoids of revolution with eccentricity x,
which are actually the simplest nonspherical hard-core
particles, can be mapped onto hard spheres' by scaling
all z coordinates with a factor 1/x.

Consequently, we immediately turn to "second-
choice" particles, i.e., spherocylinders consisting of a cy-
lindrical segment of length L and diameter D capped at
each end by a hemisphere of the same diameter. The
shape is determined by the length-to-width ratio L/D.
No scaling procedure exists which transforms a system
of parallel spherocylinders to hard spheres, while leaving
the partition function invariant. We therefore investi-
gate the phase behavior for L/D =0.25, 0.50, 1, 2, 3,
and 5 by Monte Carlo simulations. The computational
techniques used to obtain the equation of state and the
absolute free energy of all phases, are outlined in Sec. II.
The different phase transitions which we observe in our
model system are discussed in Sec. III. The phase be-
havior in the limit I /D =0 is established by the data of
Hoover and Ree on hard spheres. In Sec. IIID we
present data pertaining to hard parallel cylinders which
provide information about the behavior in the limit
L/D~ ~. In Sec. IIIE we finally construct the phase
diagram of hard parallel spherocylinders with L!D ra-
tios between 0 and ao.

II. COMPUTATIONAL TECHNIQUES

A. General aspects

In this section we give a survey of the numerical
methods used to construct the phase diagram of the

hard spherocylinder model system, i.e., the equation of
state and absolute free energy of all Quid and crystalline
phases. Most of the Monte Carlo simulations reported
below were performed on systems of N =90 particles us-

ing periodic-boundary conditions. In some cases larger
systems with up to X= 1080 particles were simulated in
order to check that the observed long-range correlations
did not depend strongly on system size. We did not,
however, carry out a systematic study of the system-size
dependence of our results in all cases. All results
presented below are expressed in the following reduced
units: the density p=Nvo/V where vo is the molecular
volume; the density p*=p/p, z relative to the density of
closest packing p,~,

' the pressure P* =PUO/kT; the chem-
ical potential p =p /k T; the nth virial coefficient
B„*=B„/B2 ' scaled with respect to the second virial
coefficient B2.

B. Monte Carlo method

In order to determine the equation of state of the Quid
and crystalline phases, we performed simulations using
the constant-pressure Monte Carlo (MC) method. ' '

For our purpose, this method has obvious advantages
over the constant-volume MC method. In the latter
technique, knowledge of the value of the pair distribu-
tion function of hard-core particles at contact is required
to compute the pressure. In the isothermal-isobaric X-
P Tensemble t-he volume (and. hence the density) is ob-
tained directly as an ensemble average. Moreover, a
constant-P MC program is easily transformed into an
isotropic-stress MC program ' which allows us to study
solid phases where both the shape and the volume of the
crystal unit cell can change with pressure. As the
Metropolis sampling scheme is now applied to each box
edge independently rather than to the box volume, the
crystal unit cell is allowed to relax to its equilibrium
volume and shape. This is important for the free energy
computation of the solid phase because any residual
stress in the crystal may result in a significant increase in
free energy.

The first step in the Monte Carlo simulations is the
preparation of an acceptable initial configuration. Our
systems were prepared by placing the spherocylinders
with length-to-width ratio L /D on a regular close-
packed lattice which was generated by distoring a face-
centered-cubic lattice along its [111] axis by a factor
(1+L/D). This procedure implicitly assumes that the
structure of a spherocylinder crystal is analogous to the
regular close-packed structure of hard spheres. Howev-
er, at lower densities this initial structure may, and in
some cases does, transform to other (liquid-crystalline)
structures. As the space-filling properties of the cylin-
drical and hemispherical parts of the spherocylinder are
quite different, the density of closest packing turns out
to be L/D dependent and ranges from p,p 0 7405 for
the case of hard spheres (L/D =0) to p, =0.9069 for
hard cylinders (L/D~co). An initial configuration for
the generation of the Quid state points was obtained by
expanding the close-packed structure to densities of ap-
proximately 25% of close packing, where it rapidly melt-
ed to form a translationally disordered nematic Quid.
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Subsequent runs were always started from previously
equilibrated configurations at higher (solid state points)
or lower (Quid state points} pressure.

A cycle of a MC run in the N-PT ensemble consists of
attempting to change the center-of-mass coordinates
(x,y, z) of every particle once by adding random numbers
(b,x, by, b,z), followed by an attempt to change the box
volume V with a randomly chosen amount AV. The
magnitudes of these trial moves were such that typically
30% of the particle displacements and volume changes
were accepted. A typical run consisted of 10 to 2)&10
such cycles, excluding equilibration. The relative error
in the volume (or equivalently density) is of the order of
l~o. Some runs, especially in the vicinity of a phase
transition, were much longer. Nevertheless, the large
pretransitional fluctuations resulted in a loss of accuracy
(relative errors of 3 —5%%).

We also computed the first five virial coefficients of
the Quid branch, which allows us to test the low-density
MC results. In fact, only the virial coefficients 3 —5 had
to be evaluated by Monte Carlo, using the diagram tech-
nique developed by Ree and Hoover. As in the case of
hard spheres, the second virial coefficient equals four
times the molecular volume.

C. Free-energy computations

Knowledge of the equation of state of the Auid and
solid phase does not suffice to locate a first-order Auid-
solid phase transition. The reason is that, in a finite
periodic system, the Quid can be overcompressed and the
solid overexpanded appreciably. As a consequence the
densities of the coexisting phases cannot be determined
directly. To locate the Auid-solid tie line, the absolute
Helmholtz free energy of both phases must be computed.

The free-energy computation of a Quid phase at any
density p poses no particular problem. The free energy
per particle (expressed in units kT) is simply the sum of
an ideal and an excess contribution. The latter corre-
sponds to the difference between the free energy of the
Quid at density p and that of an ideal gas at the same
density,

F(p) Ftdeal gas P p p „ dp
Nkr

=
NkT 0 p'

where H0 is the Hamiltonian of the unconstrained hard-
core solid and (r; —r;) the displacement of particle i
from its lattice site. A, „is the harmonic spring con-
stant of the Einstein crystal. For sufficiently large values
of A, ,„, the partition function Q~'"" (A, ,„) is approxi-
mately equal to the partition function of a perfect Ein-
stein crystal. This approximation becomes rigorously
exact in the limit A, ,„~oo where all particle interac-
tions are prevented by the infinitely strong constraints,

3(N —1)/2

g Einst( g ) N —3/2 (4)
max

The free energy of our unconstrained hard sphero-
cylinder solid with A, =O reads

F~(A, =O)
iVk T

F~E'""(x .„) AFMc

XkT NkT
lnV

The third term in Eq. (5) takes into account that both
FN'"" and hFM& are computed in a fixed center-of-mass
system where the free energy per particle is (lnV/N)
higher than in an unconstrained system. AFMC is the
difference in free energy per particle between the in-
teracting Einstein crystal with A, =A. „and the solid un-
der consideration,

n —1

Ca y & l
( l)n —k —14k' a

k=0

In our case however, we use the y expansion simply as
an efficient way to parametrize the MC data. The num-
ber of terms (m) was fixed by the requirement that in-
creasing I did not significantly lower the 7 of the fit.

The absolute free energy of the solid phase is comput-
ed by using the Einstein crystal method described in Ref.
24. This method is similar in spirit to the one used to
obtain the free energy of a Quid by constructing a rever-
sible path to the ideal-gas reference state, the free energy
of which is known. Similarly, we can construct a rever-
sible path from an arbitrary crystalline solid to an Ein-
stein crystal with the same structure. The Hamiltonian
of an X-particle Einstein crystal is

N
H(A, ,„)=HO+A, ,„g (r; —r;)

where P"(p') can be obtained by computer simulations.
To carry out the integration in Eq. (l), the P'(p') data
are first fitted to a convenient analytica1 form. We used
the generalized y expansion to fit our MC data,

aFMc= f0 t)A,

= f '"( X (r; —rr)r)rd). . (6)

P*(p')= Q C„*y",
n=1

where y =p'/( l —p'). Originally the y expansion23 was
proposed by Barboy and Gelbart. These authors ob-
served that for a number of hard-core fIuids, the y ex-
pansion converges more rapidly to the true equation of
state than the corresponding virial series. The expansion
coefficient C„ is related to the n first virial coefficients

]& 2& & n&

In order to obtain the mean-square particle displace-
ments as functions of the spring constant A, , we have to
carry out additional MC simulations. The integral in (6)
was evaluated by 10-point Gauss-Legendre quadrature.
At each integration point, we performed a MC run of
10 trial moves per particle to obtain the mean-square
particle displacements with sufficient accuracy.

Combining the data on the equation of state and the
absolute free energy, we can locate the points where the
pressure P and the chemical potential p=(F+PV )/N of
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two phases are simultaneously equal. The densities of
the phases in thermodynamic equilibrium are determined
by solving the coexistence equations using an iterative
numerical method.

III. RESULTS

A. General aspects

Figure 1 shows the equation-of-state data for hard
parallel spherocylinders with length-to-width ratios

I./D =0.25, 0.50, 1, 2, 3, and 5 as obtained by
constant-pressure or isotropic-stress Monte Carlo simu-
lations on systems of X =90 particles. The data points
have been collected in Tables I and IE. The five-term
virial equations of state, which are also displayed in Fig.
l, allow us to check the low-density behavior of the Quid
branch. The virial coefticients are collected in Table III.
The parameters describing the fits through the MC data
are shown in Table IV, whereas the results of the free-
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FICx. 1. Equation-of-state data of hard parallel spherocylinders with length-to-width ratios L /D =(a) 0.25, (b) 0.5, (c) 1, (d) 2, (e)

3, and (f) 5. The reduced density p*=p/p, p where p,~ is the density of closest packing and tQe pressure I'* =I'UolkT where Uo is

the molecular volume. Open circles, low-density Auid branch; open triangles, solid branch; plusses, columnar branch (L/D =5);
solid lines, five-term virial series; dashed lines, fits through the MC data.
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energy computations are compiled in Table V.
In order to monitor the local structure of the hard

spherocylinder Quid and, more specifically, to detect the
possible onset of translational order, we computed
different components of the orientationally averaged pair
distribution function g2 ( r ). In particular, we collected
the longitudinal correlation function g~~(z) and the trans-
verse correlation function g~(r~). The reason to monitor
g~~(z) and g~(rj ) separately is that they are sensitive
probes of translational ordering respectively parallel and
perpendicular to the direction of molecular alignment
(the z axis). In contrast, the usual pair distribution func-
tion gz(r) is sensitive to three-dimensional crystalline or-
dering. Unlike g2(r), g~~(z), and g~(r~) need not go to
zero as the argument approaches zero because these
functions describe correlations in the particle positions
projected along the z axis and in the xy plane, respec-
tively.

A first inspection of Fig. 1 reveals a strong L/D
dependence of the general behavior of the equations of
state. We notice, for instance, in the L/D=5 system,
the existence of an additional third branch intermediate
to the low-density Quid and the high-density solid. The
corresponding phase is discussed in Sec. III B. For
spherocylinders with L/D &0.5, the five-term virial ex-
pansion accurately represents the low-density Auid state
points, but at higher densities it tends to overestimate
the pressure. This is quite unexpected because for
L/D &0.5 we find the normal hard-sphere behavior,
namely, that neglecting the sixth and higher contribu-
tions in the virial series results in an underestimation of
the pressure. On the basis of the equation-of-state data
alone it is impossible to tell what causes this unusual be-
havior. However, in Sec. III C we show that structural

data suggest that for L/D )0.5, a second-order phase
transition to the smectic phase takes place in the same
density range where the Monte Carlo pressure starts to
fall below the five-term virial series prediction.

Finally, for L /D =0.25, 0.50, and I, we observe spon-
taneous crystallization of the hard-spherocylinder fiuid.
Such spontaneous freezing upon compression is, in fact,
rather unusual for hard-core fiuids. The system com-
posed of spherocylinders with L/D=1 exhibits almost
no hysteresis at the fiuid-solid transition. This suggests
that, for this particular system, the limits of thermo-
dynamical and mechanical stability of the Quid and solid
phases nearly coincide. We can reversibly transform the
fiuid to the solid, and vice versa, by changing the pres-
sure by 0.1 in reduced units. Consequently, for this par-
ticular case, the limit of mechanical stability of the Quid
and solid phase provide an accurate estimate of the ther-
modynamic melting point.

B. The columnar phase

Spherocylinders with L/D & 3 exhibit a more compli-
cated phase behavior. For these systems, a third branch,
intermediate between the low-density Quid and high-
density solid, is observed (Fig. I). As we shall show
below, this branch corresponds to a columnar liquid
crystalline phase characterized by two-dimensional
long-range translational order. This additional phase is
obtained by expanding the initial fcc lattice, until
it melts at a density of approximately 80% of close pack-
ing. Subsequently, the newly formed phase can be
compressed appreciably without recrystallizing. Such
hysteresis is typical of a first-order phase transition. The
difference in structural properties of both phases can
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TABLE I. Equation-of-state data for the Quid phases of hard parallel spherocylinders with length-to-width ratios L/D =0.25,
0.5, 1, 2, 3, and 5. For the case L/D =5, column (a) gives the data for the low-density (nematic+ smectic) branch and column (b)
the data for the columnar branch. The density p =p/p, „where p,~ is the density of closest packing and the pressure p =puo/kT
where Uo is the molecular volume.

L /D =0.25
p g OfC

L/D =0.50
p Q )fC

L/D =1.00
p g

L/D =2.00
p )jC

L/D =3.00
p Q )fC

(a)
L/D =5.00

p g

(b)
L/D =5.00

p g )fC

0.5
1.0
1.5
2.0
2.5
3.0
3.S
4.0
4.5
5.0

0.257
0.356
0.419
0.467
0.500
0.536
O.SS6
0.581
0.598
0.621

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.1

4.2
4.3
44
4.5
4.6
4.7

0.257
0.350
0.416
0.462
0.503
0.526
0.552
0.578
0.590
0.601
0.615
0.602
0.604
0.613
0.618

0.5
1.0
1.5
2.0
2.5
3.0
3.5
40
4.5

0.246
0.346
0.409
0.454
0.491
0.525
0.571
0.586
0.624

0.5
1.0
1.5
2.0
2.5
3.0
3.S
4.0
4.5
5.0
5.5
6.a
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

0.239
0.337
0.401
0.452
0.500
0.534
0.560
0.588
0.615
0.631
0.658
0.664
0.680
0.701
0.704
0.716
0.728
0.737
0.742
0.750

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

0.237
0.329
0.393
0.459
0.499
0.522
0.567
0.597
0.615
0.627
0.656
0.672
0.681
0.695
0.710
0.723
0.729
0.739
0.745
0.752

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

0.235
0.327
0.391
0.444
0.484
0.530
O.S69
0.588
0.599
0.620
0.637
a.650
0.658
0.676
0.690
0.695
0.703
0.716
0.724
0.723

5.0
5.5
6.0
6.5
7.0
7.5
8.0
9.0

10.0
11.0
12.5
14.0
15.5
17.0
18.5
20.0
22.5
25.0
27.5
30.0

0.678
0.696
0.717
0.724
0.742
0.751
0.763
0.783
0.795
0.811
0.828
0.838
0.849
0.861
0.868
0.872
0.884
0.889
0.897
0.902

TABLE II. Equation-of-state data for the solid phase of hard parallel spherocylinders with length-to-width ratios L/D =0.25,
0.5, 1, 2, 3, and 5. Reduced units as in Table I.

L/D =0.25
p g

P

L/D =0.50
p +

L/D =1.00
p g

L/D =2.00
p CfC

L/D =3.00
p g )jC

L/D =5.00
p g

4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
9.0

10.0
11.0
12.5
14.0
15.5
17.0
18.5
20.0

0.644
0.679
0.699
0.718
0.735
0.748
0.7S7
0.770
0.780
0.790
0.819
0.831
0.847
0.863
0.876
0.885
0.892
0.903

4.2
4.3
4.4
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
9.0

10.0
11.0
12.5
14.0
15.5
17.0
18.5
20.0

0.643
0.650
0.654
0.660
0.688
0.707
0.734
0.742
0.758
0.766
0.779
0.800
0.815
0.832
0.846
0.861
0.873
0.886
0.893
0.898

4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0

0.650
0.676
0.705
0.723
0.732
0.754
0.759
0.767
0.785
0.794
0.802
0.814
0.820
0.837
0.847
0.858
0.865
0.870
0.880
0.886
0.889
0.895

5.0
5.5
6.0
6.5
7.0
7.5
8.0
9.0

10.0
11.0
12.5
14.0
15.5
17.0
18.5
20.0

0.679
0.694
0.708
0.725
0.739
0.755
0.764
0.785
0.805
0.817
0.836
0.851
0.864
0.870
0.885
0.894

5.0
5.5
6.0
6.5
7.0
7.5
8.0
9.0

10.0
11.0
12.5
14.0
15.5
17.0
18.5
20.0

0.673
0.696
0.712
0.713
0.737
0.739
0.762
0.784
0.802
0.816
0.831
0.851
0.860
0.871
0.885
0.889

14.0
15.5
17.0
18.5
20.0
22.5
25.0
27.5
30.0

0.844
0.855
0.869
0.883
0.889
0.901
0.910
0.914
0.919



36 EVIDENCE FOR ONE-, TWO-, AND THREE-DIMENSIONAL. . . 2935

TABLE III. Virial coefficients of hard parallel spherocylinders with length-to-width ratios
L/D=0. 25, 0.5, 1, 2, 3, and 5 as well as L/D =0 (hard spheres) and L/D~oo (hard parallel
cylinders). The virial coeffijcient B„*=B„/B2 ' is scaled with respect to the second virial coefficient

B2, which equals four times the molecular volume. In the case of the hard-sphere fluid, the third and
fourth virial coe%cient are known exactly (B3 ——0.6250; B4 ——0.2869) and the most accurately known
(Ref. 2) value of B5 ——0. 1100+0.0003.

L/D

0
0.25
0.50
1.00
2.00
3.00
5.00

B )fc

0.6249+0.0004
0.6235+0.0004
0.6204+0.0004
0.6140+0.0004
0.6059+0.0004
O.6O12+0.OOO4

0.5968+0.0004

0.2876+0.0006
0.2846+0.0006
0.2782+0.0007
0.2671+0.0006
0.2517+0.0007
0.2444+0. 0007
0.2362+0.0006

0.1100+0.0008
0.1072+0.0008
0.1008+0.0009
0.0908+0.0008
0.0750+0.0009
0.0686+0.0009
0.0618+0.0010

L/D~ oo 0.5858+0.0004 0.2179+0.0007 0.0479+0.0010

best be visualized by displaying gii(z) and g|(ri) (Fig. 2).
The absence of translational order in the z direction in
the columnar phase results in a liquidlike gii(z) correla-
tion function whereas the solidlike behavior of gi(ri)
rejects the two-dimensional crystalline order in the xy
plane perpendicular to the columns. Snapshots of typi-
cal molecular configurations clearly show order in the xy
plane and disorder along the z axis in the case of the
columnar phase (Fig. 3). Similar striking differences be-
tween gii(z) and gj(ri) were observed for all state points

on the two high-density branches for I. /D =5 in Fig. 1.
Although we have not performed a systematic analysis
of the statistical errors in the radial distribution func-
tions, the fact that different simulations of the same state
point always yielded indistinguishable distribution func-
tions suggests that these errors are less than or equal to
S%%uo. It should be noted that Fig. 2 was computed for
%=270 spherocylinders. We found the same behavior
for N =90. We stress, however, that the absence of a
noticeable system-size dependence for 90&%&270, al-

TABLE IV. Coefficients for the y-expansion fits to the Monte Carlo equation-of-state data:
P*=X„C„y"where y =p/(1 —p). The range of validity of the different fits is given in column 3. We
refer to Table III for the coefficients of the five-term virial expansion, which accurately represents the
low-density fluid state points. For L/D =0.25 and 0.5, the exact C& and C2 are used, which are re-
lated to the virial coefficients by C& ——B

&
and C2 ——4B2 —B

&
.

0.25

0.50

1.00

2.00

3.00

L/D
Phase

fluid
solid

fluid
solid

fluid
fluid
solid

fluid
fluid
solid

fluid
fluid
solid

Pressure
interval

0.0—5.0
4.0—20.0

0.0—4.7
4.2—20.0

0.0—2. 5
2.5 —4. 5
4.5 —20.0

0.0—1.5
1.5 —10.0
5.0—20.0

0.0—1.5
1.5 —10.0
5.0—20.0

Expansion
type

Y
Y

B
Y
Y

B
Y
Y

B
Y
Y

C )fc

1

4.331

1

4.893

0.302
4.125

2.313
2.814

2.376
3.254

C 5fc

3
—1.927

3
—2.223

6.971
—1.089

1.175
0.309

1.020
—0.028

3.596 —1.932
1.539

3.684 —2.882
1.253

—3.139
0.690

0.318
0.210

0.244
0.216

5.00 fluid
fluid
column
solid

0.0—1.5
1.5 —10.0
5.0—30.0

14.0—30.0

B
Y
Y
Y

2.141
0.402

—64.061

1.065 0.460
3.454 —1.358

60.059 —17.508
0.242
1.716

L/D —+ op fluid
fluid
column

0.0—1.5
1.5—3.5
3.5 —20.0

B
Y
Y

1.713 2.245
9.059 —10.190

—0.623
5.857 —1.373 0.118
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TABLE V. Contributions to the free energy of a solid phase (a) or a columnar phase (b) of hard
parallel spherocylinders with length-to-width ratios L/D =0.25, 0.5, 1, 2, 3, and 5 and L/D~ ao.
The computations were performed on systems of )V=90 particles. All contributions are expressed per
particle and in units kT. (a) F~(k,„)=Fz'""(A, ,„)—lnV/N: free energy of a noninteracting three-
dimensional Einstein crystal with spring constant A, ,„. b,FMc. Monte Carlo result for the free-energy
difference between an interacting Einstein crystal (A, =A, „)and the unconstrained solid (X=O) at the
same density p*. The spring constant A, ,„ is chosen sufficiently large to guarantee that the free-
energy difference between the interacting and noninteracting Einstein crystal is negligible. Fz(p ):
absolute free energy per particle of the N-particle solid at density p* [Eq. (5)]. (b)

F~(A, „)=F~'""(A, ,„)+ FM —lnA /N: contribution of the two-dimensional noninteracting Einstein
crystal and of the columnar fiuids to the total free energy F~(p* } of a columnar phase [Eq. (8)].

L/D ~max F~(A. ,„) EFMc F~(p*)

0.25
0.50
1.00
2.00
3.00
5.00

5.00
L/D~ oo

0.770
0.766
0.759
0.755
0.739
0.855

0.751
0.768

2000
2000
2000
2000
2000
6000

1000
1000

(a)

9.600
0.597
9.594
9.589
9.585

11.212

(b)

5.160
5.771

4.32+0.02
4.61+0.02
5.02+0.02
5.52+0.03
6.08+0.03
6.03+0.03

2.16+0.01
2.04+0.01

5.278
4.991
4.571
4.066
3.507
5.185

2.998
3.733

where L, is the length of the box edge along the z axis.
In the limit A, ,„~oo, the effective length L' of the rods
is given by L'=L+D.

Similar to Eq. (5) we write I'Jv per particle and in units
kT, as follows:

XkT XkT MkT
~FMC

ÃkT
in'

( )

where (in' /N) corrects for the use of a fixed center of
mass in the xy plane and F~ is the contribution to the
total free energy of the M-particle columnar fluids. The

though suggestive, should not be interpreted as solid evi-
dence for the absence of any dependence of the relative
stability of the crystalline and liquid crystalline phases
on the size of the system.

In order to locate the first-order phase transition from
columnar to crystalline phase, we use a modification of
the Einstein crystal method described above to compute
the free energy of the columnar phase. Io this case, we
use as a reference state a system where the particles are
ordered in the xy plane by harmonic springs A, ,„(two-
dimensional Einstein crystal), while they are free to slide
along the column axes. In the limit X „~oo, the
columnar fluids become effectively one dimensional be-
cause the constraints in the xy plane confine the centers
of mass of the particles to the axes of parallel columns.
The free energy of the latter system was evaluated
analytically by Tonks in 1936. Taking into account the
effect of periodic-boundary conditions, the expression for
the partition function of a M-particle one-dimensional
hard-rod fluid becomes

QM ——
,
L, (L, ML')'—1

spring constant 1, „ is chosen suSciently large to
guarantee that corrections to the partition function
Qiv'"" of the perfect two-dimensional Einstein crystal due
to lateral hard-core overlaps are negligible,

Ã —1

Q Einst( g ) ~—i (9)
max

The free-energy difference AFMc between the interacting
Einstein crystal Q, =A, ,„) and the unconstrained two-
dimensional solid (A, =O) is computed by MC simulations
[Eq. (6)].

The results of the free-energy computation of the
columnar phase for L /D =5 are shown in Table 5(b).

C. The nematic-smectic phase transition

As mentioned above, Fig. 1 shows that for sphero-
cylinders with L/D &0.5, a five-term virial approxima-
tion to the equation of state tends to overestimate the
pressure of the dense fluid. Closer inspection reveals
that, dependent on the L /D ratio, the equations of state
actually change slope at densities between 40/o and 60%
of close packing. We did not observe a similar behavior
in a fluid of spherocylinders with L/D =0.25. For the
latter system the pressure increases monotonically with
density. The presence of a change of slope for
L/D )0.50 suggests the possible occurrence of an (al-
most) second-order phase transition.

In order to gain some insight into the possible nature
of such a phase transition, we studied the behavior of
g~~(z) and gt(ri) at densities both below and above the
cusp in the equation of state. An example of the behav-
ior of g ~(z) and gi(ri ) is shown in Fig. 4. The correla-
tion functions correspond to a system of X =270 sphero-
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cylinders with L/D =5, at densities p*=0.24 (P"=0.5)
and p* =0.62 (P*=5.0), respectively. Unlike gt(rz),
which obviously remains liquidlike, g~~(z) is seen to de-
velop strong periodic oscillations characteristic for a lay-
ered structure. The absence of translational order within
the layers indicates that we are actually dealing with a

smectic- A phase. This is further corroborated by
snapshots of molecular configurations in Fig. 5. We
refer to Fig. 3 for comparison with a three-dimensional
crystalline structure. This structural information leaves
open the possibility that the observed layered phase is
actually a hexatic B rather than a smectic-2 phase. We,
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FICs. 2. Transverse correlation function gz(r&) and longitudinal correlation function g~~(z) corresponding to a system of 270

parallel spherocylinders with L/D =5, at densities p =0.75 [columnar phase (a)] and p =0.91 [solid phase (b)]. The liquidlike be-
havior of g~~(z) in the columnar phase reAects the absence of translational order in the direction of the particle axes. Snapshots of
molecular configurations of the system at the same densities are shown in Fig. 3.
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however, also observed that the bond-orientational
correlation function decayed within one molecular diam-
eter.

We found no hysteresis effects upon slowly compress-
ing and subsequently expanding the system in the vicini-
ty of the point p'=0. 56 where the one-dimensional den-

sity modulation sets in. This suggests that the nematic
phase is transformed into the smectic phase through a
continuous phase transition. At the transition we ob-
served the characteristic divergence of the peaks in the
longitudinal structure factor S(k, ), corresponding to
smectic Auctuations in the nematic quid. This efFect is
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FIG. 3. Snapshots of typical molecular configurations of a system of 270 spherocylinders with L/D =5. (a) Columnar phase
(p =0.75). (b) Solid phase {p*=0.91). The upper figures show a projection in the plane perpendicular to the molecular axes; the
lower figures show a projection in a plane parallel to the direction of alignment. The spherocylinders are indicated by a line seg-
ment of length L.
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shown in Fig. 6 where the inverse value of S(k,„) is

displayed as a function of the density. The wave vector
k, =k,„corresponds to the first maximum in S(k, ).
The position of the first maximum allows us to calculate
the periodicity d of the layered structure by d =2m. /k
and hence the number of layers that fits inta the box

(Fig. 7). It appears that as the system is compressed, the
number of layers varies from 11 at low densities to nine
at high densities (the latter number corresponds to the
number of crystalline layers that fits into the periodic
box), whereas the interlayer spacing remains approxi-
mately constant. This observation indicates that we are
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FICx. 5. Snapshots of typical molecular configurations of a system of 270 spherocylinders with L/D =S. {a) Nematic phase
(p*=0.24). (b) Smectic phase (p*=0.62). The upper figures show a projection in the plane perpendicular to the molecular axes;
the lower figures show a projection in a plane parallel to the direction of alignment. The spherocylinders are indicated by a line
segment of length L.
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0.5 well as the corresponding pressure and chemical poten-
tial, are collected in Table VII(a).

0.3

0.2

0.1

0.0 1 I

0.3
iliad« i I I I I i I

0.4 0.5 0.6 0.7

p/p
FIG. 6. Density dependence of the first maximum in the

longitudinal structure factor of parallel spherocylinders with
L/D =5. The ordinate shows 1/S(k „). In the dilute Quid,
this quantity approaches one. In a smectic phase it should
vanish in the thermodynamic limit. The present results apply
to a 270-particle system, hence 1/S(k „)) 1/270.

not dealing with residual crystalline order caused by in-
complete melting because in the latter case the number
of layers at low densities would also be equal to nine.
The density modulation is not affected by increasing the
system size from 90 to 1080 particles. Actually, the
peaks are even somewhat sharper in the larger systems.
This suggests that the observed effect is not an artifact
induced by the periodic-boundary conditions.

Applying a similar analysis to the systems with small-
er L /D ratios, indicates that a continuous nematic-
smectic phase transition occurs for all spherocylinders
with L/D )0.5. The change of slope of the equation of
state for L/D =0.50 is not visible because the nematic-
to-smectic transition is very close to the limit of mechan-
ical stability of the Quid. The transition densities, as

D. Phase behavior of hard parallel
spherocylinders in the limit L /D —+ ao

Hard parallel spherocylinders exhibit a strongly
L/D-dependent phase behavior which has to be attribut-
ed completely to the difference in packing properties be-
tween the cylindrical segment and the hemispherical
caps. The relative inhuence of the hemispherical caps
becomes gradually less important with increasing L/D
ratios and vanishes for spherocylinders with L/D~ oo.
The latter limit can be studied easily by computer simu-
lation, because the partition function of spherocylinders
in the limit L /D ~ oo can be transformed to that of cap-
less parallel cylinders of arbitrary length and diameter
D. The phase behavior of parallel cylinders is indepen-
dent of the value of L, because the latter merely fixes the
length scale along the direction of the particle axes. We
stress that this procedure is, of course, only valid when
the particles are perfectly aligned.

The equation of state for hard parallel cylinders is
displayed in Fig. 8. The data, which are also collected
in Table VI, were obtained by performing MC simula-
tions on a system of X =90 particles. We refer to Sec.
II for the computational details of the simulations. The
virial coeKcients of the low-density nematic branch are
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FIG. 7. Density dependence of the number of layers in a

system of 270 parallel spherocylinders with L/D =5. The
number of layers is defined as the number of oscillations of the
largest longitudinal Fourier component in the periodic box,
k „L,/2~. Note that the number of layers changes on
compression.

FIG. 8. Equation of state of hard parallel spherocylinders in
the limit L/D~m. Open circles, MC data; solid line, five-

term virial series; dashed lines, fits through the MC data. Note
the change of slope at p*=0.39 and p =0.56, corresponding
to a continuous nematic-smectic and a continuous smectic-
columnar transition, respectively.
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TABLE VI. Equation-of-state data for the nematic, smectic,
and columnar phase of hard parallel spherocylinders in the
limit L/D —+ ao. The density p* =p/p, „and P* =PUO/kT.

Nematic
p )jC

Smectic
p g

Columnar
p P

0.5
1.0
1.5

0.227
0.325
0.386

2.0
2.5
3.0
3.1

3.2
3.3
3.4
3.5

0.451
0.489
0.529
0.534
0.544
0.547
0.559
0.560

3.6
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
9.0

10.0
1 1.0
12.5
14.0
15.5
17.0
18.5
20.0

0.597
0.636
0.656
0.682
0.714
0.739
0.741
0.762
0.768
0.782
0.796
0.814
0.827
0.844
0.854
0.871
0.880
0.887
0.893

collected in Table III, whereas the coefficients of the y-
expansion fits to the equation-of-state data are shown in
the Table IV.

The phase behavior up to densities of approximately
50% of close packing is quite similar to the behavior of
spherocylinders with L /D )0.5. The hard-cylinder
Quid apparently undergoes a continuous nematic-to-
smectic transition at a density p*=0.39. The onset, at
this point, of one-dimensional translational order along
the particle axes results in a solidlike g~~(z) correlation
function. Closer inspection of Fig. 8 shows that there is
a cusp in the equation of state at p*=0.56. It appears
that at this density the smectic phase transforms spon-
taneously into a columnar phase. The transition point
can be traversed in both directions without any hys-
teresis effects. Furthermore, on both sides of the transi-
tion we observe strong pretransitional fluctuations. The
presence of such fluctuations suggests that parallel
cylinders undergo a continuous phase transition from
the smectic to the columnar phase. We recall that the
smectic-to-columnar transition is clearly first order in
the case of spherocylinders with L /D =5. For the
L/D~ ao system we did not find a stable solid branch.
This is not unexpected because, whereas a system of
parallel spherocylinders at high densities can increase its
entropy by transforming from the columnar to the crys-
talline phase, no such gain in entropy is possible for the
parallel cylinders in the columnar phase.

The fact that the hard cylinder system undergoes ap-
parently no first-order phase transition allows us to com-
pare the two-dimensional Einstein crystal method for the
free-energy computation of the columnar phase (Sec.
III B) with a simple thermodynamic integration along
the reversible path from the columnar phase to the
ideal-gas reference state. The integration in Eq. (I) is

performed by using the coefficients of the y-expansion
fits in Table IV. The data pertaining to the Einstein
crystal method are collected in Table V(b). Thermo-
dynamic integration method:

FN

NkT
(p* =0.6962 ) =3.265 .

Einstein crystal method:

F
NkT

(p* =0.6962 ) =3.733 .

The discrepancy between the results obtained by the two
methods is surprisingly large. For comparison, thermo-
dynamic integration and Einstein crystal method yield
virtually indistinguishable results for the crystalline
solid. The reason for the discrepancy between the two
techniques in the case of the columnar phase is, at
present, not known. The most likely explanation ap-
pears to be that the peculiar shape of the capless
cylinders makes it difficult to'relax nonscalar stresses in
the system.

E. The phase diagram

By combining the information on the various phase
transitions presented in Secs. IIIA —IIID we can con-
struct the phase diagram of hard parallel sphero-
cylinders as a function of the length-to-width ratio L/D.
The densities at the observed continuous phase transi-
tions are shown in Table VII(a). The densities of the
coexisting phases as well as the pressure and the chemi-
cal potential at the transition are collected in Table
VII(b). The phase diagram displayed in Fig. 9 shows the
regions of thermodynamic al stability of the nematic,
smectic, columnar, and crystalline phases. In the limit
L/D~O, the phase behavior follows from the data of
Hoover and Ree on hard spheres. The data pertaining
to hard parallel cylinders [Table VII(c)] provide informa-
tion about the behavior in the limit L /D ~~.

The most striking aspect of the phase diagram is the
existence of thermodynamically stable smectic and
columnar phases. This is, to our knowledge, the first
time that liquid crystalline phases with partial transla-
tional order have been observed in a three-dimensional
hard-core model system. The translational degrees of
freedom of spherocylinders with L/D ) 3 are actually
frozen one by one, upon increasing the density from the
translationally disordered nematic phase to the ordered
crystalline phase.

The density at the melting point is initially quite com-
parable to that of the hard-sphere solid, but shifts gradu-
ally towards higher values for L/D ) 3 when an addi-
tional columnar phase is formed between the smectic
and the crystalline phase. The region of stability of the
solid phase vanishes in the limit L/D~oo where a
three-dimensional crystalline structure is only formed at
infinite pressure.

It appears that a small degree of nonsphericity, i.e.,
L/D =0.5, is sufficient for a smectic phase to be ther-
modynamically stable. For the present model system,
the nematic-smectic phase transition is apparently al-
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TABLE VII. Density p*, pressure P*, and chemical potential p at the phase transitions in a sys-
tem of hard parallel spherocylinders with L!D=0.25, 0.5, l, 2, 3, 5 [(a) and (b)] and in the limit
L/D~ oo (c). (a) The continuous nematic-smectic transition as a function of L/D. (b) Coexistence
points corresponding to the first-order smectic-columnar and columnar-solid phase transitions, as a
function of L/D. (c) Density at the continuous nematic-smectic and the continuous smectic-columnar
transitions in a system of hard parallel cylinders (L/D ~ op).

L/D pnem psmec pcol psol

0.25
0.50
1.00
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ways continuous. The change in density, associated with
the first-order transition from the smectic to the colum-
nar phase for L/D & 3, appears to be a decreasing func-
tion of the L /D ratio. In the limit L /D ~ oo, the smec-
tic phase transforms continuously into the columnar
phase without an observable density jump. Whether the

smectic-columnar tricritical point is at I /D = oo or
somewhere between L/D=5 and oo is not known at
present.

The nematic-to-smectic transition density is only
weakly L/D dependent and ranges from p =0.50 in the
case of spherocylinders with L/D =1 to p* =0.39 in the

SOLI D

~ ~ ~
~ g 0 r~ ~ ~ ~ 0

~ ~ ~ ~ ~ ~
~ ~ 4 ~ ~ So ~ ~ ~ ~~ +a~ t ~ o ~ ~

~ ~ ~ ~ 0 ~ ~ ~
~ 0~ y Q I ~

~ ~ ~

I ~ ~

~ ~ O~ 'L
~ ~ ~0 ~ ~ y ~ ~ E OO~ 0 ~ ~ 0 O~~ ~ ~~~ ~

I ~ ~ ~ ~ 0 ~ 0

I .. ..~.. . ~ e+ ~~ ~ ~~ ~ o+ ~ e ~ ~~ ~ ~

~ et ~ ~ i 4L ~

~ 0 ~ ~ ~ SMEC T IC

~ e 0 ~~ ~~ ~

~ ~ ~~ ~ y ~ ~ ~
~ ~ ~ ~ ~

~ t ~ ~ I + ~
~ 0 ~ 0 ~ ~ ~

COL UMNAR
~ ~ ~ Wi ~ ~ ~ ~ ~

~ I ~ ~ ~ ~
~ ~ ~ ~ ~~ ~ o ~ ~ ~ ~~ ~ ~0 ~ ~ ~ ~ ~ ~ ~~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ s ~ ~ ~

~ ~ ~ ~ P ~t ~ ~ ~ ~ ~~ ~ 0 ~+ ~ 0 ~ ~ g~ ~ ~ ~ ~ ~+g ~ ~ ~ ~ ~ o+~ 0 g ~ ~ ~~,f ~ ~ ~ ~ ~

~s

(
0.5—

Qw

C

NEMAT IC

~ ~ I

0.0 0.5 1.0 2.0 3.0
I

40
L/D

5.0

FIG. 9. Phase diagram of hard parallel spherocylinders, as a function of the length-to-width ratio L/D. The shaded areas corre-
spond to two-phase regions. B]ack circles, densities of the coexisting phases; open circles, densities corresponding to the continu-
ous nematic-smectic and smectic-columnar transitions. Note that the smectic-to-columnar transition appears continuous at
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limit L/D~op. For L/D =0.50, the transition moves
to higher densities and we do not observe a smectic
phase at all in the case of L/D =0.25. The L/D depen-
dence of the smectic layer spacing at the nematic-
smectic transition is shown in Fig. 10. The periodicity
of the smectic density wave is mainly determined by the
L/D ratio. The decrease of the interlayer spacing with
density never exceeds 10% over the range of thermo-
dynamical stability of the smectic phase. The nematic-
smectic transition in a system of hard parallel cylinders
has recently been investigated within the framework of a
density-functional formalism. The calculated transi-
tion parameters (a critical density p* =0.41 and a smec-
tic periodicity d = 1.34L ) are in surprising agreement
with our results in the limit L /D —+ oo (pMc

——0.39;
d MC ——1.27L).

Summarizing, we conclude that our simple model sys-
tem of hard parallel spherocylinders exhibits a particu-
larly rich phase behavior. We recall that the phase be-
havior of hard parallel ellipsoids of revolution is in-
dependent of their eccentricity and hence similar to that
of hard spheres. Nevertheless, the density-induced phase
transitions in both hard-core systems are the result of a
competition between the translational entropy and the
entropy associated with the excluded volume effects.
The latter are more subtle in the case of spherocylinders

because the cylindrical segments fi11 space more
efhciently than the hemispherical caps. The details of
these excluded volume effects obviously play a crucial
role in determining the phase behavior of anisometric
hard-core particles.

One important factor that we have not discussed in
this paper is the e8'ect of orientational degrees of free-
dom on the phase diagram. We should expect that re-
laxing the requirement of parallel alignment will have a
drastic effect on the phase diagram. In particular, we
should expect a low-density isotropic phase. Moreover,
the range of stability of all other phases is expected to
change. It is, in principal, conceivable that the orienta-
tional freedom will completely destroy the smectic and
columnar order. However, preliminary simulations on a
system of nonaligned spherocylinders with L /D =5 indi-
cate that at least in that system a stable smectic phase is
still possible. A systematic study of the phase diagram
of freely rotating spherocylinders is currently under way.
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