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Saffman-Taylor fingers and directional solidification at low velocity
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We examine the McLean-Saff'man equations for viscous fingering in the limit where the finger
fills almost completely the Hele-Shaw channel (A, =1). We find an infinite countable set of solu-
tions. For each branch of solutions, A, increases toward 1 as (U —U„*)', when the velocity U of
the finger approaches a lower value U„* that we calculate. We then discuss the connections of
these results with directional solidification at small Peclet numbers. Our analysis does not reveal
any sign of wavelength selection for steady-state cells by a solvability condition, contrary to recent
numerical findings.

I. INTRODUCTION

Recently, there has been much progress in the under-
standing of steady-state selection for different problems
of interface dynamics. A discrete set of steady states
propagating at constant velocity has been obtained nu-
merically for dendritic growth, ' the Saffman- Taylor
problem of viscous fingering, and directional
solidification. The selection of needle-crystal shapes
and viscous finger widths has also been understood
analytically in the high velocity limit, where interfacial
tension effects have a small magnitude. In this limit, it
amounts to the computation of transcendentally small
terms appearing beyond all orders of the regular pertur-
bation expansion. It has at last been understood why
the relative finger width A, of a Saffman-Taylor finger ap-
proaches —,

' when its velocity increases. The first part of
the present work is devoted to the solution of Saffman-
Taylor equations in the opposite limit where the finger
moves at low velocity and fills almost completely the
channel. In this case, surface tension is playing a dom-
inant role and cannot be treated as a perturbation. Our
strategy is based in part on a previous work of Pomeau.
The idea is that when A, approaches 1 the finger can be
separated into three different regions: the tip of the
finger where curvature effects are important, the trailing
part where they are small, and a matching region in be-
tween. In the first part of this paper we rederive in an
intuitively clear way (we hope) Eqs. (1O) and (14) for the
interface shape in each of these regions. We then
proceed to the matching. Our treatment is rather analo-
gous to the classical analysis of coating films done by
Landau and Levich. We summarize our main new re-
sults and predictions.

(i) We find an infinite countable set of steady states
and give an explicit parametrization of their limiting
shapes when A, approaches 1.

(ii) Their widths tend to the channel width for a
minimal velocity U„ that we compute. Namely
U„*=(2n —1) (b la )vr T/12@do with do =13.75.

(iii) When the velocity U of the finger decreases to-
ward U„*, the relative finger width k increases toward 1

as (U —U„*)

In the second part of this paper we study the possibili-
ty of wavelength selection for steady-state cellular inter-
faces in directional solidification. Until now, this prob-
lem has resisted analytical approaches because of the
lack of a zeroth-order solution playing the role of
Ivantsov parabolas in dendritic growth. It is, however,
well known that Saffman-Taylor fingers and cellular in-
terfaces are related when the diffusion length is much
larger than the width of a cell (P «I in the notations
below). The cellular interface can then be viewed as a
periodic array of fingers with suitable matching far
above the tip of the fingers and far below in the trailing
part. This is of particular interest because a wavelength
selection was found in recent numerical work and the
data, when interpreted in the light of the above
correspondence, seemed to indicate that when P de-
creased, the relative width of the corresponding
Saffman-Taylor finger increased to 1. Using the results
obtained in the first part of this paper, we work out this
connection in detail for "fat" fingers (A, =l) and can
thus study possible wavelength selection inside this re-
stricted family. Unfortunately, our analytical study does
not give any sign of a wavelength selection for steady-
state cells in disagreement with the numerical work of
Ref. 3 and we give arguments to indicate that this
should be the case even when k is not close to 1. We
hope that the convict with the numerics will be resolved
in the future. If a continuous family of steady states ex-
ists, as we think, there remains the possibility of under-
standing the selection observed in the experiment by a
stability analysis, if it is not due to boundary effects as in
convective cells.

II. SAFFMAN- TAYLOR FINGERS
IN THE SMALL-(1 —A, ) LIMIT

A. Description of the outer and inner regions

In the small-(1 —A, ) limit, the finger profile separates
into two regions where two different types of simple and
useful approximations apply.

(i) In the tip region (called hereafter the outer region)
the viscous Quid is weakly perturbed by the existence of
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the thin layer of width 1 —A, left on the sides of the ad-
vancing finger. To leading order in 1 —A, , it behaves as if
it were completely expelled and advected by the finger;
the Aow is therefore uniform, with a velocity U equal to
that of the finger.

(ii) In the trail region (called hereafter the inner re-
gion) we can no more neglect the tangential velocity of
the viscous Auid relative to the finger. But since the
finger profile becomes nearly Aat, the Aow is essentially
parallel to the finger. The pressure will therefore be tak-
en to be constant- across the thickness of the layer and
equal to its value on the interface. This approximation
allows us to derive an ordinary differential equation for
the shape of the finger [Eq. (14)J which then has to be
matched to the "meniscus" shape in the outer region.
The whole approach is very similar to the classical
analysis of coating Aows by Landau and Levich.

Before presenting the equations which follow from the
preceding remarks, let us recall the basic formulation of
the Saffman-Taylor problem. If v(x,y) denotes the two-
dimensional average velocity in the viscous Auid and
P(x,y) the pressure field, the fiow outside the finger is
governed by the following equations:

v(x,y)= —(b /12@,)VP,

T I'=0, (2)

where b is the plate spacing of the Hele-Shaw cell, p the
viscosity of the driven fiuid (as usual, in the following,
the viscosity of the pushing Auid will be assumed to be
zero). For a steady-shape finger advancing at constant
velocity U along the x direction, the set of boundary
conditions on the interface is

(v„);„,= U cosO,

(P);„,=Po —T~,
(3)

where 0 is the angle between the local normal vector 6'

on the finger and the x direction, Po is the constant pres-
sure inside the finger, T the surface tension between the
two Auids, and ~ the local curvature. On the side walls
of the channel free-slip boundary conditions are im-

posed,

Uy =0 (5)

The interface profile then has to satisfy the condition

(b /12p U)(P)—;„,= —(b /12@ U)(PD —T~)

= (x),„, ,

which means that the pressure difference between two
points on the viscous Auid side of the interface is exactly
compensated by the difference in curvature between

a will denote in the following the half-width of the chan-
nel, and 4= —(b /12@)P the velocity potential.

In the outer region, as explained before, we are in-
terested in interfaces going from one side of the channel
to the other. The obvious solution of Eqs. (1)—(5) is
therefore a uniform Aow at the finger velocity

N=Ux .

these two points. Equation (7) is a differential equation
for the interface profile.

We can now make contact with the results previously
obtained in Ref. 6. We obtain a pendulum equation by
diff'erentiating Eq. (7) with respect to the dimensionless
curvilinear abscissa s, taking a as unit length,

(b /12pUa )d 8/Bs = —sinO .

The general solution of Eq. (8) may be written as

K=BO/Bs ='rr[(2/d )( cosO+C) J' (9)

where we have introduced' as a dimensionless control
parameter the combination do ——~ b T/12pUa . This
finally gives the following parametrization for the shape

x(8)= —(do/2m )'~ I dO' sinO'/( cosO'+C)'~
0

y(8)=(do/2~ )' I dO'cosO'/( cosO'+C)'~~ .
0

(10)

The integration constant C as well as do are at this
stage still arbitrary, but we find a relation between them
by imposing that the meniscus completely fills the chan-
nel width, which means

Note that in writing Eq. (11) we have favored solu-
tions which come tangentially to the side walls (zero
contact angle for y =1). This will turn out to be exactly
true only for the limit shape A, =1 and more generally
the upper bound of integration in Eq. (11) will also have
to be considered as an unknown function, close but not
equal to ~/2 (see below Sec. II 8).

Among all solutions of Eqs. (9) and (11), the one cor-
responding to C =0 plays clearly a special role.
Whereas for C )0 the curvature never vanishes, for
C =0, dy/dx = —cotO and l~ vanish together on the side
walls. This particular solution will turn out to be our
A, =1 solution, since sma11 curvature and small contact
angle will be required for the matching to the inner re-
gion.

We proceed now to the discussion of the inner region.
Let 4 =+—Ux denote the velocity potential in the
frame of the finger. From Eqs. (2), (3), and (5) it is easily
seen that the relative Aux of the viscous Auid Aow nor-
mally to the direction of propagation of the finger is a
conserved quantity, i.e.,

p(x) = J dy' B,4(x,y') =y(x = —~ ) . (12)
y (x)

In the inner region we approximate y(x) by the value of
0 N on the interface multiplied by the local thickness of
the layer h (x)= 1 —y (x). This gives

p(x)= Uh (x)[(do/~ )d h/dx —1J . (13)

To derive Eq. (13) we have used the fact that in the
inner region

~

dh /dx
~

&& 1 and set

a(x ) = (d h /dx )[1+(dh /dx ) J =d h /dx

y(8=sr/2) —y(8=0)
=(do/2n )' f dOcosO/(cosO+C)'i =1 .

0
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d h /dx =(h —I)/h . (15)

As pointed out by Pomeau, this equation is similar to
the equation of Landau and Levich for the problem of
the drained film and has been derived here in an analo-
gous manner (the difference resides only in the denomi-
nator of the right-hand side where we have h instead of
h ). Our scalings and equations are identical to those
given in Ref. 6. They have been derived directly in real
space for the sake of simplicity. Equation (15) has to be
integrated with the boundary condition

h ~1, dh/dx and d h/dx ~0 as x~ —~ . (16)

We are now ready to proceed to the matching between
the two regions.

B. Matching and predictions

We consider first the inner problem. As in the
Landau-Levich calculation, the prescription (16) is
enough to fix entirely the solution, up to a translation on
the x axis. This can be understood by linearizing Eq.
(15) around h =1. One finds that the possible asymptot-
ic behaviors of h are of the form

h =1+a exp(px) as x —+ —m,
with p =1. The only acceptable solution is the conver-
gent one (p=1), the constant a corresponding to the
translational degree of freedom with respect to x. From
Eq. (15), it is also clear that h diverges like x /6 as
x~+ oo. Its leading behavior may be written in this
limit as

h (x )=x /6+px /2+yx+fi —ln(x )/2+o(1/x ), (17)

where p, y, 5 are numbers of order one which have to be
calculated numerically and which naturally depend on
the choice of origin in x. Note, however, that the quan-
tity p —2y is translationally invariant. We have found
numerically

P~ 2y =6.0+0. 1 . — (18)

This indicates that y is always greater than
y* =3.0+0.05, a value which is attained when p van-
ishes.

In the outer region h (x) takes the general form

Ii (x)=g e"h "(x), (19)

where the small expansion parameter e turns out to be

On the other hand, as x goes —m, (i.e., far behind the
finger tip), 4 behaves as —Ux, expressing the fact that
the viscous fluid is at rest in the laboratory frame, and
h (x ) tends by definition to its limiting value 1 —A, .
Equations (12) and (13) lead therefore to

h (x)[(do/~ )d h/dx —1]=—(1 —A, ) .

By rescaling the variable x and the function h as
x =[(1—A, )do/~ ]' x and h =(1—A, )h, we get the fol-
lowing parameterless equation, constituting our inner
problem,

(1 —A, ) (Ref. 11) and the zeroth-order term h (x) belongs
to the class of functions described by Eqs. (9) and (11) of
Sec. II A. We choose as the origin of the x coordinate
the point where the outer meniscus touches the side wall
[i.e., h (x)=0]. Since x is the rapid variable, we then
have to match the large-x asymptotics of h(x) given by
Eq. (17) to the small-x expansion of h (x)/1 —A, around
x =0. As a simplifying feature, we observe that powers
of x coming from higher-order corrections to h (x) in
(19), once expressed with the inner variable x and divid-
ed by 1 —A, , all vanish in the limit (1—A, )—+0. They can
be discarded in our leading order matching procedure.
Writing now

& (x)/(1 —&)=g a~/(1 —A, )xi'

=g (1—&) ' 'a~(do/~') ~'x~, (20)

we note that derivatives of h of order greater than 3
also give negligible contributions in the limit (1—g)~0.
Finally, what we have to do to leading order, is to match
the first three terms of the inner expansion [Eq. (17)] to
the first three ones of the right-hand side of Eq. (20) [see
note (Ref. 11) for the logarithmic term]. Going back to
formulas (9) and (10) and calling HM and aM, the angle
and the curvature of the outer solution at x =0, one
easily gets

dh /dx o
——cotOM,

/dxx O =KM / Slii OM

d h /dx„o ——3cosOM ~M/sin OM

+(vr /do)/sin 9M .

(21a)

(21b)

(21c)

cot8~=
~

C
~

=y*(vr /do)' (1—A, ) ~3, (22)

where y*=3. This result in turn enables us to link 1 —A,

to do as 1 —A. tends to zero when we put it into condi-
tion (11),

If the linear and squared terms in Eqs. (17) and (20)
are to be identified, it is clearly seen from Eq. (21) that
m/2 —9~ and vM have to be respectively of order
(1—A, ) and (1 —A, )' . These two conditions once
met, the matching of the cubic terms follows automati-
cally [up to corrections of the order (1 —A, )

~ ]. At this
point two choices are possible: either the constant C in
Eq. (9) is taken positive of the order (1—A, )

~ and
OM

——~/2, or C is taken negative and then OM
——arccos

C, ~M ——0. It can be shown that every other choice,
compatible with the preceding requirements on OM and
~M, is reducible to one of these two cases at the price of
a translation of order 1 in the inner variable and correc-
tions of order 1 —A, which are beyond the scope of this
paper. The first choice would lead, as can be seen from
Eq. (10), to a parameter do increasing with 1 —A, from
A, = 1, which clearly does not correspond to what is phys-
ically expected. Fortunately (and undoubtedly in a
nonaccidental way), the numerical result given in Eq.
(18) is negative and forces us to adopt the second as-
sumption. We deduce from Eqs. (17), (20), and (21) the
relation
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1 = ( 1 lvr )(do/2)'

X I dOcosO/( cosO —
~

C
~

)' . (23)
0

The maximal value of dp corresponding to 1 —A, =O is
obtained by setting C =0 in the last equation, which
yields

I dO( cosO)'
p

=(1/4~)[I (1/4)] =13.75 . (24)

It is worth noting that this value lies well outside the re-
gion of instability of the planar interface (do &1) and
significantly below the Kadanoff-Shraiman upper
bound' dp =2m for the existence of a fingerlike inter-
face. From Eqs. (22) and (23) we conclude that do ap-
proaches its maximal value as 1 —k goes to zero like

(do —do)=y (rr /do ) (Mo/BC)c=o(1 —A, )
~ (25)

= ( 1/vr )(d o )
~ E ( 1/&2 ), (26)

where K (1/&2) is a complete elliptic integral of the first
kind. ' The numerical coefficient in front of (1—A, )

~ in
Eq. (25) is found to be of the order of 81.

Unpublished numerical work by McLean' which ex-
tends the results presented in Ref. 15 seems to corro-
borate our prediction. He investigated values of 1 —k as
small as 10 . For his last reliable data 1 —A,

=5.8& 10, he gets for dp the value 13.302 which is in
good agreement with our estimation (24). Moreover, the
3 power 1aw appears to be we 11 estab 1ished in this range
of values of 1 —k [although there seems to be a
discrepancy of 20%%uo concerning the limiting value of the
ratio (do —do)/(1 —A,), whose origin is not clear to
us].

To end up this section, we stress that the existence of
higher branches of solutions for small 1 —A, may also be
easily understood in our approach. In our discussion of
the external region, essentially described by a pendulum
equation, we have considered up to now solutions where
the "pendulum" performs one single oscillation between
—OM and 0~ (from one side of the channel to the other
one). The matching to the inner solution was then made
possible by the vanishing of the curvature ~~. Obvious-
1y, other solutions where the pendulum performs an odd
number of oscillations greater than one are equally ad-
missible. Hence, in the limit of small 1 —A, we deduce
the existence of a countable set of solutions character-
ized by the appearance of n bumps and n —1 holes. For
the nth branch Eq. (23) transforms into

1/(2n —1)= 1/ir(do /2)'

)& j dOcosO/( cosO —
~

C
~

)', (27)
0

where C is still given by Eq. (22). The upper bounds d„*
for these successive branches behave therefore like

Calling I(C) the integral on the right-hand side of Eq.
(23), we get

(Bdo/BC), o ———2doI'(0)/I(0)

do /(2n —1) . This means that the lowest velocity at-
tainable on the nth branch increases with n as (2n —1) .
Such kinds of solutions have been recently observed nu-
merically' in the related symmetric model of dendritic
growth in a channel (with a diffusion length much larger
than the radius of curvature of the tip).

Our finding suggests that the infinite discrete family of
solutions found near k= —,

' persists for all values of A, be-
tween —,

' and 1. It is also amusing to point out that it
may explain simply in the opposite limit recent numeri-
cal results concerning the stability of the various
branches in the k= —,

' limit. ' It has been found that
solutions on the nth branch are unstable against (n —1)
deformation modes localized around the finger tip. In
the A, =1 limit, it is clear that on the nth branch each
bump may grow to the detriment of others. This yields
n unstable modes to which we have to subtract the zero
frequency mode corresponding to a global translation of
the finger. Therefore, we also expect n —1 unstable
modes on the nth branch.

III. DIRECTIONAL SOLIDIFICATION

We turn now to an apparently different problem,
namely, the mechanism of wavelength selection for
directional solidification cells. In most common direc-
tional solidification experiments, one is drawing at con-
stant velocity a dilute binary mixture across a linear
temperature gradient. Above a critical pulling speed,
the interface between the liquid and solid parts assumes
a cellular pattern, where deep liquid grooves separate
periodically spaced fingers of solid. ' The interesting
problem, yet unsolved, is to understand the mechanism
of wavelength selection for this pattern. This question is
treated here because, when the diffusion length is much
larger than the width of a cell, a Saffman-Taylor finger
of a given width corresponds to solidification cells of a
particular wavelength in a sense that is made precise by
a matching procedure, as explained below. A recent nu-
merical prediction of solidification cell wavelength
translates into the fact that the relative width of the cor-
responding finger approaches unity. This particular lim-
it is now under control by using the techniques and re-
sults of the first part of this paper. We can therefore
perform analytically the above-mentioned numerical cal-
culation. However, this analysis leads us to conclude
that a continuous family of steady-state cells exists for a
given value of the pulling speed in contradiction with
the numerical findings of Ref. 3.

We consider here the one-sided model of directional
solidification (diffusion only in the liquid part). As
in Ref. 3, we will restrict ourselves to the somewhat
unrealistic case of a partition coefficient
K =(dCeq"'/dT)/(dCeq'q/dT) equal to 1. However,
some of the subsequent analysis could be applied with
slight modifications to the more general case of K
different from 1. We refer to the reader to Ref. 3 for
more details on the notations or definitions and to the
review paper by Langer' on crystal growth for a discus-
sion of the physics contained in the model. The equa-
tions to be solved are
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V w +Pc)w/c)x = P/(2v 1)—, —
cos8=(n Vw);„, ,

w;„, =[2v/(2v —1)](2V/P }ic .

(29)

In the small-P limit three regions may be distinguished
in the space occupied by the liquid part.

(i} Well downstream the interface (x ~+ Oc ), the fiow
of u is directed essentially along the x direction and de-
cays exponentially as

u -ut,.
p exp —P(x —x„) .

(ii) On length scales of order 1 around the finger tip,
the terms linear in P are negligible compared to the I.a-
placian in the conservation equation. Up to corrections
of order P, Eqs. (29) are identical to the Saffman-Taylor
equations, with the quantity cr =[2v/(2v —1)](2V/P )

playing the same role as do/4nin Sec II...If we call the
capillary length $„and remember that the instability
threshold of the planar interface occurs for V«1 at
v, =—,'+O(V' ), this control parameter o can be writ-

ten for small V as

V'u +Paw /ax =0,
P cos8= —(n Vu );„, ,

u;„,= 1 (P—/2v)x (2—V/P)ic .

The difFusion field u(x, y) measures the excess solute
concentration ic the liquid, which has to vanish for
x ~+ oc. The Peclet number P is defined as the ratio of
2a, the cell spacing (chosen in the following to be the
unit of length rather than a as in Secs. II and III) over
the diffusion length l =2D/U. We will be interested in
the limit of small Peclet numbers, which is experimental-
ly relevant. The two other dimensionless parameters v
and V in Eqs. (28) are defined, respectively, as the ratios
of the thermal length and the capillary length over the
diffusion length. Note that v= ~ means the absence of
temperature gradient along the x direction. The prob-
lem of wavelength selection, in this formulation,
amounts to seeing whether in Eqs. (28) the Peclet num-
ber P is determined as a function of v and V.

It is useful to introduce a new field w (x,y)= [2v/(2v —1)](1—u /P —x/2v) and to rewrite Eqs.
(28) in terms of w,

o =/„D/[4a (U —U, )], (30)

Clearly this phenomenon occurs on length scales of or-
der 1/P, large compared with I and one expects the
matching of this asymptotic behavior to a Saffman-
Taylor finger to be possible for any value of X. We now
show it explicitly in the A, =1 limit. To match regions
(ii) and (iii), we write an equation generalizing in the case
of finite P Eq. (13) of Sec. II. As before, we consider the
Aux

p(x) = f dy c), (w —x) =Ii(cr d h /dx —1) .
y(x)

p(x) is no more a conserved quantity but obeys the
equation

c)p(x)/Bx+Pg&(x) = P[2v/(2v —1)]h (x), — (32)

which gives for h (x)= —,
' —y(x), the following fourth-

order differential equation

o h d h /dx = ( dh /dx )( 1 —o d h /dx )

—P fl/(2v —1)+o d h/dx ]Ii . (33)

The asymptotic behavior of Eq. (31) is easily recovered
by balancing the linear terms in Eq. (33). It appears,
moreover, that the solutions of Eq. (33) possessing this
asymptotic behavior belong to a two-dimensional set.
We find indeed that they can be parametrized by two in-
dependent constants

where U, is the critical velocity. In this region the
shape of the interface will be very much like that of a
Saffman- Taylor finger characterized by a value of k
uniquely determined by the value of o ( —,

' &A, &1 for
0&cr &0.35). At this stage A, is arbitrary and nothing
fixes P. If we were able to derive another relation be-
tween A, and P, then the mechanism of selection mould
be understood.

(iii) Well behind the tip region (x ~ —ac, ic~0), the
presence of a temperature gradient constrains the
grooves to become infinitely narrow. The asymptotic
profile of the cell ( ——,

' &y & —,
'

) in the cusp region takes
the form for y ~—,

'

—,
' —y = 3 exp[Px/(2v —1)] .

h (x)= A exp[Px/(2v —1)]+ +B exp( —[3(2v—1)/P(o 2)'~ ]I exp[ Px/3(2v —1)]—1I ),— (34)

Ii (x)/(1 —A, }=—,'+(a/2) expI[2/(1 —A, )a]' x I, (35)

which is the result obtained in Sec. IIB for the asymp-
totic behavior of the Saffman-Taylor problem in the

where we have discarded higher-order corrections in P
which might be expressed in terms of A and B. Note
that for

~

Px
~

&&1 and by assuming A =(1—A, )/2,
B =a(1—1,)/2, Eq. (34) reduces to

inner region (x ~—oo ). Since the choice of A and B is
arbitrary, we conclude that Eq. (33) cannot provide the
supplementary relation between k and P that we are
looking for. From Eq. (34) we deduce also that is is safe
to identify, to leading order in P, the constant A with
1 —A, , provided that the origin x =0 in Eq. (34) is chosen
in the region where the Saffman-Taylor description ap-
plies. In other words, any Saffman-Taylor finger shape
in region (ii) can be continued smoothly in region (iii)
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0= f dy(1 —u)/P
0

= f dy Ix /2v+ [(2v —1)/2v]o. irI
0

(36)

The cusp contributes in this equation by a finite quanti-

ty, equal to leading order in P to
(1—k)/2P[(2v —1)/2v], which one has to add to the
contribution of the Saffman-Taylor finger. Let us intro-
duce a point (x„y, ) located at the boundary between the
finger-tip region and the exponential tail. Then Eq. (36)
can be expressed as

with the help of Eq. (33). For A, close to 1, the terms
proportional to P can be neglected in the matching re-
gion and Eq. (33), then, integrated once and rescaled to
give Eq. 15 (it is easily seen in the rescaled variables that
the neglected terms are indeed negligible). The perturba-
tion of h, the solution of Eq. (15), by the neglected terms
can be taken into account by usual multiple-scale
analysis and at first order amounts to replacing (1 —A, )

by (1—A, )exp[Px/(2v —1)] everywhere in the expression
of h.

The matching between region (i) and region (ii) gives a
relation between 1 —A, and the position of the interface
that we can also easily obtain by invoking the global
conservation law of the solute in the liquid. It leads in
this case to the following integral condition on the inter-
face:

by displacements of the interface of order 1/P relatively
to the origin of x imposed by the temperature gradient.
Finite displacements of the interface occur, on the con-
trary, if 1 —k vanishes in the small-P limit, at least as
fast as P. Within this assumption, our outer solution for
A, —1 described in Sec. II gives a fair approximation to
the finger-tip region and Eq. (37) takes the more simple
form, valid to leading order in P,

[(2v—1)/4v](1 —&) /P —x, /4v= ~' =O. 35, (38)

where x, now designates the position of the rear of the
meniscus. Here again 1 —A, remains indeterminate.

In this paper we have studied Saffman-Taylor fingers
and directional solidification cells at low velocity and
have obtained many new results. It would be worth test-
ing numerically our predicted shapes for the fundamen-
tal and higher branches of Saffman-Taylor fingers as well
as our values for minimal velocities. For solidification
cells, in contrast to the numerics, we do not find analyti-
cally any selection of P by a microscopic solvability prin-
ciple but indeed a continuum of solutions where P (i.e.,
the cell width) is related to the position of the interface
[via Eqs. (31) and (37)] (Ref. 22). Clearly, further work
is needed to elucidate this discrepancy and to decide
whether something goes wrong with the numerics, or
whether some subtle effect is missing in our analysis.

[(2v —1)/4v]( 1 —A, ) /P —x, /4v

= [(2v —1)/2v]o. +(1/2v) f dy(x —x, ) .

(37)

We first note that this relation, in the case of a uniform
temperature (v= oo ), reduces to 1 A, =2Po, which —is
the result obtained for dendritic growth in a channel
with an undercooling equal to 1 (Ref. 21). But at finite v
the undeterminacy on 1 —X remains. The right-hand
side of Eq. (37) is a quantity of order 1 since it depends
only on the shape of the Saffman-Taylor finger of width

Therefore, solutions corresponding to a nonvanishing
(1 —A, ) in the P &&1 limit are necessarily accompanied
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