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The molecular reorientation in nematic phases formed by rigid molecules with arbitrary shape is

considered theoretically. In the framework of the small-step rotational di6'usion model, the orienta-
tional correlation functions are obtained as fast converging series of exponentials. For cylindrical
molecules our solutions are reduced to the results already reported in the literature. For molecules
with effective Dql, symmetry we demonstrate that at reasonable values of the order parameter (Dog )
the influence of the biaxiality on some correlation functions is significant and cannot be neglected.

I. INTRODUCTION

The most important feature of the mesomorphic state is
the existence of long-range orientational order which
determines the anisotropy of its properties. The orienta-
tional order is described by the distribution function f(Q)
where Q=(a,P, y) are the set of Euler angles which con-
nect the molecular to the laboratory frame ( xy, z). The
distribution function can be expressed in terms of Wigner
matrices Do„-(Q)

f(Q) =f(P)
1 2n+1 (P„)P„(c so/3),

4~ n even

(2)

where P(c soP) =D o(oQ) are the Legendre polynomials.
The lower number of the orientational order parameters
(P„)=(Doc) in Eq. (2) greatly simplifies the formulas
while retaining the same level of information on the main
orientational characteristic of the mes ophase —namely,
the alignment of the long molecular axis of the meso-
morphic molecules. The order parameters may be ob-
tained by writing the distribution function in terms of a
cylindrically symmetric nematic pseudopotential U(P),

exp[ —U(13)Ik T]

f exp[ —U(13)/kT]dQ
(3)

The most simple physically acceptable expression of U(13)
1s

U(P)= —A(P )P (cosP) . (4)

f(Q) = g, g ((Do"„)*)Do"„(Q),
n, even ~ n" = —n

where the coefficients

((Do„)*)= f f(Q)[DO„(Q)]*dQ

are the parameters which describe the orientational align-
ment in the nematic phase. Very often in the theoretical
and experimental investigations the mesomorphic mole-
cules are assumed to have cylindrical symmetry. In this
case

The theory of Maier-Saupe based on this potential gives
a correct semiquantitative description of the most of the
liquid-crystal properties. The addition of another term to
Eq. (4), proportional to (Pq)P4(cosP) leads to quantita-
tive coincidence with the experimentally determined tem-
perature dependences of the orientational order parame-
ters (P2) and (P„). Approximation (2), however, impli-
cates loss of information on the orientational statistics of
the short axes of the mesomorphic molecules, connected
to deviations from perfect cylindrical symmetry, which
should be expected for real mesomorphic molecules.
Some experimental results, in fact, indicate that the or-
der parameters ((Do„)*) for n "~0 and, in particular,
((Do@)*) are not negligible and must be taken into ac-
count. In Ref. 7 the orientational ordering of a nematic
phase composed of rigid molecules with arbitrary shape is
considered theoretically. The nematic pseudopotential
U(Q) in this case contains components proportional to
Do„(Q) and, in the simplest case for a molecule with
eff'ective D2& symmetry, can be written as

U(Q)= kTa IDoo(Q—)+1 [DO2(Q)+Do 2(Q)]I . (5)

For such potential ((Do„~)') =(Do„„)= (Do" „„)~0
for even n" and n. From NMR data for nematic 4, 4'-
dimethoxyazoxybenzene (PAA) the results A, =0.2 and
(Do2) (0.035 are reported.

The values of the relevant parameters determined by
the use of diff'erent techniques, for example, EPR, Auores-
cence depolarization, dielectric relaxation, neutron
scattering, etc., depend on the dynamics of the molecular
reorientation too. All information on the molecular rota-
tional dynamics is contained in the correlation functions
of the Wigner matrices,

ttpt', t. ~,.(t) = (Dt't. (Qo)[D (Q)]*)
= fdQ~ (Qttto)f(Qo)

&& f dQD ~ (Q)P(Qo
~

Qt) .

Direct measurement of the correlation functions (6) is a
difficult problem since the experimental results depend on
many such correlation functions P't t ~ (t). Some
simplification may be achieved by expressing P& &

~ (t)
in terms of a small number of parameters describing the
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degrees of ordering and rotational diffusion of the mole-
cules in the context of some reorientational models, for
example, small-step rotational diffusion model, ' strong
collision model, ' ' slowly relaxing local structure mod-
el, etc. Only some EPR studies of the molecular reori-
entation of nitroxide radical dissolved in liquid crystal
have taken into account the biaxiality of the guest mole-
cule. However, detailed studies of the inhuence of the
molecular asymmetry on the reorientation of highly
aligned mesomorphic molecules themselves are not avail-
able in the literature.

The purpose of the present work is to discuss molecular
reorientation in nematic phases formed by rigid molecules
with arbitrary shape. We adopt the small-step rotational
diffusion model which is well known from the theoretical
point of view and is widely applied to mesomorphic ma-
terials. In Sec. II we give the solution of the diffusion
equation valid for liquid-crystal molecules with arbitrary
shape. This solution consists of rapidly converging series
of exponentials. Our method is equivalent to that em-
ployed in Ref. 15 for the case of molecules with cylindrical
symmetry. In Sec. III we show how our solutions reduce
to results' obtained for cylindrically symmetric mole-
cules. We are therefore able to discuss the convergence of
the solutions and to demonstrate that for the nematic
phase in most cases PIP ~ -(t) may be approximated
very well with no more than two exponentials. In Sec. IV
we calculate the correlation functions for nematic mole-
cules with effective D2I, symmetry. ' We show that at
reasonable values of ( D Oq } the influence of the biaxiality
on some correlation functions is significant and cannot be
neglected. We finally discuss the possible effects on the
spectroscopic behavior of the nematic phase.

II. SOLUTION OF THK SMALL-STEP ROTATIONAL
DIFFUSION EQUATIONS FOR NEMATIC PHASES

COMPOSED BY RIGID MOLECULES
WITH ARBITRARY SYMMETRY

Molecular reorientation is a very complicated process
even in isotropic liquids of simple molecules. Thus, in or-
der to calculate the correlation functions or the condition-
al probability P(Ao

~

At) we must adopt models which
hopefully are a good approximation to the molecular re-
orientational dynamics. In the nematic phase, because of
the existence of long-range orientational order and anisot-
ropy of the big mesomorphic molecules, the reorientation-
al process is even more complicated —the probability of
the molecular reorientation depends not only on 0—Qp
as in isotropic liquids, but on the initial orientation as
well. As a result the number of the independent correla-
tion functions increases and they become dependent on
the order parameters ((Do„-)*}.

Recently some of the models for the molecular reorien-
tation in simple isotropic liquids have been modified and
applied to liquid crystals. We shall employ the small-step
rotational diffusion model since it is based on solid physi-
cal background and has been used successfully to interpret
many experimental results, e.g. , ESR experiments, ' '
dielectric relaxation, ' fluorescence depolarization, ' '' '
ir and Raman band-shape analysis. ' ' This model is

P(A,
i
At)= P(A,

i
At)

dt

= —J 8 J+ P(AO
i
At), (7)

where J is the vector operator describin the infinitesimal
rotations about the molecular axes and is the rotational
diffusion tensor defined in the molecular frame. This
equation differs from the corresponding equation for the
isotropic liquid by the term proportional to JU(A) which
takes into account the mean orientational torques. In the
isotropic liquids the rotational diffusion tensor 8 is con-
stant and can be diagonalized in the molecular frame,
while for anisotropic systems in the most general case D
depends also on the instantaneous molecular orientation,
i.e., D=D(A(t)}. The A dependence of 8 reflects the
lower macroscopic symmetry of the phase. The function-
al form of D(A) has been derived in Ref. 23 using a hy-
drodynamical model. Lin and Freed have proposed that
8 can be decomposed as a sum of two tensors —one diag-
onal in the molecular frame and the other in the laborato-
ry frame.

The 0 dependence of D can be very important and
deserves further investigations. Here we shall neglect this
dependence in order to avoid serious complication of the
model together with proliferation of the adjustable param-
eters and will focus our attention on another problem-
the inAuence of molecular asymmetry on the orientational
correlation functions. So, as many other authors have
done, ' '"' we shall assume that D is diagonal in the
molecular frame

Di 0 0
D= 0 D2 0

0 0 D3

Equation (7) has been solved ' ' under the assumption

based on the hypothesis that the reorientation is a stochas-
tic process which proceeds by angular jumps and for
which the components of the angular momentum J relax
with a correlation time ~J which is much smaller than the
relaxation time ~~ of the angular variables. In this case
the probability for reorientation P(AO

~

At ) does not de-
pend on J but only on the initial and final molecular orien-
tation. Obviously such a model does not describe correct-
ly the dynamics at t 5 ~J where inertial effects are expect-
ed to dominate. Recent ir and Raman band-shape stud-
ies ' ' indicate that in the liquid crystals ~J -0.2 —0.5 ps
and is much less than ~~ which is usually between 5 and 40
ps. Therefore we believe that the small-step rotational
diffusion model correctly describes the molecular reorien-
tation in the nematic phase for the time domain 0.5 —2.0
ps. We note that everywhere in this work where we dis-
cuss the behavior of the correlation functions in the short
time limit we shall refer to the ~J +t &&~& range, for
which the model is certainly valid.

The starting point in the small-step rotational diffusion
model applied to uniaxial liquids is the generalized Smo-
luchowski equation ""
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U(A) = U(P) (9a)

and

Di ——Dp Dy+——Dll D3 . (9b)

The probability P(AO
~

At) may then be obtained as a
series expansion'

of cylindrical symmetry of the nematic molecules. This
implies that

+J D [Jf(Q)]f '(A)P(A, , i
At)

using the definition for U(A)

exp[ —U(A)/KT]
(12)

J exp[ —U( A ) /k T]d A

To simplify the indices, wherever it is possible we shall
designate Di'~- with the main index L, etc. , Therefore,

P(Ap
i
At ) = Q bg~gexp(Dj rx "t )D „(Ao)D „(A),

I,J,K, m, n
(10) etc.

D'(A)=D('i (A), P'M(t)=&i& (t),

where the coefficients bJKI depend on the order parame-
ters. The correlation functions obtained from Eq. (10) are
a sum of exponential decays. A drawback of this solution
is that the relaxation time cannot be obtained analytically
but only by complicated numerical calculations. Another
way to solve Eq. (7) is to use a set of nonorthogonal func-
tions related to the equilibrium distribution function f(A)
instead of Wigner matrices. ' In this case the correlation
functions can be derived to a good approximation as a
sum of few exponentials. The same result has been re-
ported in Ref. 15, where a different formalism was used.

Qualitatively, the reorientation of a rigid cylindrical
molecule consists in (i) fast rotation around the long
molecular axis 3 (spinning motion) with time constant
ri~

—I/Dii and (ii) slow rotation around the short axes 1

and 2 of the molecule (tumbling motion) with time con-
stant wz-1/Dz. Both these motions depend strongly on
the degree of order. In the case of nematic molecules
with lower than cylindrical symmetry Eq. (7) is the same
but D&&Dz and U(A)=U(P, y). The spinning motion in
this case becomes order dependent [due to U(A)&U(P)]
and the tumbling rotational diffusions around both short
axes are equivalent no more (due to D&+Dz). As we
shall demonstrate in Sec. IV the variation in the correla-
tion functions due to the order-dependent spinning
motion is proportional to D

l (D 02 ) . Taking into account
the lyrge value of Disci, this change is important and in
some cases can result in qualitative changes in the experi-
mental data which are obtained. On the other hand, the
change due to the anisotropic tumbling motion is propor-
tional to (D i D2 ) (D 02 ) . T—aking into account that
D& —D2 depends on the anisotropy of the inertial motions
and the steric hindrance for rotation about the short axes,
we could expect D& —D2 «D&+Dz «Dii, due to the
small deviation of the nematic molecule from the effective
cylindrical symmetry. Thus the asymmetry of the molec-
ular tumbling motion will result only in minor quantita-
tive change in the correlation functions. For this reason
we will assume further that D& ——Dz which will simplify
the mathematics of the problem. Another reason for this
assumption is that physically the asymmetry of the tum-
bling motion is equivalent to small changes in the A
dependence of the diffusion tensor. As this dependence
has already been neglected, it seems reasonable to neglect
also D& D2. In order to s—olve Eq. (7) under this as-
sumption we develop the approach proposed in Ref. 15.
First of all we transform Eq. (7) in

Let us define the functions

W (A, t) =f '(A) jf(AO)D (Ao)P(AO
i
At)d Ao . (13)

Then

PiM(t)= ( Wi(A, t)[DM(A)]*)

= f W (A, t)[D (A)]*f(A)dA .

If we expand W (Q, t) as a series of D (A) we obtain

W (A, t)=g V '(t)D'(A),
I

where

(14)

and

Vi'(t)=, J Wi(A, t)[D'(A)]*dA
Sm

(16)

V (0) =oLt oi; oi; 5t-;——
Then

(17)

(t)=g V (t)(D'(A)[D (A)]*)

—Wi(A, t)J D Jf(A)} . (20)

This equation is very useful for our purpose since J.D.J
in the case of D& ——D2 ——Dz has the Wigner matrices as
eigenfunctions,

J D.JD (A) =E D (A),
where the eigenvalues are given by

(21)

=g V '(t)P' (0) .
I

Multiplying Eq. (11) by D (Ao)dAO and integrating, we
transform it into an equation for W (A, t) instead of
P(AO

i
At),

f(A) W i(A, t) = J.D J[WL(A, t)f(A—)]
+J D [Jf(A)]Wi(A, t) . (19)

After some transformation we obtain

f(A) Wi(A, t) =-,' [J.D J[Wi(A, t)f(A)]

+f(A)J.D JWi(A, t)
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E =El'1- ——l(l + ])DI +l" (D (22)

Substituting Eq. (15) and Eq. (1) in Eq. (2p) and using Eq.
(21), we obtain for V (t) the following set of diff'erential
equations:

great number of independent order parameters in the
coefficients in Eqs. (28). For this reason we shall consider
the convergence of the solutions in the case of cylindrical-
ly symmetric and biaxial nematic molecules separately.

y bIMVLI(t) y IMVLI(t)
I I

where

bIM y (2 + ] )((Dlv)e )( ] )m
+m'"

N

i n m i n

i' 0 —m' i" n" It—m

i n mgIM 1 y(2n + ])((Dlv) )( ] )m'+m"
2 i' 0 —m'

N

i n
X &i &r rr (E +E E )i n —m

(23)

(24)

(25)

III. CORRELATION FUNCTION FOR MOLECULAR
REORIENTATION IN CYLINDRICALLY SYMMETRIC

POTENTIAL U(P)

(3P)

As we already noted, the cylindrically symmetric po-
tential has been considered in a number of papers ' '
and the behavior of the correlation functions is well
known. Thus we will focus our attention on the conver-
gence of the approximate solutions in order to demon-
strate that a few exponential terms are enough to yield
good approximation to the correlation functions. Since in
this case f(Q) is independent on both a and y the selec-
tion rules for 4 (t) are very simple,

"(I)=&1' &1" "0'1 1" l l"(I)Im Im

Here

i n

are the Wigner 3-j coefficients and ((D )*)= ((Do„-)*)
are the order parameters defined in Eq. (1).

From definition (6) one can obtain at t~p
bIM yIM(p)

while the substitution of Eq. (23) in Eq. (18) yields

IM j IM(p)

(26)

(27)

Equations (26) and (27) are very useful to approximate the
behavior of P (t) at short time t «rti and have already
been used in Refs. 20 and 21 in the treatment of ir and
Raman band-shape experiments.

The set of Eqs. (23) can be solved by the method of La-
place transformation. If we denote by V (s) the Laplace
transform of V (t) we obtain a set of linear algebraic
equations

and

y VLI(s)(gIM+ blM) bLM

I
(28)

(s)=g b V (s) .
I

(29)

An approximate solution of Eqs. (28) can be obtained if
expansion (15) is truncated after a given term V (s).
Then from Eq. (29) we can obtain P (t) as a sum of ex-
ponentials by an inverse Laplace transformation. The
number of the exponentials in P (t) will depend on the
number of the coefficients V (s) retained in Eqs. (28).
Obviously the utility of these solutions depends on how
fast they converge —if the correlation functions can be
obtained to a good approximation using only a few ex-
ponential terms, then it is possible to derive analytical ex-
pressions for them. In general, the discussion on conver-
gence of the solutions is a difticult problem due to the

For simplicity we shall adopt the following notations:

0'1'I"( t ) Pl'I" 1' 1"(t )
lm I m

The symmetry relations

6 1"(t)=ltll 1' (t) =4™11-(t)=(—1)'+ Itl' l l (t)

(31)

0 l'I"(s) y bl'l" V I'l"(s)11 i 1 li (33)

and

g V 1'I (s)«1'1 +sb/'7 )=bl'1- (34)

for m =1,2, . . . . The coe%cients aI'~- and b~ I- depend on
the order parameters (Pz„) for

~

i —m
&2n & ~i+m

~

[see Eqs. (24) and (25)). For any physi-
cally acceptable potential U(P), e.g., for the Maier-Saupe
potential defined in Eq. (4), (P2„) decreases with in-
creasing n. Taking into account that (P2 ) & (Pz ) we
obtain that bt l is of the order of (,P2 ) ~

' I . Similar
conclusions can be drawn for V l l (s). Then the error in
the approximate solution

k

(s) = g V I 1-(s)bl l
(&) 11 i1 i1 (35)

is of the order of (P2)"+' and the precise solutions can
be obtained with increasing k. If I' and/or l" are zero
then i can take only odd values in Eqs. (33)—(35) [see Eqs.
(24) and (25)] and

y
11

( ) y
(k) 11( ) ( (P )2k+1 (36)

enable us to diminish further the number of independent
correlation functions.

Many experiments are sensitive only to the self-
correlation functions pI'1 (t) and among them the most
important ones are Ital'1 (t) and Itll l (t). Here we shall con-
sider the convergence of pl'1-(t) which is very representa-
tive because it is well known that the correlation function
ltloo(t) converges very slowly. For I =m = 1
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while for l'=I"=1

y ii( ) y
(k) ii( ) ( (p )k+i (37)

Q20- o'""'
(&) = e'~'» (t)

where k is the number of the exponentials retained in the
approximate solution. The error estimated in Eqs. (36)
and (37) is only an upper limit. We have calculated
p'i i' "(t) for Dl D,——and k =1 to 3. The order parame-
ters have been calculated using a Maier-Saupe potential

U(P) = —kTaP2(cosP), (38)

Ol'I" ( t ) b 1'I"exp(1}11 11 (39)

has the right initial value and first derivative [see Eqs. (26)

for a =2,3,6 corresponding to (P2 ) =0.43, 0.62, and 0.82.
To obtain P &"&'"(s) we truncate Eq. (34) up to i =k and
m =k, .substituting further the solutions of this kth order
system of linear algebraic equations in Eq. (33). Then by
inverse Laplace transformation we obtain the functions
P(i"~' "(t) presented in Figs. 1 —3. In all cases the highest-
order approximation presented on the figures is undistin-
guishable, in the scale of the figure, from the exact solu-
tion. Except for the case l'=I"=0, the second-order ap-
proximation is excellent and the first order is reasonable.
The function goo(t) is known to converge very slowly, ' '

but even in this case a reasonable approximation is ob-
tained for k=2 at small (P2) and for k=3 at large
&P, ).

One can see in Figs. 1 —3 that at a small t (tDi &0.1)
even the one exponential approximation is very good.
This is due to the fact that

tDi

Flax. 2. One- (—*—) and two- ( ———) exponential approxi-
mations of the correlation functions $0I(t) =BIO(t) (Dl =D, is
supposed).

and (27)]. This approximation is very useful for experi-
ments which are sensitive to very short times and has
been used to treat the Raman and ir band-shape data.
It is important also to check the behavior of the functions
P'i i' "(t) when D~~~+Di [the Pic(t) functions do not depend
on D~~ because they are not sensitive to the spinning
motion] taking into account that in the real nematic
phases D

~~

&&Dz. It has been demonstrated by Nordio and
Segre that

080
g)(k)qq tt» 5

Q4'

0.2

tDi

FIG. 1. Approximate solutions for the correlation function

goo(t) calculated by using the Maier-Saupe potential from Eq.
(39) at different values of a: —*—,one-exponential approxi-
mation (k = 1); ——Q ——, two-exponential approximation
(k =2); —.——.—,three-exponential approximation (k =3).

t Dt

One- (——) and two- (—Q—) exponential approxi-
mation of the correlation function /II(t) at Dl =D, .
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(t'I'1(t) '(t'1'l(t)
I Dl = exp (40)

and similar equations can be derived for the kth approxi-
mation. The correlation functions Pl'~'"(t) obtained for
D~(

—D~ ——10D~ are presented in Figs. 4 and 5 and on the
scale they coincide with the exact solution P~ ~(t). This is
due to the fact that for t —I /D

l Dz —the error
PI' &(t) P'I—'&' "(t) is very small.

We have seen that the convergence of P'I I' "(t) is worse
in the long-time domain. A good test for this region
which is important for many experiments is the time in-
tegral of the correlation function

JA' = J 4h (t)« (41)
0

$nt t

(g)

OAO

In Table I we present the approximate and exact values
of these time integrals. Comparison with the results of
Ref. 16 demonstrates that although the mathematical for-
malism in Ref. 16 is quite different from ours, the results
are essentially the same for k=1 and for k= oo cases.
One can see from Table I that for the correlation func-
tions P&,'(t) which are sensitive to the spinning motion, the
single exponential approximation is very good even in the
long-time region (under the realistic assumption that
Dl &&D~). For J'&0'" the error is greater but still reason-
able. Only in the case of @&(t) are several exponential
terms needed to obtain a reasonable approximation.

The one-exponential approximation given in Eq. (39) is
of great utility in the treatment of the experimental data.
This is due to the simple analytical form of PI& (t) but
also on the fact that it depends only on the order parame-
ters (P„) with

~

1 —m
~

& n & 1+m. Usually these order
parameters can be obtained from the same experiments in
which P~™~-(t)are measured, thus leading to a complete
determination of the relevant static and dynamic parame-

t DI

FIG. 5. One-exponential approximation of PI I ( t) at

Dii ——11D

ters. When the number of the exponentials used to ap-
proximate the correlation functions increases, we need
more and more order parameters which are not always
available from the experimental data. Then (as in the case
of the exact numerical solutions ) we have to postulate an
explicit nematic pseudopotential. Even if we suppose that
the mean-field theory is accurate enough, only the first
two terms of U(P) are known for a real nematic. For this
reason it is quite possible that the order parameters (P„)
obtained in this way might differ from the real ones, espe-
cially for large n The a.ccumulated error makes the prac-
tical utility of this procedure and of the "exact" solutions
obtained in this way, doubtful.

IV. CORRELATION FUNCTIONS
FOR THE MOLECULAR REORIENTATION

IN BIAXIAL NEMATIC PSEUDOPOTENT1AL U(Q)

tDr
0.2

Equations (28) and (29) enable us to obtain the solu-
tions in most general cases, i.e., the lack of any molecular
syrnrnetry. However, the great number of independent
correlation functions even at small I and m and the great
number of order parameters even for one-exponential ap-
proximation makes this approach unpractical. There are
both theoretical and experimental ' evidences that in the
nernatic phase the mesomorphic molecules have effective
D2~ symmetry, ' and the only nonvanishing order param-
eters are (D0„) where n and n" are even and
(D0„)= ((DD„~)*)= (D0 „~). Assuming an effective
D2~ symmetry for the nematic molecules, we obtain the
following symmetry properties for the correlation func-
tions:

Nl'I" m'm "(t) ~l'm'0'I'I" I'm "(t)Im 1m

( I )1+m —I"—m "yl m (t)

= ( —1)'+ PI —I"m (t)
FIG. 4. One-exponential approximation of QDI(t) at

Dli
—11D =(—1)l ™Ph" m'm "(t)
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TABLE I. Time integrals JI i' "of the reorientational correlation functions (approximated by k exponentials).

k=1
E,'Dii —Di j/Di ——0

k=2 k=3
(D~) —Dz )/Dg = 10

k=2

0.43 1.049
0.0430
0.0430
0.2785

1.297
0.0453
0.0453
0.2889

1.306
0.0455
0.0455
0.2952

1.307
0.0456
0.0456
0.2976

0.0130

0.0355

0.0131

0.0356

0.0131

0.0356

0.62 2.061
0.0200
0.0200
0.3332

3.574
0.0213
0.0213
0.3536

3.829
0.0215
0.0215
0.3617

3.854
0.0215
0.0215
0.3641

0.0079

0.0384

0.0081

0.0386

0.0081

0.0386

0.82 6.408
0.0039
0.0039
0.4164

48.54
0.0040
0.0040
0.4433

101.7
0.0040
0.0040
0.4498

132.8
0.0040
0.0040
0.4510

0.0024

0.0422

0.0024

0.0424

0.0024

0.0424

i.e., gati (t) vanish if l +m' and if i"+m" is odd.
As in Sec. III we shall concentrate our attention on the

case i=m=1 which is of special interest for ir band-
shape analysis (see the following paper). For the case i
and/or m&1, the solutions can be obtained in a similar
way and there will be no qualitative change in their be-
havior.

For' I =m = 1 we have six independent correlation
functions —the self-correlation functions —$1' I I I ( t ) for
I', I"=0, and 1 which appear also in the cylindrical case
and two additional new cross-correlation functions

1(t) for i'=0 and 1. Formally, Eqs. (28) and (29) are
the same but the number of terms in these equations is
higher due to the greater number of nonvanishing a
and b coefticients. The first reasonable approximation
can be obtained by truncating Eqs. (28) and (29) at i = 1.
For l"=0 in this approximation (as well as in all other ap-
proximations) the correlation functions are the same as in
the cylindrical case due to the independence of PIO 0(t)
on spinning motion. For l"= 1, l ' =0, and 1, and
m "=+1,we have

I'1 l'+1( ) bl'1 l'+I V I'1 I'1 ( ) +bl'1 I +I V I'1 I' —1'(s)
(1) 1 1 1 1 (1) 1 1 1 1 (1) 1 1

(43)

and similarly for a, b, and V "we have

&(i +, , (s) =2b+ I I V+ I 1(s),(1) 1 1 (1) 1

b+I'1=2V+I'1(s)(it+!'1+sb+I'1) .1 (1) 1 1 1

We obtain

1

(1) 1 1 1 a+I
it I 1 I +, (t) =b + I 1 exp —t

b+ I1

a'
1

—l'1

1
+b, , exp

(46)

(47)

(48)

The explicit form of the coe%cients in this equation is
reported in Table II. Let us now consider the conver-
gence of the approximate solutions i''"' (t) obtained in
this way. To calculate the order parameters we use the
potential defined in Eq. (5). Taking into account that in
this case (Do„)5 (Do&)" —(Dog)" and that (Doz)
is small [(Do2) 50.035 for PAA (Ref. 7)], a fairly good
approximation can be obtained considering only the terms
with i"—m"=0, +2 and i"—l"=0,+2 in Eq. (23).
Neglecting the terms of order (DO2) in kth approxima-
tion, Eqs. (28) and (29) become

1 1 (1) 1 1 1 11bl'l l'+1 V I'1 l'1(s)(ol'I l'+1+sbl' ll'+1)
k

0 I'll'+l(s) y y V I' ll i (s)bl I I''+"1'"(k) 11 (k)1i i 1

i =1i"=+1
(49)

Defining

+ V I'1 l' —l(s)(+I'I l'+ 1 +bl'1 l'+ 1).(1) 1 1 1 1 1 1 (44) k
Li 1bl'I l'+1 ~ ~ " I'1 l i ()(laI 'I'"+1 + b'l"'I" I'+1 )

i =1i"=+1

/+11(S)= —,[it' I . I, (S)+i)& I »' 1(S)](1) 1 1 (1) 1 1 (1) 1 1 (45) and the solutions can be obtained in a similar way as a

TABLE II. Relation between the coefficients in Eq. (48) and the order parameters.

—,'(1 —&P, )+&«Dl, &)

—,', (2+ &P, )+6(DO2, ) )

6
'(1+2&P, )+-«&DD2&)+ " '(1—(P, )-+«(DD2&)

6

12
(4—(P ) + V6(D ) )+ (2+ (P ) + v'6(D ) )

6
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