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In the free-electron laser the resonant interaction between the radiation field and electron beam
can result in radiation focusing (optical guiding). If the centroid of the electron beam is trans-

versely displaced off axis, the radiation field, under certain conditions, will follow and be steered

by the electron beam. The effect of a spatial modulation on the electron-beam envelope can also

modify the propagation characteristics of the radiation. These and other phenomena are analyti-

cally and numerically studied using a novel source-dependent Laguerre-Gaussian modal represen-
tation of the fully three-dimensional radiation field. Unlike the vacuum Laguerre-Gaussian modal

expansion, the longitudinal spatial dependence of the radiation waist and curvature are determined
and characterized by the source term in the wave equation. Among the advantages of this general
source-dependent expansion approach is that few modes are needed to accurately describe the ra-
diation. Hence, fast and accurate numerical solutions of the fully three-dimensional free-electron
laser problem can be obtained over distances of many Rayleigh lengths. Furthermore, this expan-
sion enables us to drive an envelope equation for the radiation beam as well as an expression for
the centroid of the beam.

I. INTRODUCTION

In the one-dimensional analysis of the free-electron
laser (FEL) the radiation field, wiggler field, and electron
beam resonantly couple so as to modify the longitudinal
wave number of the radiation field. ' This resonant in-
teraction, between the coherent radiation and electron
beam in the FEL mechanism, can lead to focusing of the
radiation beam. This phenomenon was first analyzed for
the low-gain FEL with transverse effects where it was
shown that the diffractive spreading of the radiation
beam could be overcome by a focusing effect arising
from the modified index of refraction. Recently optical
guiding in FEL s operating in the exponential-growth re-
gime has been studied in the small-signal, exponential-
growth regime, for the asymptotic behavior of the ra-
diation beam. This radiation-focusing phenomena has
been shown to play a central role in the practical utiliza-
tion of the FEL, since, in many proposed experiments,
the short-wavelength radiation beam will not be confined
or guided by a waveguide structure. Furthermore, the
interaction length (wiggler length) is usually long com-
pared to the Rayleigh length associated with the radia-
tion beam. Therefore, focusing of the radiation beam,
via the resonant interaction with the electron beam, is
necessary in order to overcome the natural tendency of
the radiation beam to diffract. If diffraction of the radia-
tion field were not fully or partially offset by the focusing
effect, the FEL would suffer from reduced gain and
efficiency.

The primary objectives of this paper are twofold. The
first is to present a general method of formulating and
solving problems involving radiation focusing and guid-
ing for mechanisms in which the refractive index is
known. The second objective is to apply this approach

to the focusing and steering of radiation in FEL's with
arbitrary gain. We present a general, self-consistent, ful-
ly nonlinear, modal representation formalism which we
apply to the phenomena of radiation focusing and guid-
ing in FEL's. The novel aspect of our modal expansion
is that the characteristics of the modes are governed by
the driving current density, as opposed to a heuristic nu-
merical approach, ' and hence it is called the "source-
dependent expansion" (SDE). Instead of using the usual
modal expansion consisting of Uacuum Laguerre-
Gaussian functions, "we incorporate the source function
(driving current) self-consistently into the functional
dependence of (i) the radiation waist and (ii) the radia-
tion wave-front curvature, as well as (iii) the radiation
complex amplitude. Because of the source-dependent
nature of our modal expansion, the fundamental mode
remains dominant throughout the evolution of the radia-
tion field. The SDE scheme appears to have a number
of advantages over the conventional vacuum representa-
tion. Among the advantages is that the lowest-order
term in the expansion is a good approximation to the ra-
diation field even for propagation distances long com-
pared to a Rayleigh length. Hence valuable insight con-
cerning focusing and steering can be obtained analytical-
ly. Furthermore, because far fewer modes are needed,
compared to the vacuum expansion approach, fast nu-
merical solutions of the fully three-dimensional wave
equation can be obtained. Because of the numerical
speed of this approach, modeling of the driving current
could include electron-beam emittance, energy spread,
wiggler gradients, sideband frequencies, etc.

In Sec. II the fully three-dimensional wave equation is
solved using the Laguerre SDE approach with a general
source function and a system of first-order coupled
differential equations, which completely describe the ra-
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8 4lc 8 cl

Bz air, Bg' Bg'

2

4g
D~~ (g) = 2 ~(z)D~~ (g) i (m +1)B(z)D~~+i (g) i—(m +p )8'(z)D~~ i (g),

where

z(z) =r,'Ir, +i(2m +p+1)[(1+a )c Ivor, ar,'—/r, +a'/2],
8 (z) = —[ar,' Ir, + ( 1 —a )c Ivor, —a' /2] i ( r,'—Ir, —2ac Ivor, ),

(9a)

(9b)

the asterisk denotes the complex conjugate, and the prime denotes a derivative with respect to z, i.e., prime =0/Bz.
In obtaining (8) the following identities were used,

gU~ = (2m +p + 1)U~ —(m + 1)U~ + i
—(m +p ) U~

2/8 U~ IBg= (2m +p g) U~ ——2(m +p ) U~

gc} U~ /Bg +BU~ /Bg= —,'[g+p /g —2(2m+p+1)]U~

where U~ (g)=P L~ (g)exp( —g/2). Substituting (g) into (7) and performing the operation

f (cos(p'8), sin(p'8) )d 8/2'

on the resulting equation yields

r

00 am, p
D~ (a/az+ ~., ) x b

'

m=0 m, p

am, p' —i[(m+1)BD'+&+(m+p)8'D' &]X 'b
m, p

(1+5~ 0) 'cos(p 8)
f dOS((~O~z )X

'
'

( 8)
(10a)

(10b)

where 5& 0 is the Kronecker delta. Multiplying (10) by (D„) and integrating over g from 0 to oo yields

m, p+ A ~(z)
z m, p

a, ~(z) a +, ~(z) F p(z)—imB(z)X b

'

( )
l(m+p—+1)B (z)X b ( )

= iX G
—

( )m —1p Z m+1,p Z m, p Z

(1 la)

(1 lb)

where

F ~(z)

6 ~(z) f dO f dgS($, 8,z)[D (g)]*X '
(1+5~ 0) 'cos(p 8)

sin(pO)

(12a)

(12b)

In obtaining (11) we used the orthogonality relation

The function 8(z) is arbitrary and is not specified.
The equations for a ~ and b ~ in (11) are underdeter-
mined, since the function 8 (z) can be shown to be arbi-
trary. If we choose 8(z)=0, for example, we would in
effect be expanding the radiation field in the convention-
al vacuum Laguerre-Gaussian modes. " We will show
later that, in general, expansion in terms of the vacuum
modes, B=0, would require far too many modes to ac-
curately describe the radiation beam over distances of
many Rayleigh lengths. A more appropriate choice for
B(z) will depend on the particular problem under con-
sideration. Let us consider one of the most common sit-
uations where the radiation beam at z =0 is known and

has a Gaussian radial profile symmetric about the z axis.
In this case the complex radiation amplitude at z =0 is
given by

a(r, 8,0) =ao oexp( —[1—ia(0)]r /r, (0) J

and is independent of 0. Let us further assume that for
z &0 the radiation-beam profile remains approximately
Gaussian with a nearly circular cross section. That is,
the dominant part of the source S(r, O, z) has an r and z
dependence and the 0-dependent part is weak. In this
case we expect the magnitude of the coefficients, a ~(z)
and b ~(z), to become progressively smaller as m and p
take on larger values, i.e.,

I
a ~ I

~~
I

a +& ~ I,
Ia,p+i I

and Ib, p I
» lb +ip I lb, p+il.

lowest-order approximation to the radiation beam is
given by the ao 0(z) mode. Hence, if the ao o mode gives
a rough approximation to the radiation field we may
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having a Gaussian density profile, the appropriate index
of refraction for the FEL mechanism ' ' ' is

1 orb(r, z) e
n(r, z, a ) = 1+—

CO

(18)
I
a(r, z)

I
(Blitz+ A p p)ap p: iF—p p,

Bao,o=Fi,o .

(13a)

( 1 3b) where

solve for ap p(z), r, (z), and a(z) using (1 la). From (1 la)
we find that only the m=0, 1 and p =0 equations are
relevant and yield

We now have a specific expression for B (z), from (13b),
in terms of one of the moments, F& 0, of the source term.
Substituting (9b) into B (z) =F& p(z)lap p(z) yields the
following first-order coupled differential equations for r,
and a,

r,
' —2ca/air = r (Fi p/ap p)r (14a)

where ()ri r denotes the real and imaginary part of the
enclosed function. Since r, (z) and a(z) are now known
from (14a) and (14b) we may solve for A z(z) using (9a),

~(z) =2calcor, (F, ol—ao o)r

+i(2m+p+1)[2c lprr, +(Fi p/ao p)ii ] . (15)

Using B(z)=Fi p(z)/ao o(z) and the resulting equations
for r, and a in (14) allows us to solve for a ~ and b
in (1 la) and (1 lb).

It is useful at this point to consider the simple case of
propagation of a radiation beam in vacuum (no source
term). To illustrate this well-known limit we evaluate
a p, b p, r„and e in the source-free case, F p=G
=B=0. Equations (14a) and (14b) become
r,"=(2c/co) r, and a=(pr/2c)r, r,' and have the solu-
tions

r, (z) =r, (0)(1+z /zr~ )'

a(z) =z /zri

(16a)

(16b)

where r, (0) is the minimum radiation spot size at z =0,
zri ——(cp/2c)r, (0) =err, (0)lk is the Rayleigh length, and
A, =2vrc/co is the wavelength. From (10a) we find that

z(z) =2[a(z)+i (2m +p+ 1)]ccor, (z) which allows us
to solve for a ~ and b z using (11)

a ~(z) a ~(0)
( ): b (0) [rg( )/ g( )]

7

—i(2m +p + 1)tan (z /z& )
—1

Xe (17)

Equations (16a), (16b), and (17), together with the repre-
sentations in (5), (6a) and (6b), are in agreement with the
conventional vacuum Gaussian-Laguerre form.

III. RADIATION FOCUSING AND STEERING
IN FEL's

A. Radiation-beam envelope equation

We first consider the dynamics of an axially sym-
metric radiation field in the FEL. For a linearly polar-
ized wiggler field and axially symmetric electron beam

a' —2(1+a )clear =2[(Fi,olao o)z a(Fi,—o/ao, o)r]

(14b)

orb (r z) =cobo[rbol'rb (z) ]'exp[ —r 'Irb (z) ]

orb(r, z—) e '~ a (r,z)S(r,z)= a
c2 y a rz) (19)

Since the electron-beam radius rb may not be matched
with respect to the focusing fields (wiggler gradients) and
defocusing effects (beam emittance), we allow rb to be a
function of z (this case is considered in Sec. III C). To
proceed with the analysis we assume that in the source
function the complex radiation field amplitude in (5) can
be approximated by the lowest-order mode,
app(z)exp[ —(1 ia)r —Ir, ]. With this assumption the
source function can be written as

+00 e
S(g,z ) = —4v(a Irb )

I ao, o I

—(r, Zrb —ia)gl'Z2 2

Xe (20)

where v=(coborbo/2c ) =Ib /17 X 10' is Budker's constant
and Ib is the electron-beam current in amperes. The
moments of the source function, F (z), are given by
(12a)

c 2 ~ooF,o= —4 v(a Irb)
cu ao0

(r, /r„1)—
y (r /r +1) +i

(21)
where we have assumed itj to be constant across the elec-
tron beam. Since we are considering an axially sym-
metric electron beam and radiation field we note that
a z Fz ——G ~ =0——for p )0. Substituting (21) into
(14a), (14b), and (15) yields

r, r,
' —2ca lcp = —2—C(z) ( sinitr ),

CO

(22a)

r,2a' —2(1+a )c/co= —4—C(z)((cositj) +a(sinai ) ),

o(z)= [a+i(2m+1)2c

r& co

(22b)

—C(z)[(siniI'r ) +i(2m + 1)(cosg) ]],
(22c)

rb (z) is the electron-beam radius, rbo rb (0)——, prbo

=(47r
I

e
I

nbp/mp)' is the initial beam plasma fre-
quency on axis, nbo is the initial beam density on axis,
a =

I
e

I
B /k m pc is the normalized wiggler ampli-

tude, B is the wiggler magnetic field strength, k is the
wiggler wave number, y is the electron's Lorentz factor,
g is the electron's phase in the ponderomotive wave po-
tential, and ( ) denotes the ensemble average over all
electrons. Substituting (18) into (4) and noting that

I

1 —n
I
((1 gives the FEL source function
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where C(z) =(2v/y )H(z)a /
~
ao o(z) ~, H(z) =(1 F—)/

(1+F), and F(z)=rb/r, is the filling factor. The func-
tion C(z) measures the coupling between the radiation
and electron beam and decreases as the radiation grows.

Equations (22a) and (22b) can be combined to give the
following envelope equation for the radiation beam,

r,"+K (z, rb, r„ao o )r, =0, (23a)

where the initial condition on r,' is found from (22a) and

K~=(2c/co) ( —1+C (sinitt) +2C(cosg)

+ ( co /2c )r, C' ( sing ) )r, (23b)

The first term on the right-hand side of (23b) is defocus-
ing and corresponds to the usual diffraction expansion,
the second and third terms are always focusing while the
last term is usually a defocusing contribution.

B. Radiation focusing

Focusing occurs when K )0. In the high-gain
trapped-particle regime, the condition for a perfectly
guided beam (K =0) cannot be maintained since K de-
creases as the radiation grows. In the small-signal,
exponential-gain regime the quantities ( sing ) and
( cosg ) may be calculated from the linearized orbit
equations. The envelope equation may then be solved to
determine r, as a function of distance along the wiggler.
One finds that in this regime conditions for a perfectly
guided radiation beam can be achieved. '

Using (1 la) or (13a) we find that the magnitude of
a o o(z ) evolves according to

C. Radiation steering in the FEL

In the FEL the centroid of the electron beam may be
displaced off axis by a misalignment, a redirection of the
beam, or because of the oscillations in the wiggler field.
To determine the degree to which the radiation beam
will follow or be steered by the electron beam, we con-
sider the case where the electron-beam centroid is dis-
placed transversely in the x direction. The index of re-
fraction in this case is given by (18) with rob(r, z) re-
placed by

~b(r '9 z ) ~ho(rbo/rb ) e [1+(2rxb(z)/rb )cos~l

(26)

where xb(z) is the displacement of the electron-beam
centroid and

~
xb

~

&&rb. In the source term, given by
(19), we consider only the lowest-order symmetric and
antisymmetric mode with respect to the x axis,

a(r, O, z)-(aoo+ao &g' cos8)exp[ —(1 ia—)g/2] .

With this assumption the moments of the source func-
tion, F ~(z), for p=0, 1 are

F
p
———8—v(a„ /re)( )

ao i
' (&'«b I)—

X e(z)+i (27)
&o o (r'«+ I )

+~+'

where e(z)=2' xb(z)r, (z)/rb and 6 ~ =0. For small
displacements of the electron-beam centroid it is easy to
show that the centroid of the radiation beam is given by

[a/az+( Ao o+ A o o)]
~
ao o ~

'
= —'(Fo, oIzo, o —Fo,o~o, o) . (24)

&0,0

r (z) ao
xL (z)= v'2 (28)

Substituting (21) and (22c) with m =0 into (24) and us-
ing (22a) yields

where xL is defined so that
~

a
~

is proportional to

r, (sing)
(r,

/
aoo

/

)= —a
+rb )

(25)
exp I

—[(x —xL ) +y ]/r, I .

where (r,
~
ao o ~

) is proportional to the radiation power,
&(z)=2.15 X 10 "(

~
~o,o(z)

~
«. /&) ~ Equation

should be solved together with (23a) and show that the
maximum rate of increase in power occurs when r, = rb.

D. EÃect of modulated electron beam

The electron-beam envelope in the FEL can undergo
modulations. The modulation is symmetric about the z

Electron beam
Current
Energy
Radius

Radiation beam
Wavelength
Input power
Spot size

Wiggler field
Wavelength
Wiggler strength
Resonant phase

TABLE I. Parameters used in numerical examples.

Ib =2k A (v =0.118)
Eb ——50 MeV (@=100)
rbo ——0.3 cm

X=10.6 pm
&(z =&)=230MB' (

~

a(O, &)
~

=1.84X10 ')
r, (0)=0.6 cm (z~ ——10.7 m)

=8 cm
B =2.3kG (a =1.716)
yR ——0.358 rad
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axis and can be caused by improper values for the beam
emittance, radius, and/or current injected into the
wiggler region. For small perturbations about the
matched beam radius, r~o, we find from the electron-
beam envelope equation that rb(z)=rbo[1+hsin(K&z)]
where rbo=(2e„/a k )', Kz ——a k /&2y is the beta-
tron wave number, due to the weak focusing efFect of
wiggler gradients, e„ is the normalized emittance,
a =

~

e
~

8~/(k moc ), and b, &&1. The modulation of
the electron-beam envelope may be included in the

source term, Eq. (19), through the electron-beam plasma
frequency cos(r, z). The efFect of a modulated electron
beam on the radiation beam is illustrated in Sec. IV.

In cases where the electron-beam centroid or envelope
is displaced or modulated with a spatial period close to
the wiggler period, it becomes necessary to include in
the source function, Eq. (19), the rapidly varying part of
the phase f. This rapidly oscillating contribution to the
phase, [a„/(4+2a )]sin(2k z), arises from the linearly
polarized wiggler field.
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for a displaced electron beam, xb ——x, [1—sech(k, z)] with
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FIG. 10. Radiation amplitude on axis,
~
a(0,z ) ~, for a

modulated electron beam, rb ——rbp[1+bsin(Ksz)] with rbp=0 3.
cm, 6=0.1, and A,~ ——2~/K& ——4.66 m.

lates about the electron-beam centroid. In the next ex-
ample we take the electron-beam centroid to be oscillat-
ing about the z axis, xb ——x, sink, z, with amplitude
x, =rb/4 and period A,, =zz ——10.7 m. Figure 8 shows
the electron and radiation centroids xb and xL, as a
function of z/zz. Because of the high gain in the radia-
tion field, the radiation centroid eventually follows the
average position of the electron-beam centroid. Figure 9
shows the distortion of the radiation profile due to the
oscillating electron beam at 12 Rayleigh lengths
(z =12'). In the case where the electron-beam centroid
oscillation is due to the wiggler field, x, =a /yk and
k, =27r/A, , no noticeable change in the evolution of the
radiation field (compared to the case for x, =0) is ob-
served.

The last illustration is for the case where the electron
beam envelope is spatially modulated. Using the param-
eters in Table I we find that e„=0.06 cm rad and
As —2w/Ks ——4.66 m. Figue 10 shows the amplitude of
the radiation field on axis as a function of propagation
distance when the electron-beam envelope is not
matched, rb rbo[——1+6,sin(Kiiz )], where rbo ——0.3 cm and
6=0.1.

plitude on axis obtained from methods (a), (b), and (c) as
a function of propagation distance. The SDE solution
(c) is again in good agreement with solution (a) where as
solution (b), beyond a Rayleigh length, grossly deviates
from (a) and (c). The results in Figs. 2 and 3 clearly
show the improved accuracy of the SDE approach over
the conventional vacuum expansion method. As an ex-
ample of radiation focusing, for an FEL in the small-
signal, exponential-gain regime, the radiation beam ra-
dius is found to asymptotically approach a matched per-
fectly guided value as shown in Fig. 4. For this exam-
ple, the parameters of Table I were used and five modes
employed.

We now use the SDE method to illustrate the steering
of the radiation beam when the electron beam is dis-
placed ofI axis. In these numerical illustrations ten radi-
al modes (m=0, . . . , 9) and two angular modes (p=0, 1)
were used. En the first example the electron-beam cen-
troid is displaced off axis according to xi, ——x, [1-
sech(k, z)]. Figure 5 shows the electron- and radiation-
beam centroids xb and xl for x, =rb/4=0. 075 cm and
A., =2m/k, =4z& ——42.8 m. The radiation centroid fol-
lows and oscillates about the electron-beam centroid.
Figure 6 shows the radiation profile at 12 Rayleigh
lengths (z = 12zz ). The asymmetry of the radiation
profile is apparent. Figure 7 shows another illustration
of steering where the electron beam is displaced more
abruptly, with A,, =zz/4=2. 7 m. After an initial tran-
sient, the radiation centroid is again steered by and oscil-

V. CONCLUSION

In this paper a technique for solving the three-
dimensional wave equation with a driving current densi-
ty has been developed. Using this source-dependent ex-
pansion technique, a number of efFects associated with
radiation focusing and steering in the FEL have been il-
lustrated. The formalism is used to derive a general en-
velope equation for the radiation beam. Using the en-
velope equation we find that it is possible to have a
stable guided optical beam in the exponential-gain
(small-signal) regime but not in the high-gain trapped-
particle regime. We also considered the efI'ects on the
radiation beam when the electron-beam centroid is
transversely displaced and when the electron-beam en-
velope is modulated. The source-dependent expansion
approach lends itself to fast and accurate numerical solu-
tions as well as to a better analytical description of
focusing and steering in the FEL. We conclude by not-
ing that this approach can be readily generalized to in-
clude both spatial and temporal variations in the radia-
tion field in order to study sideband generation and
focusing efFects simultaneously in the FEL. Recently
there has been indirect' as well as direct' experimental
evidence indicating optical guiding in FEL's.
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