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Numerical experiments on two-dimensional thermosolutal convection reveal oscillations in the
form of traveling, standing, modulated, and chaotic waves. Transitions between these wave forms
and steady convection are investigated and compared with theory. Such rich nonlinear behavior is

possible in Quid layers of wide horizontal extent, and provides an explanation for waves observed in

recent laboratory experiments with binary Quid mixtures.

I. INTRODUCTION

Nonlinear dynamical systems can exhibit a wide variety
of oscillations, with periodic motion often replaced by
aperiodic or chaotic motion through a succession of tran-
sitions as the forcing is increased. The nature of these
transitions has been of growing interest in a variety of dis-
ciplines. Recently attention has focused on continuous
systems, described by partial differential equations, as part
of a general program to elucidate the processes that lead
to pattern formation in physical systems.

The present paper is a contribution to the study of pat-
tern formation arising from a Hopf bifurcation in a con-
tinuous translationally invariant system. Such a bifurca-
tion gives rise to various types of wave motion. Doubly'

diffusive systems, such as thermosolutal convection'
and convection in binary mixtures, " provide a relative-
ly simple example within which the competition between
different waveforms in the nonlinear regime may be inves-
tigated. Although our study of thermosolutal convection
is restricted to two dimensions, we are able to show that
the oscillations can develop variously into traveling,
standing, modulated, and chaotic waves. Traveling waves
in which a pattern of rolls drifts to the left or right with a
uniform speed (which depends on the rate of heating from
below) are the preferred form into which an oscillatory in-
stability develops for a wide range of parameters. Transi-
tions between the different wave states and steady convec-
tion are investigated; similar transitions have been found
in recent experiments on binary Quid mixtures in which
traveling waves have been observed.

In contrast to our earlier study ' of the transition to
chaos of oscillations in the form of standing waves, the
work described here uses periodic boundary conditions in
the horizontal to model a Quid layer of large aspect ratio.

This allows us to relate the existence of the traveling and
modulated waves to the resulting change in the symmetry
properties of the partial differential equations.

II. THERMOSOLUTAL SYSTEM

Thermosolutal convection is characterized by the com-
petition between the destabilizing effect of heating a Quid
layer from below and the stabilizing effect of maintaining
a solute concentration which increases with depth. The
driving and restoring buoyancy forces are shifted in phase
because the solute diffuses less rapidly than heat. If the
solute gradient is sufFiciently strong, convection can set in
through a Hopf bifurcation even when the mean density
decreases upward.

Thermosolutal convection in two dimensions is de-
scribed by the nondimensionalized equations'

o '[d, V 4+J(%,V %)]=R T —R S„+V %',

t), T+J(4, T) =V T,
t),S +J('P, S)=rV S,

(lb)

(1c)

with x and z the horizontal and vertical coordinates and t
the time. Here + is the stream function, T and S are the
temperature and solute concentrations, and J (f,g)f g, f,g . The par—ameters —R T and Rs are the
thermal and solutal Rayleigh numbers, and are a measure
of the forcing of the system by the temperature and solute
gradients imposed across the Quid layer; o. is the Prandtl
number, and r (0&v & 1) is the ratio of the solutal to the
thermal diffusivity.

The Quid is con oned between horizontal stress-free
boundaries held at fixed temperatures and solute concen-
trations, with the lower boundary hotter and saltier than

36 2862 1987 The American Physical Society



36 TRAVELING %AVES AND CHAOS IN THERMOSOLUTAL CONVECTION 2863

the upper boundary. The boundary conditions on the
horizontal surfaces are

T=S=1, z =0,
0 =e„=o, T =S =0, z =1.

(2a)

(2b)

Periodic conditions in the horizontal require %(O,z, t)
=%(l,z, t), where I is the spatial period, and likewise for T
and S. The problem is thus specified by the five dimen-
sionless parameters Rz-, Rz, ~, o. and l, along with the
boundary and initial conditions.

The system possesses two types of basic solutions, trav-
eling waves (TW) and standing waves (SW), both of which
bifurcate simultaneously from the conduction solution
when the thermal Rayleigh number reaches'

Rr"—— 1+(1+cr+r) Rs+— Rs,
0 o. +1 (3)

where R0 is the critical Rayleigh number for the onset of
Rayleigh-Benard convection.

The SW solution branch was investigated previously
with impenetrable and insulating boundary conditions on
x =O, l, thereby eliminating the TW solution branch.
However, when traveling waves are admitted by the
boundary conditions, we reported' that both numerical
experiments and theory show that near the Hopf bifurca-
tion at Rz' standing waves are unstable with respect to
traveling wave disturbances for a wide range of parameter
values. Here we explore the properties of traveling waves
in considerable detail, and in addition show that modulat-
ed and chaotic waves can be realized in such a double-
diffusive system.

III. SMALL-AMPLITUDE THEORY

The solutions for Rz near Rz'-' are described by ampli-
tude equations of the form'

Ai (A+aA„+b——A +cA„+dA A„+eA )Ai+8(7),
(4a)

A„=(k+aAi+bA +cAi +dA Ai+eA )A„+8(7),
(4b)

ly stable oscillations at A, =0 (0 & 0). The total ampli-
tude 3 = 2&+ A„ is proportional to the amplitude of the
Nusselt number, Nz, measuring the heat transport. The
coefficients of the nonlinear terms in (4) are real, indepen-
dent of A, near A, =O, and can be computed' ' from Eqs.
(1). One finds that b =0 (Refs. 12 and 13). In Fig. 1 we
show the coeKcients a, e as functions of Rz for ~= 10
o.= 1, and 1=3. Observe that a can change sign, while e is
always negative. When a is small but nonzero various
secondary bifurcations also occur at small amplitude, i.e.,
in the regime of validity of Eqs. (4). We make use of this
fact to determine the various nonlinear solutions of Eqs.
(4) and the possible transitions among them.

When the nonlinear terms in (4) are deleted, one recov-
ers the results describing the linear stability of the conduc-
tion solution. To determine the stationary solutions we
set Ai ——A„=O, and solve the resulting Eqs. (4a) and (4b)
for (Ai, A„). There are five solutions: the conduction solu-
tion (0,0), a left-traveling wave (At, O), a right-traveling
wave (O, A„), a standing wave (A/&2, A/&2), and a
mixed mode (Ai, A„) with Ai&A„. Since the two fre-
quencies Pi,P„are distinct when Ai&A„, we call the
mixed mode a modulated wave (MW). The stability of
each of these solutions is determined by linearizing Eqs.
(4a) and (4b) about the solutions and computing the two
eigenvalues. The results for the case d ~0& c ~ —d are
summarized in Fig. 2, showing 3 as a function of k for
each of the four solutions in the (a,e) plane. We do not dis-
tinguish between left- and right-traveling waves. The
signs —and + denote stable and unstable eigenvalues.
The first is a total-amplitude eigenvalue, and changes sign
at saddle-node bifurcations. The second eigenvalue deter-
mines the relative stability of TW and SW and vanishes at
secondary bifurcations producing MW. Observe that pro-
vided a&0, SW can never be stable near onset, and that if
a & 0 and e is suSciently negative, a nonhysteretic transi-
tion from a stable TW branch to a stable SW branch
occurs via a stable MW branch. If c (d+c) &0 a tertiary
Hopf bifurcation from the MW branch can occur, produc-
ing a quasi-periodic wave with three frequencies. ' ' This

Pi ——co+aA„+PA +@A„+5A A„+eA +6(6), (4c)

P„=co+aAi+PA +yAi+5A Ai+eA +G(6), (4d)

with the dot denoting time derivatives, and 8(n) terms of
order n. Here Ai, A„(&0) are amplitudes of left- and
right-traveling waves and P&,P„are the corresponding
phases, in terms of which
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Xsinn.z+8(3) .

The higher-order terms involve spatial harmonics whose
coeKcients can be expressed in terms of A~ and A, . Ex-
pansions similar to (5) apply for T and S. The quantity A,

is the bifurcation parameter, proportional to Rz —R~',
and co —0= 6(A, ), where Q is the frequency of the neutral-
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FICx. 1. Coe%cients a and e in Eqs. (4) evaluated as functions
of R& for ~= 10 ', o.= 1, and 1=3. Note that a changes sign at
Rq ——14 585.4, while e is always negative.
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possibility is not shown in Fig. 2. As
~

a
~

increases, the
secondary and tertiary bifurcations and the MW branch
move to 8(1) amplitudes and out of the regime of validity
of the analysis, and one recovers the results of Ref. 12.
However, the fact that the solutions discovered by this lo-
cal analysis persist at large amplitude even for values of a
far from a=O is invaluable in interpreting the numerical
results described below.

The interaction between the TW, SW branches and the
branch of steady-state convection (SS) can be studied in
the neighborhood of Rz- ——Rz'-', Rz ——Rz' at which the con-
duction solution has a double-zero eigenvalue. ' The dy-
namics of the system is now described by a complex
amplitude B ( t ) in terms of which 0'(x, z, t )
=Re I

Be'
I sin(rrz) + 6(3), satisfying the equation' '

+ ——

'P~
/

+ —+

++ +
a

~(m'n) +(TW )
T T T T

B=(u+&) /B J' —/B
J

)B

+vB+,'a(BB. +.—BB)B+e
I

B
I

B .

Here p, v are linearly related to Rz- —R z-', Rz —Rz", a, e,
and r)—:——,'Q(a+P) are evaluated in the limit Rz ~RIr'i,
Rs RE . Thus a, e are both negative. In (6) we have in-
cluded two essential fifth-order terms to make the TW
branch nondegenerate and to get the SS branch to turn to-
wards larger R ~. If we write B=re'~, then the five solu-
tion types of interest are pure conduction (r=O), SS
(r =0, P = 0), TW (i=0, P&0), SW (i&0, P = 0), and MW
(r&0, /&0). The TW branch always terminates on the SS
branch in a steady-state bifurcation. 1n Fig. 3 we exhibit
bifurcation diagrams describing two scenarios of interest
to the present problem. In Fig. 3(a), the TW branch ter-

(b)

+(min)
T

&(e) &(TW )
T T

FIG. 3. Bifurcation diagrams from Eq. {6}showing the tran-
sition from traveling waves (TW) and standing waves (S%') to
steady convection (SS) for (a) a,e&0, 0&g=6 (1); and (b)
a,e & 0, 0 & q « 1. Stable solutions are indicated by solid
lines. Solid circles indicate local bifurcations, open ones global
bifurcations. . The third eigenvalue on the SS branch describes
stability with respect to traveling-wave perturbations.
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minates on the unstable subcritical SS branch, and the
transition to the stable SS branch is hysteretic. In some
cases the TW branch may lose stability at a secondary
Hopf bifurcation to MW (not shown). Figure 3(b) shows a
nonhysteretic transition between stable TW and stable SS
branches. Again, we expect that away from R'z'-', Rz' the
basic features of the transition between TW and SS pre-
dicted by (6) remain unchanged. Thus the transition can
be hysteretic as in Fig. 3(a), with the stability of the upper
SS branch unaffected by TW, or nonhysteretic as in Fig.
3(b) where the SS branch gains stability at the bifurcation.
In either case the phase speed of the traveling waves van-
ishes as c~ ~(Rr —RP ') near the end point Rz. RP——
(see Fig. 3).

IV. NUMERICAL SOLUTIONS
—+ +

w I

FICi. 2. Bifurcation diagrams (3 vs A, ) in the (a, e) plane, as
obtained from Eqs. (4) for

~

a
~

&&1, d &0&c & —d, showing
transitions between the traveling wave (TW) and standing wave
(S%') branches via a modulated wave (MW) branch. Solid lines
indicate stable solutions.

We have used finite-difference techniques ' to numeri-
cally integrate the full partial diff'erential equations (1)
subject to the boundary conditions (2). The nonlinear nu-
merical code specifies 4, V 4, T and S on grids staggered
in space and time; the difference scheme has second-order
accuracy and is centered in both space and time. Within
a time step the nonlinear terms are treated explicitly and
the diffusive terms are represented by a DuFort-Frankel
scheme. The associated Poisson equation linking the
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small random perturbations to a quiescent state, the tran-
sient behavior may be quite complicated, involving rolls
that are variously modulated in amplitude and that
translate. The asymptotic approach to the final SW or
TW states can be slow, and the evolution probably reAects
the presence of all the competing, albeit unstable, solution
branches.

The numerical solutions reveal important differences
between the spatial structure of a SW and a TW. In a SW
[Fig. 5(c)] the thermal and solutal plumes are symmetri-
cally positioned about the centers of the ascending and
descending columns of Quid. But in a TW [Fig. 4(c)] the
plumes are asymmetrical about the cell centers, and have
a characteristic tilt from the vertical. As a consequence,
within a SW the production of vorticity by the buoyancy
forces, which serves to modulate and change the sense of
the circulation within each roll, proceeds symmetrically
about the center of the cells. But in a TW the vorticity
production proceeds largely in the tilted plumes, and
these are displaced laterally from the principal vorticity
within each roll. One finds that negative vorticity is pro-
duced to one side of the region of positive vorticity within
one roll, while positive vorticity is produced on the same
side of the region of negative vorticity within the other

roll. Such erosion of vorticity in the rolls leads to a
translation of the overall pattern, thereby yielding a TW.

Figure 6 shows bifurcation sequences as a function of
R T in (i), (ii), and (iii), using E as a measure of 2 . Figure
6(a) presents results for (i). The conduction solution loses
stability at a Hopf bifurcation when R T reaches
RT' ——7725, and gives rise to a branch of stable traveling
waves (see Fig. 4). As R T increases, E increases monotoni-
cally, while the oscillation frequency c»o (not shown) de-
creases monotonically from its bifurcation value of 31.4
(in units of radians per thermal diffusion time), reaching
zero at RT-14000. At this point c~ vanishes and the
wave turns into steady-state convection. This transition is
a steady-state bifurcation and stability is transferred to the
SS branch for larger RT with no hysteresis. It is possible
to follow the SS branch to smaller values of R T by impos-
ing impenetrable boundary conditions to eliminate TW.
The calculation shows that with periodic boundary condi-
tions this part of the SS branch is unstable with respect to
TW, but is stable with respect to SW in the interval
RT '"'&RT & 14000. Here RT '"' is the smallest value of
RT at which SS convection exists, and corresponds to a
saddle-node bifurcation on the SS branch. ' These results
are entirely consistent with the small amplitude theory
summarized in Fig. 3.

Figure 6(b) shows results for (ii). The Hopf bifurcation
occurs at RT' ——10 743, and both TW and SW branches bi-
furcate vertically. At larger Rz- stable standing waves are
found. The resulting oscillations are indicated in Fig. 6(b)
as vertical lines through the mean value, representing the
range of values taken by E during one period. The vigor
of the motion increases with R T, until at R T —11 250 the
SW branch loses stability to traveling waves. The TW
branch can be followed down to at least RT-11 100 be-
fore it loses stability to standing waves again. The travel-
ing waves have lower kinetic energy than the mean value
for the standing waves at the same R T. According to the
theory summarized in Fig. 2, transitions between SW and
TW branches can only occur via a secondary MW branch.
Since the observed transition is hysteretic the MW branch
must be unstable, and we conjecture that the bifurcation
diagram is as shown in Fig. 7. This diagram is readily ob-
tained from Eqs. (4) by taking a=b=0, and including
seventh-order terms in the analysis. However, both the
presence of the MW branch and its stability depend on
these terms. These, like the coeScients c and d, have not
been calculated.

2&000

QILB& 4Ea e e w

0
70,0~M& (o)
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90,000 110,000
Rz A2

~SW
r

FIG. 6. Bifurcation sequences showing the variation of the ki-
netic energy E with R T as determined from sequences of numeri-
cal solutions of the partial diA'erential equations for (a) Rz ——10
[survey (i)]; (b) Rs ——14585.4 (ii); and (c) Rs ——10 (iii). Distinc-
tive symbols identify solutions as traveling waves (TW), standing
waves (SW), modulated waves (MW), and chaotic waves (CW).
Open circles denote the unstable part of the steady-state (SS)
solution branch in (a). Vertical lines indicate typical range of E
within the time-varying solutions in (b) and (c).

FICx. 7. A possible bifurcation diagram when a=b=0, and
e&O, d+c&0, d+ 2c& O, e+ ~d+4c&O, showing ahysteretic
transition between SW and TW branches.
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with frequency', in (1) phase projections of u(4, ~,t) vs T( 4 3, t) and in (c) orbits ofNT( —', t) vs Nz (2,t).

B. Modulated waves and chaos

Figure 6(c) presents results for (iii), revealing bifurca-
tions that lead to chaos. To clarify the behavior, three
solutions from this sequence in RT are shown in the com-
posite Fig. 8, presenting for each the power spectrum of
the temperature T as sampled at a point in the How, the
projection of the trajectory in phase space onto a plane
with that T and the corresponding vertical velocity w as
coordinates, and the projection onto the NT —Xz plane.
This is a reverse sequence and we describe it as RT is de-
creased from a large value. At RT ——100000 there are
traveling waves of the type described earlier. As Rz. is de-
creased, we find as expected that NT, N~, and E decrease
while c~ increases. Figure 8(a) shows that at RT ——91000
there is a traveling wave; the power spectrum of the tern-
perature is seen to consist only of the frequency coo associ-
ated with the pattern translation and its harmonics. For
this Rz. , Fig. 8(b) shows that w and T describe a 1-torus;
Fig. 8(c) indicates that Nr and Ns are constant, appearing
as a single point.

As RT is decreased further, at RT ——90000 there ap-
pears a rapid modulation in the amplitude of the travel-
ing waves, signaling the appearance of modulated waves
(MW). This modulation increases as R T is decreased
such that at RT ——87000 a second frequency co& is clearly
visible in the spectrum [Fig. 8(a)]; co, is large (= 262.0)
and is apparently incommensurate with coo ——48.4. All
the other frequencies in the spectrum are identifiable as
ncoo + men&, with n, m =0, 1,2. . . . The power spectra of
NT, Ns, and E (not shown) reveal only the presence of
the frequency m& and its harmonics. For this RT, Fig.

8(b) shows the 2-torus on which w and T lie, and Fig.
8(c) the 1-torus on which NT and Ns lie.

As RT is decreased even further, the modulation grows
as indicated in Fig. 6(c), until at RT = 84 900 there appear
chaotic modulations to the traveling waves. We denote
such solutions as chaotic waves (CW). We have verified
that the chaotic behavior persists when the spatial resolu-
tion is doubled. For Rz ——84700, Fig. 8(a) shows that the
solution has a temperature spectrum consisting of peaks at
~o and its harmonics and a generally noisy background,
indicating chaos. The motion here consists of two rolls,
traveling roughly with speed c& and with random or
chaotic modulations of the amplitudes. Figures 8(b) and
8(c) show that the smooth tori have now been replaced by
"fuzzy" tori. For Rz- 5 84000 the waves have ceased to
travel, and the chaotic state can be followed to
R T ——71 830, very close to R T' ——71 829.5.

V. DISCUSSION AND CONCLUSIONS

The numerical solutions of the partial differential equa-
tions describing thermosolutal convection have shown
that traveling, standing, modulated, and chaotic waves are
readily found for suitably chosen parameter values. In
particular, stable SW are found only near parameter
values for which the coe%cient a in (4) vanishes. The
three different parameter values were chosen to describe
phenomena characteristic of the three possibilities (i) a
~0, (ii) a —0, (iii) a &0. In (i), the TW branch is stable,
and terminates in a steady-state bifurcation on the SS
branch, with cz vanishing linearly as the distance from the
bifurcation. At the steady-state bifurcation stability is ex-
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changed between the TW and SS branches with no hys-
teresis. In (ii), both SW and TW can coexist, and the ob-
served hysteretic transition between them is conjectured
to occur via an unstable MW branch. In (iii), chaotic
waves are observed near the turning point on the TW
branch. We have not investigated the origin of these solu-
tions, but note that in a horizontally unbounded system,
the onset of chaos cannot occur via a Hopf bifurcation on
the TW branch followed by frequency locking and a cas-
cade of period doubling bifurcations —the translational
invariance prevents frequency locking. In this respect
we expect qualitative differences between unbounded and
bounded systems. In addition, the possibility remains that
the chaotic waves are a manifestation of wavelength in-
creasing instabilities that are prohibited by the imposed
spatial periodicity. '

The system studied here is not readily amenable to lab-
oratory experiments because of the difficulties in con-
structing horizontal boundaries that permit a lux of
solute, in addition to that of heat, through them. Howev-
er, in binary-Quid mixtures characterized by a negative
Soret coefficient, a stabilizing concentration gradient is set
up in response to a destabilizing temperature gradient.
Then the solute distribution is controlled by the applied
temperature difference across the layer according to Rz
= —QRT, where g (lt & 0) is the separation ratio and is
proportional to the Soret coefficient. Thus the interesting
dynamics found in both systems owes its existence to the
competition between a destabilizing temperature gradient
and a stabilizing concentration distribution. For this
reason the equations describing binary-fluid mixtures are
closely related to Eqs. (1). Consequently, one may draw
from the present study a number of qualitative con-
clusions about the binary-fluid mixtures.

Both the theory and numerical calculations' show that,
with periodic boundary conditions, the Nusselt number

NT produced by traveling waves is constant in time. The
same will be true for binary-Quid mixtures, and experi-
ments on a water-ethanol mixture show that when the
number of rolls is even, NT exhibits no detectable oscilla-
tions even though the container is of finite extent. We also
expect that, for appropriate parameter values, binary mix-
tures will exhibit the type of transitions between traveling
waves and steady convection described in the present pa-
per. Specifically, a transition similar to that shown iri Fig.
3(a) may have been observed in normal
He- He bulk mixture" if the constant NT states found

near the Hopf bifurcation are identified with traveling
waves instead of steady convection. A transition of the
form shown in Fig. 3(b) has been observed in a water-
ethanol mixture, although the experiments reveal some
evidence for hysteresis near the TW-SS transition that ap-
parently arises from three-dimensional phenomena not de-
scribed by Eqs. (1). In addition, the phase velocity of the
traveling waves vanishes linearly as the transition is ap-

proached, as predicted theoretically. ' In that experi-
ment the traveling waves are identified unambiguously us-
ing shadowgraph visualization. Finally, in a recent exper-
iment' a bifurcation from finite-amplitude traveling
waves to modulated waves has also been observed. The
properties of the transition are consistent with the theoret-
ical predictions' ' based entirely on the translation and
reflection symmetries of these systems.

As already mentioned, the coefficient b in the amplitude
equations (4) vanishes for the boundary conditions (2).
The same is true for binary mixtures with the correspond-
ing boundary conditions. ' Consequently, the bifurcation
to TW is degenerate, and SW are unstable near the onset
of instability even when they bifurcate supercritically. '

In the present paper we have shown that stable SW can be
found but only for parameter values close to those for
which the coefficient a also vanishes. More specific pre-
dictions await the calculation of the coefficients a and b in
Eqs. (4) for the experimental parameter values and bound-
ary conditions. We anticipate, however, that b will be
positive but small, so that TW will bifurcate subcritically
as revealed by the experiments, ' "but acquire stability
at a secondary saddle-node bifurcation. This would ex-
plain why the oscillatory instability does not equilibrate at
small amplitudes near onset. ' However, in contrast to
our numerical results, in the experiments an initial distur-
bance develops for R & & R T' directly into a growing TW
transient with negligible amplitude oscillations. Overall,
with b&0 Figs. 3(a) and 3(b) provide a consistent sum-
mary of the experimental results.

In this paper we have not attempted to simulate the ex-
periments on binary-fluid mixtures. Instead we have em-
ployed local bifurcation analysis based on the translation
and reflection invariance of a plane layer coupled with nu-
merical simulations of a thermosolutal convective system
to emphasize those results that are independent of the de-
tailed equations, parameter values or boundary condi-
tions. It is these features that we expect to be characteris-
tic of not only binary-Quid mixtures, but also of other dou-
bly diffusive systems such as magnetoconvection or con-25

vection in a layer constrained by rotation.
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