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Perturbed solitons in nematic liquid crystals under time-dependent shear
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Equations of motion for nematic liquid crystals under time-dependent shear are derived. Soliton
solutions are investigated. When the soliton velocity is large and the shear varies slowly in time, ap-
proximate analytic solutions for single solitons of the A and B types are found with use of multiple-

scale analysis. These perturbed solitons move with time-dependent velocities but are constant in

shape and carry no tails. The velocity is proportional to the shear rate. Numerical calculations of
the director equation of motion are performed and are in agreement with the analytic results. A re-

cent experiment in which dark lines (under white light) excited by a periodically moving plate at one
end of a nematic cell are observed is analyzed and interpreted according to our theory. Cfood agree-
ment between theory and experiment is obtained.

I. INTRODUCTION

The hydrodynamic equations of motion of nematic
liquid crystals are highly nonlinear. Under suitable con-
ditions solitary waves (solitons) can exist in nematics (see
Ref. 2 for a brief review). They have been extensively
studied ' in both theory and experiments. Experimen-
tally, these solitons may be generated by the use of either
electric or magnetic field or by shear, ' ' ' and may be
observed optically.

Discussion of propagating solitons in uniform shearing
nematics was first given by Lin. ' Properties and
classification of single solitons of such a case were present-
ed previously. ' ' Relevant experiments' are analyzed
and interpreted ' as evidence of these solitons. In addi-
tion, external-field effects, multisolitons " and the rela-
tion between observed optical-interference patterns and
the director distribution" have been investigated. Single
solitons generated by pressure gradients in long' and cir-
cular' ' cells of nematics, respectively, have also been re-
ported.

In this paper, the case of unsteady shearing nematics is
discussed. It is a natural extension of the steady shearing
case ' in which solitons are known to exist. As shown in
Sec. II the relevant equation is a nonlinear one with time-
dependent coefficient. When shear varies slowly in com-
parison to the large velocity of the wave, analytic per-
turbed soliton solutions may be obtained using the
multiple-scales analysis' ' ' (Sec. III). It constitutes a nice

II. EQUATIONS OF MOTION

Let us consider a nematic such that the director n and
velocity v are given, respectively, by

n=(sin9, cos6, 0),
v=(u, 0,0), (2. 1)

with

8=8(x,y, t), u = v (x,y, t), P =P(x,y, t), (2.2)

where P is the pressure. We further assume that it is in-
compressible, i.e.,

V v=O. (2.3)

For simplicity, the one —elastic-constant approximation,
K ] —K2 —E3:K, is adopted where K s are elastic con-
stants.

Equations (2.3) and (2.2) imply that u =v (y, t) The.
Ericksen-Leslie' equation for this specific case reduces
to

example of perturbed solitons which do not change in
shape and have no tails but travel with a varying velocity,
proportional to the shear. More importantly, they are
physically observable (Sec. VI).

Confirming numerical solutions are given in Sec. V and
Sec. VII sums up the results with discussion.

d 0 dOM =K(c) +t) )0—y, + —,'s(Y, —Y cos20) =0, (2.4)
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p +B.P+X[a.(a.e) +a, (a„ea,e)]—a, a s cos Os1110+ a s+y s1110cose
dU dO
di 'dt

—B —'a&s+a1s cos Osin 0+(a2cos 0—a3sin 0) ——'s + —'s(aq cos 0+a6sin 0) =0, (2.5)3' 2 dt 2 2

and

—pg+B, P+Z[a, (a, e) +a.(a.ea, e)]—a, a, s cos Osine+ a s —y
2 3 dO

dt
sinO cosO

—B a)scos Osin 0+(a3cos 0—a~sin 0) ——'s + —'s(a6cos 0+a)sin'0) =0,X dt
(2.6)

where M is the moment of inertia density, p the density,
i V2 ~ ] to 0'6 viscosity coeScients with y ] =a3 —~2

—+2++3 ~ ~:~/~+ ~ ~ /~+
deldt =B,e+(v V')0, s—=Bvlay =s (y, t)

The three variables O, U, and P may be solved by the
three equations (2.4)—(2.6) with appropriate boundary
conditions. However, this is very complicated. In the
rest of this paper, we shall consider only the case that (i)

s(y, t) is set up externally so that only (2.4) needs to be
considered; (ii) a thick liquid crystal cell so that all y
dependence in the equations may be dropped and, in par-
ticular, s =s (t); (iii) v «c, the velocity of the soliton, so
that deldt =B,e. This is experimentally the case (see Ref.
10 and Sec. VI). Under these assumptions, (2.4) becomes

III. MULTIPLE-SCALE ANALYSIS

As stated in Sec. II we assume that the time scale on
which the shear varies is long compared to that of the
wave. We can therefore use the singular perturbation
method of multiple scales' to analyze Eqs. (2.8) or (2.10).

We make the change of variables (X, T) to (g, P) with

g= ET, p =p(X, T), (3.1)

/=X CoT, wh—en @~0 (3.2)

where g is a slow variable and P is a fast variable. The
functional form of P remains to be determined. At this
point, the only requirement is that

Ma„e=rCB,.O y, a,—e+ ,'s(t) [y-1 yz c—os(28)]

or, in dimensionless form,

(Ma +a, a)e=s(eT)[y—+ cos(20)],
where

T=t /7 X=x/k s =s /sp M =M/Tp i

(2.7)

(2.8)

C=C(g), k=k(g) (3.3)

where Cp is a constant, the velocity of the unperturbed
traveling wave (or soliton) when s is constant.

In general, C=——BTP, k—:Bzg are functions of g and
Assuming that C and k change slowly when e is small

we assume

r—=2ylso ~ =—(2&l
I y2 I

so)'" y—=y1l I yz I

.
(2.9)

Here so ( & 0) is a chosen constant shear rate.
For N-(p-methoxybenzylidene)-p-butylaniline (MBBA),

M-10 '
g cm ', K —10 dyn, y~ ——0774P, y2= —0.8P. In the experiments (see Sec. VI), so —50 s

We therefore have ~-0.04 s, A, -2 & 10 cm, and
M —10 ' . The M term in (2.8) is then essentially zero
and (2.8) reduces to

k=k(/=0)=1 .

We now expand O in a series,

e(x, T)=e'"(g, y)+.0'"(g,y)+ "OI"(g,y)+

(3.4)

(3.5)

resulting in B&C=(a&C)a+/=0. But B+C= —B+TP= —BTk= —
@Beak. Hence k is constant, independent of

Its value, given by Eq. (3.2), is

(a, a)e=s(eT)(y—+ cos20), (2.10) By 3.1), (3.3), and (3.4),

where e ( « 1) is a small parameter when the shear is as-
sumed to vary slowly in time.

Equations (2.8) and (2.10) are the ones used in the rest
of this paper.

a O=a, O, a O=a„O, a,o=~a,O —|-a,O,

a„e=~'a«0 —~(2ca,+a,c)a,e+c'a«0 .

By expansion,

(3.6)

cos(20)= cos[20' '+.2@[0'"+ee' '+ ]I
= cos(20' ') cos[2e(0"'+me' '+ )]—sin(20' ') sin[2e(0" +eeI '+ . )]

22 2

1 — (0'"+ee' '+ ) + cos(20' ')
21

3g3
2e(0" +ee' '+ ) — (0"'+ee '+ )'+ sin(20' ') .

3I
(3.7)
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me '+ Ce' +s [y+ cos(20I ')]=0,
me "'+CO "'—s[2 sin(20' )]O'" =F "'

(3.8)

Putting (3.6) and (3.7) into (2.8) and equating the
coefficient of each order of e to zero we have

where

Z=P(s/m)'

a =C(sm)

f(0' '):y+—cos(20' ') .

(4.2)

where

n =1,2, 3, . . .

F'"= M—(2ca,+a,c)e"'+a,e"I,
F"'= M(—2ca, +a,c)e "+a,e"'+Ma«eI"

+s(2cos20' ')0"'

F"I = M(2c—a, +a,c)e "+a,eI"+M a«eI"

+s[2cos(20' )]0 ''0

—s [2 sin( 20' ) ]—', 0" '

(3.9)

(3.10)

(3.1 1)

(3.12)

O' '= Ap(u)+a A, (u)+

where

u—:Z/a =(s/C)P .

A0 and A ~ are given by

d20 +f( I/)p=0,
dQ

(4.3)

(4.4)

(4.5)

Equation (4.1) is identical to Eq. (1.1) of Ref. 18. Asymp-
totic solutions which are finite at Z=+ ~ for a &&1 are
given by

with A)(u):f(Ap)(a]+ ln~f(Ap)
~

) (4.6)

O("'=a,e("), n =O, 1,2, . . .

rn =1—MC (3.13)

where a, =a &(g) is a constant of integration.
Equation (4.3) is valid for a »1 and m&0, which are

equivalent to

0'" (P)=f'"'(P)B' '(P), n =1,2, . . . (3.14)

Here m, C, s and the right-hand side of (3.9) are all func-
tions of g. The structure of these equations is such that
(3.8) and (3.9) can be considered as ordinary differential
equations with variable P, while g is treated as a parame-
ter.

Equation (3.9) can be formally solved to be (see Appen-
dix A)

C »s/(1+Ms )
' and C&M

When M « 1 Eq. (4.7) becomes

M —1/2~( —1/2
( 1 )

(4.7)

(4.8)

For y & 1 there exist four different types of single
solitons of (4.5). ' The A soliton corresponds to
—(Op+ n 7r) & Ap (Op+nor and is given by

where

f'"'(P) = f dP'exp( C(5'/m )0' ' —(P')

J dP" exp(cp" /m)
4p

X 0 "(p")F'"'(p")/m +g„

Ap= —tan 'Iw tanh[(1 —y )'/ (u —u p)] I+nm,

where

~/4 & ep =——,
' cos '( —y ) & rr/2,

w=[(1+y)/(1 —y)]' '

(4.9)

(4.10)

IV. FAST SOLITONS —ANALYTIC RESULTS

Generally, Eqs. (3.8) and (3.14) cannot be solved
analytically. We therefore consider the case C »1 in
which asymptotic solutions can be obtained by using
multiple-scales perturbation once again. More important-
ly, this case is physically relevant.

Equation (3.8) can be rewritten as

20(0) d 8(0)

dz2 dz, +a ~f(0"')=0, (4.1)

(3.15)

Here and in Sec. IV (as well as in Appendix A) the g
dependence in 0'"' and fI"I are suppressed explicitly. In
(3.15), Pp, P„, and g„are constants of integration and
functions of g. Once 0' ' from (3.8) is known, OI"' is
determined by (3.14).

The results in this section are applicable for M and C of
any order of magnitude such that m&0, i.e., C&M

M&C s«e, (4. 12)

which are, in fact, satisfied in the experimental situations.
Under the conditions (4.8) and (4.12) and after some

lengthy calculations (see Appendix B) one obtains

0"'= w. (u), (4.13)

The B soliton corresponds to 00+n~& A0 &~—00+n~
and is given by

/Ip= —cot 'tw 'tanh[(1 —y )' (u —up)]I+nor .

(4.1 1)

In (4.10) and (4.11), n =0,+1,+2, . . . . The function /I ~

can be determined by (4.6). To the order of a, (4.3) is
equivalent to the solutions obtained in (13) and (16) of
Ref. 9.

To determine 0''I, one has to use (3.14) together with
(3.10) and (3.11) (see Appendix 8). The procedure can be
much simplified under the conditions
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dip0(])
dQ

C = (Cp/s')s(FT),

(4. 14)

(4.15)

and X, constants of integration, are pure num-
b (3.5), (4.13), d (4.14), obers. To first order in e, by

has

and 0(X, T)=0' '(u+ed, ) . (4.17)

u =(s'/CpC ) X—,j s(eT)dT Xp— (4.16) By (4.9), (4.11), (4.13), an d (4.17) the perturbed A soliton
is

I

t nh 1 — ')'" ' X—0(X, T)=0„(X,T)= —tan ' 'tv tanh 1 y )
Cp r Cp

s(eT)dT Xp+—ed i
Ss p

(4. 18)

Similarly, the perturbed B soliton is

Cp Cp
X— s(eT)dT Xp+ed- ,

' 'tp ' tanh (1 —y ) I
0(X, T) = 0i, (X, T) =——cot tp (4.19)

c =CA, /~
1/2 —1=(Cp/s')s(r)(rC/

I y2 l
sp) y (4.20)

V. NUMERICAL SOLUTIONS

2.8 and (2.10) can be solved numerical-
10-" E (28) dy. o .i, q

(2.10) are practically identica
'

. isntical numerical y. n is
solved, but the results are equally app ica e

(2.8) within the numerical accuracy o ou
For simplicity, eth free-boundary conditions

(a 0) ,= (a 0), , =0 (5.1)

4.17), in particular (4.18) and (4.19),
hichhs o t t hrepresen s a pts a erturbed soliton w ic as

d nt velocity C which is pro-tail but a time-dependent ve oci yand no ai
15)]. It has a constant phaseportiona 1 to s(eT) [see (4.

to the unperturbed solitonshift (ed
&
Cp/s') in comparison to e u

O' '. C is the constant velocity of 0' '.
I h sical units the velocity o p bs' of the erturbe so i onnp ys'

by (4.15) and (2.9),

ted where [O,L] is the domain of X. The para-
db diff r tio .2. 10) is replace y a i

In the numerical calculation, . wi
parameter orf MBBA at room temperature,

s = 10 [1+0.8 sin(eT)] (5.2)

50 are used. The choice of (5.2) is explained in
S . .

' ' ' ' ' 0(XO) is taken to be the. VI. The initial condition, is
soliton 0„of (4.18) with s=s =unperturbed

Cp 25, Xp
is chosen such t aat the center o t e so i

alize any end effects.m the boundaries to minima ize anyaway from e
nd T mesh used are both equal toThe intervals in the X and T mes use

one.
the resulting 0(X, T) curves where

0 =81.87 corresponding to y =0.96 in0
h 0-X curve remains unchange as
ve

'
d hange periodically, as

thesha eoft e — c
T increases but the ve

'

yvelocit oes c a
of the lines atfrom the change of the spacing o e

'1 ' 'h h0=0. Note that there is no tai, in agree
f 4.18).

2 shows the time variation o e v

h lid line represents the an-
52 C d ' th

soliton, C ( T). T e so i in

alytic result from 4.15) and 5.2; p an
t V—:(dX/dT)ti p ob-1 The crosses representas in ig.

gO

e;
I.O

Xjgooo

FIG. 1. Numerical solutions o q.of E . (2.10).
y =0.96. Curve a corresponds ts to T=O.

Op ——81.87,

T/5o
C of the perturbed soliton.FIG. 2. Time- pe-de endent velocity o

lt. he crossesh sses are numericalThe solid line is the analytic resu . h
results obtained from Fig. 1 (see text).
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2

Xj (ooo

FIG. 3. The difference between the analytic and numerical
0(X, T), 60, for T=250.

0 1 & 3 4
T/2'I(

FIG. 4. Theoretical result from Eq. (6.7) for the time varia-
tion of the dark-line position X. a=0.5, el /(eocCO) =0.5.

tained from each of the curves in Fig. 1, the numerical re-
sults. By (4.18) and (4.15) it is easy to see that C= V.
There is an obvious agreement between the analytic and
numerical results.

There, in fact, is a slight difFerence between the analytic
and numerical g(X, T) curves. In Fig. 3, the difference be-
tween the analytic and numerical 9(X,T) for T=250 is
plotted. The analytic 9 is obtained from (4.18) with
Xp =d

~
=0. The numerical one is from Fig. 1. For both

cases, (5.2) and Cp ——2. 5, @=0.96 are used. Comparing
Fig. 1 and Fig. 3 we see that 60 is maximum near 0=0
but b 0 is always less than 0 04 (or -4%). This
difference can be reduced to -0.4%%uo if d& is suitably
chosen.

We therefore conclude that our analytic results of Sec.
IV are in agreement with numerical calculations within
the accuracy of 10 . Similar results are obtained when
0& is replaced by Oz.

VI. COMPARISON WITH EXPERIMENTS

A. Analytic results for periodic s (t)

The results in previous sections are for a general s(t).
In the special case of a periodic s (t) with period t~,

s(t+t )=s(t) . (6.1)

s (t) may be expanded in a Fourier series,

s (t) =ep+ g e„sin(ntpt +g„),
n =1

(6.2)

=ep+e~ sin(eT), (6.3)

where e=~~. We then have

s =s Isp = 1 + ( e ] le p ) sin( eT )

with the choice of

(6.4)

sp ——ep, (6.5)

where ep, e„, and P„are constants independent of time,
co =2~/t~. When higher harmonics are ignored and
without loss of generality g&

——0 is chosen, s (t) may be ap-
proximated by

s ( t) =ep+ e ) sin(cpt )

i.e., s'=1.
The trajectory of the point with 0=0, for the A soliton,

is obtained by setting 8=0 in (4.18). With Xp ——d&
——0

one has

s eT dT=O .
Cp r
S 0

Putting (6.4) into (6.5) we have

X=Cp T+ ( e, lepe) [1—cos(eT) ] .

Also, by (4.15) and (6.4)

C =Cp + (e
&
lep ) sin(eT),

(6.7)

(6.8)

which is depicted in Fig. 2 as the solid line.
In Fig. 4 the variation of the center of A soliton (0=0)

X as a function of T according to (6.7) is plotted. The
broken line is the result of steady shear (co=0).

B. Analysis of experiments

An experiment has been performed by Zhu ' in which
the experimental setup is the same as in Ref. 10. White
incident light was used. In this case the pushing plate at
one end of the homeotropic MBBA cell was set in vibra-
tion in the direction of the long axis of the cell. The vi-
brating frequency was 1 and 2 Hz, respectively. As in
Ref. 10 which corresponds to the case of 0 Hz, three dark
lines were observed under white light; however, they now
move with time-dependent and seemingly periodic veloci-
ties (Fig. 5).

This experiment may be understood as follows. Since
the pushing plate does not move very fast, a shear s (t) is
created in the quid which is now time dependent. The
period of s(t), t~, may be assumed to be the same as that
of the plate. The center of each of the dark lines corre-
sponds to molecules being vertical, i.e., L9=0.

For MBBA, %=10 dyn, y2 ———0.8P, @=0.96. Us-
ing the experimental parameters of Ref. 10 as given in
Ref. 8, v -0.5 mm/s and d = 10 pm, we obtain v/d —50
s '. We therefore take sp ——ep ——50 s ' and use (2.9) to
obtain ~=0.04 s and A, =2)&10 cm. For tz

' ——1 and 2
Hz we have @=co~=2m~/tz ——0.25 and 0.5, respectively,
which are both less than one. The results in Sec. VI A are
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in the steady shear case is still valid, i.e., the thicker the
dark line, the larger its propagating velocity. An excep-
tion exists for the unsteady shear case here, where the ve-
locity should be understood to be the averaged velocity.
Unfortunately, there is no systematic experimental data
available to check this point.

VII. DISCUSSION

(1) In this paper we have assumed an unsteady shear
which is slowly varying in time, i.e. ,

5 =s(ET) (7.1)

FIG. 5. Sketch of the observed dark line under white light at
equal time interval. The two strips 2 and 8 correspond to the
dark line diftering by a phase of 2~ in its periodic variation.

then applicable to this experiment.
According to (6.3) and (6.7) the dark-line position X

varies with t with the same period t~. This point may be
checked with experiments as follows. In Fig. 5 the time
variation of each of the three dark lines in the experimen-
tal photographs is sketched. Each strip represents the
photograph of the liquid-crystal cell taken at equal time
intervals. The time axis runs from left to right. The
curve x versus t is obtained by connecting the centers of
the dark-line curves in a periodic way. The period of this
x versus t curve is given by the time difference between
two points corresponding to strips 3 and B in Fig. 5,
which differ by a phase of 2~. It is equal to the product
of the time interval between two neighboring strips and
the number of strips from 3 to B. We have checked the
experimental photographs and found that at low frequen-
cies (t~ '=1 and 2 Hz), the periods of the dark lines un-
der white light and that of the pushing plate are equal to
each other, in agreement with our theory. Moreover, we
note the following.

(i) The experimental curve (sketched in Fig. 5) and the
theoretical one (in Fig. 4) for the dark line, the x versus t
curve, are similar in shape.

(ii) By (6.8) the time-averaged velocity C is given by

C=CO

or, with units included,

c =Cok/r=Coy '(eoE/2
~ y, ~

)'

(6.9)

(6.10)

which is independent of the period of s(t). For a given
nematic c ~ eo~ where eo is the steady-state value of s (t).

We have checked the average speed c of the dark lines
for different t from the experimental photographs and
found them to be independent of the frequency, as pre-
dicted by our theory. The dependence of c on the materi-
al parameters shown in (6.10) remains to be checked with
future experiments.

(iii) Since the shape of the solitons (the dark lines under
white light) remains unchanged during motion, the rela-
tion between velocity and width of the dark line obtained

and

e« 1 . (7.2)

If co
' is the characteristic time of the Bow then @=co~.

For a periodic s(t), co is the angular frequency. It should
be pointed out that (2.8) and (2. 10) are invariant under the
transformation

(7.3)
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In many cases it is possible to use (7.3) to make (7.2)
satisfied in the equation of motion and then use the results
obtained in this paper. In so doing the region of space
and time in which the results are valid may be reduced.

(2) Generally, in soliton equations with small pa-
rameters the perturbation manifests itself in three ways:
(i) the parameters of the unperturbed soliton are changed,
albeit slowly; (ii) the shape of the unperturbed soliton is
changed; (iii) a tail appears. Usually, these three effects
appear simultaneously. In Ref. 24, using the inverse
scattering method, the condition for the nonexistence of
the tail is derived for the Korteweg —de Vries equation, the
modified Korteweg —de Vries equation and the nonlinear
Schrodinger equation, respectively. See Refs. 26 and 27
for further discussions on this point. Yet, to our
knowledge, there is no general theorem on the nonex-
istence of tails due to perturbation for nonlinear equa-
tions. Our perturbed solitons presented in this paper con-
stitute another example that is tailess. And being tailess
and shape preserved simultaneously during motion they
are the first examples of this type that we are aware of.

(3) The three dark lines under white light observed in
experiments discussed in Sec. VI should be understood as
a multisoliton, as in the steady shear case. ' '" The prop-
erties of each dark line, of course, can be identified and
represented by those of single soliton as is done here and
elsewhere.
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APPENDIX A: DERIVATION OF EQ. (3.14)

Differentiate (3.8) with respect to P once. We have

mg(0)+CO' ' —s[2 sin(20' ')]8' '=0 . (Al)

Lemma 1. For

Q~+~ )

g(1) j(0)f(1)( )

If 9' ' is identified with 9 "' in (3.9) we see that (Al) is the
homogeneous equation of (3.9). We therefore try the solu-
tion (3.14). Putting (3.14) into (3.9} and using (3.8) one
obtains

where

f"'(u) =(C/s)(pu /2 —qu+d, ),
p

—=s 'Bg[ ln(s/C)], q =C '(}go
(B2)

mg'"'(P)+ Cg'"'(P) =8' (P)F "'(P), n = 1,2, . . .

where

(n)(y) f(n)(y}(j(0))2

and the overdot represents (}~. The solution of (A2) is

(A2)

(A3)

and Po=(to(g), d, =d, (g) are constants of integration.
Lemma 2. For

9 ~+ (x)

g(2) j(o)f(2)( )

where

(B3)

g'" (P) = exp( —Chelm )

X f dP' 8'"(P')
Ao

X exp(C((}'/m)F'"'(p')/m +g„, (A4)

where $0——Po(g) and g„=g„(g) are constants of integra-
tion. Putting (A4) into (A3) and integrating once we have

f'"'(0)= f, d4'g "'(4')[~ "(4')1 ' (A5)

where (t}„=(t)„(g)is a constant of integration.
Combining (A4) and (A5) we obtain (3.15).

f' '(u) =(C/s ) {+ 2(1 —y )'~ a3u /4

+[aq+2(l —y )' aq]u /3

+[a) +2(1—y )'~ a)]u /2

+[ao+2(1—y )' ao]u+d2I,
2 — 3

a& —=q +pd], ao=——qd],
az ——p +((}g)/2s, a) ———pq —(Bp)/s,
ao—:q +((}P))/s

(B4)

APPENDIX B: DERIVATION
OF EQS. (4.14)—(4.16}

We first note that the terms containing a ( —C s ) in
(4.3) and M in (3.10)—(3.12) will result in terms of the
same order in 0"', which are negligible compared to e un-
der the assumption (4.12). Hence, in this appendix, we
will take M =0 (i.e., m =1) in (3.10)—(3.12) from the be-
ginning and retain only Ao(u) for 8' ' in (4.3).

We now prove the following two lemmas.

and dq ——d2(g) is a constant of integration.
Proof Let us defi. ne

I„(u)—= f (d Ao/du ) u" exp(a u )du,

J„(u)—= f (dAO/du) u" exp(a u)du,
(B5)

P „(u)—:f 2sin(2Ao)(dAO/du) u" exp(a u)du,

Q „(u)= f 2cos(2AO)(dAo/du) u" exp(a u)du,

where n =0, 1,2, . . . , m =1,2, . . . .
By (4.2) and (4.5) we have

d Ao(u)/du = —[y+ cos(2Ao)]
—(1—y )/I cosh[2(1 —y )' (u —uo)]+y), for A soliton

—(1—y )/cosh[2(1 —y )'~ (u —uo)], for B soliton

~—2(1 —y ) exp[+2(1 —y )'~ (u —uo)], for u~+ac (B6)

Putting (B6) into (B5), for both A and B solitons, when u ~+ ao we have

I„(u)=4(1—y ) a exp(a u) exp[+4(1 —y }'~ (u —uo)][1+0( exp[+2(1 —y )' (u —uo)]) I

X Iu "[1+0(a )]+u" '0(a )+u" 0(a )+
J„(u)=—8(1—y ) a exp(a u) exp[+6(1 —y )'~ (u —uo)]I 1+0( exp[+2(1 —y )' (u —uo)])]

X Iu "[1+0(a )]+u" '0(a )+u" 0(a )+

(B7)

(B8)
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P „(u)=+(—2) +'(1 —y )
+'~ a exp(a u)exp[+2m(1 —y )' (u —uo)]

)& I 1+0(exp[+-2(l —y )' (u —uo)]) I I u "[1+0(a )]+u " '0(a )+

Q „(u)=(—2) (1 —y ) ( —2y)a exp(a u) exp[+2m(1 —y )'~ (u —uo)]

X I 1+0(exp[+2(1—y )' (u —uo)])I Iu "[1+0(a )]+u" '0(a )+ I .

(B9)

(810)

By (3.10) one has

F "=s(pu —q)d Ac/du, (811)

zero exponentially for u ~+ co [see (86)] it can be verified
that 0'" satisfies

where p and q are defined in (82).
Inserting (Bl 1) into (A4) we have

g" I=(s/m) exp( —a u)[pI, (u) —qIO(u)],

for u~+ao .

For u ~+ ao, by (87) and (812) one has

By requiring

lim
~

0I 'l0 "
~

= lim
~ f '(u)lf "(u) & ac

u~+ oc u~+ oo

we get

a3 ——0

(814)

(815)

(816)

g"'=4(s/C) (1 —y )'r exP[+4(1 —y )'r (u —uo)]

&((pu —q)[1+0(a )]

~ I 1+0(exP[+2(1 —y')'r (u —uc)])I

+g, exp( —Ctt /m), (813)

where g] is a constant of integration which should be tak-
en to be zero to satisfy (814) (since it produces a term of
the order of exp[ —Cglm+4(1 —y )' (u —uo)] for
u~+co in the calculation of ft''(u) below and is obvi-
ously a secular term).

Putting (813) into (A5) we get (Bl). Similarly, by using
(88)—(810) to calculate f' '(u) we obtain (83). Q.E.D.

We can now discuss the two limits,
lim„+„~ 0'"/0 '

~

and lim„+
~

0 '/0"' ~, and the
coefficients of their expansions. Since O' '= 2' ' tends to

a] =a] =0 (B17)

and hence q =O=t)po(g). Therefore, Po is a pure number
independent of g. Using (815) once again we have

ao=ao= (B18)

resulting in c)A, (g)=0, i.e. , d, is also a pure number in-

dependent of g.
Using the above results, (3.3), and (4.4) and integrating

(4.14) once we obtain (4.16).

and hence p =0 by (84), resulting in C(g) ~s(g) and
hence (4. 15) in which the proportional constant Co/s' is
obtained from the requirement that s~s', C~Co when
@~0.

By (816) and (84) we also have a, =ai=0. Using the
definitions of fI" and f' ' from (82) and (84), respective-
ly, and then (815) we have
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