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Almost forty years ago one of us (W.E.L.) noticed that within the analysis of experiments on the
hydrogen fine structure the matter-field interaction was sensitive to the choice of gauge when de-
caying states were used. In the present paper this problem is resolved for the Bethe-Lamb equa-
tions in the context of the two-level model with Weisskopf-Wigner decay included.

I. INTRODUCTION

It is perhaps surprising to note that one of the out-
standing problems of modern quantum optics is the
choice between the two matter-field interaction Hamil-
tonians which are commonly used: —e E.r and
—(e/m)p A+(e /2m) A . These two difFerent interac-
tions correspond to two different gauges of the elec-
tromagnetic field. In 1952 calculations based on the two
different interactions were, for the first time, compared
to experimental results. ' In particular, the line shape for
the Lamb-shift transition 2S& &2

—+2P
& && in an H atom in

the presence of a rf field was compared to theoretical
results. It was pointed out in Ref. 1 that the E.r in-
teraction was more convenient in describing the experi-
mental results.

Since that time there has been a widespread opinion
that the two interactions would yield different results
and that only the E.r interaction should be used for
practical calculations. For example, Jaynes nicely sum-
marized the problem in 1976 saying: ". . . a whole gen-
eration of physicists has stumbled on this problem and
lived, not only under the shadow of the immediate
difficulty: 'How can I ever know whether a practical
calculation has been done right'?, ' but the deeper mys-
tery: 'How is it possible that a theory, for which formal
gauge invariance is proved easily once and for all, can
lead to grossly noninvariant results as soon as we try to

,apply it to the simplest real problem?' " (cited in Ref. 3).
The E.r Hamiltonian was introduced for the first time

by M. Goppert-Mayer in 1931. Equations of motion for
the amplitudes of a two-level atom in an external static
electric field were given by Bethe. The general unitary
transformation connecting the minimal coupling Hamil-
tonian —(e/m)p A+(e /2m) A to the multipole ex-
pansion of the field was given by Power and Zienau. In
the electric dipole approximation the multipolar Hamil-
tonian reduces to the —eE r form. The fundamentals
of gauge invariance and gauge transformations in quan-
tum mechanics are explained in textbooks by Pauli and
by Cohen- Tannoudji et al. Yang' and Kobe and

Smirl obtained gauge-invariant transition amplitudes by
calculating transition matrix elements between eigen-
states of the energy operator. A summary of these basic
publications is given in Ref. 11. However, even though
the subject is rather elementary, this is by no means a
complete list of publications on the problem. During the
last decade we have seen rather an inAation of—partly
very controversial —papers' on the subject, many of
which claim to be motivated by Ref. 1. However, few of
these papers address the line-shape problem and none of
them is concerned with the same experimental situation
as Ref. 1. In particular, the key point of the finite life-
time of the states is not taken into account. Appendix B
gives examples for different kinds of calculations in
which the E r versus p- A problem occurs and presents
the different approaches for its resolution specific to the
respective calculations.

The experiment described in Ref. 2 was set up to
determine the fine structure of the hydrogen atom by a
microwave method. The spacing between the levels of
the I. shell was measured with high precision. The ex-
perimental setup consisted of four major elements: a
source, an excitation region, an interaction region, and a
detector. A tungsten oven served as the source for the
beam of atomic hydrogen. In the excitation region the
hydrogen atoms were excited to the metastable 2S»2
state by electron bombardment. In the interaction re-
gion the metastable atoms were exposed to a magnetic
field of variable strength so that the spacing between the
energy levels could be varied by the Zeeman effect.
Furthermore, the metastable atoms were exposed to a rf
field (or a static electric field). This electric field couples
the metastable 2S»2 state to 2P&&2 which rapidly decays
to the ground state 1S»2. This depopulation or quench-
ing of the metastable 2S»2 state is the largest when the
frequency of .the rf field equals the spacing between
2$ i rq and 2P i &2 (or, in the case of a dc field, when the
two levels are degenerate). In the experiments the fre-
quency of the rf field was kept constant and the levels
were Zeeman shifted through the resonance. The detec-
tor was only sensitive to the metastable state, i.e., it was
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possible to measure how many metastable atoms decayed
in the interaction region for a fixed magnetic field
strength. This is a very universal setup which is still
used at present for fundamental investigations of the
matter-field interaction. '

In order to compare the measured resonance curve
with the theory, it was necessary to calculate the rate for
the field-induced decay of the metastable 2S&&z state via
2P&&2 to 1S&&2 as a function of the level spacing. The
employed theory included phenomenological decay
terms and derived the probability amplitudes for finite
interaction times. It was in this context where the sup-
posed discrepancy between E.r and p A occurred.

It is the purpose of this paper to show (i) that the
Bethe-Lamb equations used in Ref. 1 yield the transition
amplitudes only for the E r interaction in a straightfor-
ward way and (ii) how the correct answer can also be ob-
tained via a p A approach. We restrict the discussion
to a two-level atom and we derive the p. A equivalent of
the Bethe-Lamb equations. We stress the importance of
introducing atomic decay into the physics as well as the
fact that we are interested in the time evolution of the
transition rate in the presence of the field. The decay is
treated phenomenologically, and we consider only a uni-
form electric field, i.e., we apply the electric dipole ap-
proximation. A rigorous derivation of the field-induced
decay rates would start from a three-level system, con-
sisting of the two levels under consideration plus a
lower-lying level, and would derive the decay terms from
the Weisskopf-Wigner theory. ' Such a calculation
could be carried out along the same lines outlined in this
paper.

In Sec. II we define the problem and recall the original
calculation of Ref. 1. In Sec. III the equations of motion
for the two different forms of the interaction are derived.
Section IV makes contact between the solutions of these
equations and the transition probabilities which are mea-
sured in an experiment. Section V presents simple exam-
ples (a two-level atom in a dc or an ac field, treated with
first-order perturbation theory) to show the essential
steps for the resolution of the E.r versus p- A problem
on a textbook level. Section VI summarizes our results.
Two appendixes complete the paper. One is intended to
remind the reader of the energy operator formalism and
the way in which the probability for transitions between
different energy eigenstates is calculated in different
gauges. The other one lists some of the arguments com-
monly used for the "resolution" of the E r versus p. A
problem and points out that these arguments always
hold only for specific kinds of calculations and do not
apply to the original calculation of Ref. 1.

II. REVIEW OF THE PROBLEM

The first systematic theory of the effect of a static uni-
form electric field on the fine structure of hydrogen is
due to Bethe. He considered two degenerate levels

~

a )
(2&)/2) and

~

b ) (2P(/2) with diff'erent decay constants
yb &&y, under the infIuence of a static field Eo. The
Bethe equations for the probability amplitudes a and b
have the form

a=—Va l
a ——V,bb,

i
b ——Vb, a,

(2.1)

where Vb, is the matrix element for the transition a —+b
of the interaction

V= —eEo r . (2.2)

In order to take the removal of the degeneracy of 2S&&2
and 2P)/2 into account, Eqs. (2.1) have to be generalized
to allow for a spacing E, Ei, fi—co bet——ween levels

~

a )
and

~

b ). The Bethe equations can furthermore be gen-
eralized to allow for an ac field E(t)=Eosin(vt) with fre-
quency v. This leads to the Bethe-Lamb equations for a
two-level atom with radiation damping:

a=—

b=—
2

a +—e Eo r, (, sin( vt )e ' 'b,

Vb l —1 COt

2
b+ —eEo r(„sin(vt)e a .

(2.3)

In the rotating-wave approximation these equations
reduce to

a=—'V e
a — Eo r,be b,

2
b+ Eo rbae

(2.4)

where 5 denotes the detuning A=co —v. Since in the ex-
periment only the probability of finding the atom in the
2S(/2 state was measured, Eqs. (2 4) can be replaced by a
second-order equation for a:

Va Vba+ + —ih a

Va Vb . e
2 2 2A

2

IEor(,
~

a=0.

a (t) =e"' . (2.6)

By inserting this ansatz into Eq. (2.5) we obtain a quad-
ratic equation for p. Together with the initial condition
a (0)=1, a(0) = —y, /2, the two roots of this equation
give the following expression for the probability ampli-
tude of state

~

a ):
1 g + g )

—( ( /2 )( ) —i i), 2i 0 )t—
+ (2II+g g )

—()/2)(y —ih+2in)t] (2.7)

The symbols y and 6 denote the sum and the difference
of the decay constants

7a+ Vb Va Vb'V=
2

'
2

(2.8)

(2.5)

Since we are particularly interested in exponentially
decaying solutions, we can make an ansatz for a of the
form
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and Q stands for the generalized Rabi frequency
2 »2

2

I

Eo.r.b I

'—2
Vb

2 (2.16)
0= ,'(4—i—5)~+

I
Eo'r b I

(2.9) Vb+

In order to describe the experiment it is sufficient to take
the limit of small electric fields and y, «yb. The first
term of Eq. (2.7) decays already in the interaction region
and the field-induced depopulation of the metastable
2S»2 state as measured at the detector is given by

Ia(t)
I

-e
'2

e
3 s I Eo r.b I

7b

Vb+
2

2

(2.10)

Clearly the quenching of the 2S»2 state depends on the
detuning between level spacing and rf frequency and is
the largest at resonance for ~=v.

So far we followed Bethe's approach to the dc prob-
lem and described the interaction between the atom and
the external field in terms of E r. The alternative ap-
proach for the calculation of the time evolution of the
system starts from the minimal coupling Hamiltonian
and uses

pA+ A (2.11)

for the interaction. If one were to simply replace the in-
teraction —eEo.r sin(vt) in the Bethe-Lamb equations
(2.3) by the p A interaction (2.11), one would end up
with a quenching of the 2S»2 state which is different
from Eq. (2.10). This can be seen from the following ar-
gument. For a plane wave of frequency v the vector po-
tential Aocos(vt) is related to the electric field Eosin(vt)
via

which difFers from Eq. (2.10) by a factor (n~/v) . Since
this factor is frequency dependent, it would give rise to a
significant distortion of the resonance curve (Fig. 1).
For lower rf frequencies the distortion would be even
stronger.

Of course the discrepancy by a factor (co/v) is not re-
stricted to the particular example considered here. It
occurs in any calculation which uses the same equations
of motion with the two different interactions E r (2.2)
and p. A (2.11). This even holds for the simplest exam-
ple of a two-level atom in a weak field whose impact on
the atom can be calculated in first-order perturbation
theory. In Sec. V we will use this example to demon-
strate the resolution of the problem. It should further-
more be mentioned that the Bethe-Lamb equations play
not only an important role in quantum optics and atom-
ic physics, but also in other fields such as, for example,
nuclear physics. '

In Ref. 1 the appearance of the additional factor
(co/v) was commented on as follows: "Of course, the
difference between the perturbations E r and
—( A p)/m just corresponds to a gauge transformation
under which the theory is known to be invariant, so that
both perturbations must lead to the same physical pre-
dictions. Nevertheless, a closer examination shows that
the usual interpretation of probability amplitudes is valid
only in the former gauge, and no additional factor
(co/v) actually occurs. " It is the purpose of the follow-
ing two sections to outline this "closer examination" in
order to show that (i) equations of motion with the p A
interaction have a form different from the Bethe-Lamb
equations (2.3) and (ii) that the quantities a and b cannot
be interpreted as probability amplitudes if p A is used.

1
Ap ———Ep,

v
(2.12)

whereas the momentum operator p can be expressed in
terms of r as

p= —m [Ho, r jj, (2.13) 30

where Hp denotes the unperturbed Hamiltonian includ-
ing the binding potential U,

2

Ho —— +U(r) .
- 2&i

(2.14)

By combining Eqs. (2.12) and (2.13) we see that the ma-
trix elements of the interactions E.r and p. A differ
essentially by a factor m/v,

O
o

~20
O

O
C

l0
CT

b — p Ap a = —i—b —eEp. r a . 2.15
~

~~ ~

l0

w/yb
13

The use of the p. A interaction (2.11) in the Bethe-Lamb
equations (2.4) would therefore lead to a field-induced
quenching rate

FIG. 1. Quenching of the 2S, ~2 state as a function of the
level spacing cu for a rf frequency v/2m. =1000 MHz and a life-
time of 2P~/& yq

' ——1.6&10 sec. Solid curve, decay accord-
ing to Eq. (2.10); dashed curve, decay rate given by Eq. (2.16).
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III. EQUATIONS OF MOTION

Throughout this paper we only consider two-level
atoms. A system with only two levels can be described
in a mathematically consistent way by representing all
the operators by 2)&2 matrices and the states by two-
component vectors. In particular, the operators r and p
are then represented essentially by the Pauli spin ma-
trices a& and 0.2, respectively. However, in order to
clarify our calculations we stick to the notation r and p
and keep in mind that these operators are represented by
o

&
and o.

2 in our particular model.
Before deriving equations of motion with the p. A in-

teraction, it might be useful to recall the derivation of
the Bethe-Lamb equations (2.3). For this purpose we
start from the Schrodinger equation with the E.r in-
teraction

(3.1)

y, 0

Xb

y, cos P+ybsin P

i (y, yb—)sing cosP

i —(y, y—b )sing cosP

yg sin f+ybcos P

(3.8)

with p=e A(t) rb, /A'.

By expanding 'P' in terms of P, and Pb

4'(r, t)=a(t)e ' g, (r)+/3(t)e Pb(r) (3.9)

and inserting this expression into the Schrodinger equa-
tion (3.6), one obtains the equations of motion for the
amplitudes o. and P:

~ 2

a= —
—,'I,',(t)+ — A (t) a

Ho denotes the unperturbed Hamiltonian (2.14) with
eigenstates g, and gb

—,'I .'b(r) ———p„.A(r) e'"'P,
A I

(3.10)

Hog, =A'co, g„Hofb %cob/——b . (3.2) /3= ——
—,'I bb(t)+ — A (t) I3

Bt ' A 2m

I A=ybfb . (3.3)

The wave function of the two-level system t ~

a ),
~

b ) I
can then be written as

4(r, t)=a(t)e ' g, (r)+b(t)e pb(r) . (3.4)

By inserting this expansion into the Schrodinger equa-
tion (3.1), one obtains the Bethe-Lamb equations (2.3) for
the amplitudes a and b.

In order to replace the E r interaction in the
Schrodinger equation (3.1) by the p A interaction, the
wave function %' has to be transformed according to

%(r, t)=T (r, t)%'(r, t), T(r, t)=e" (3.5)

%" satisfies the Schrodinger equation

2

i A O'= Ho ——,'i%I"(r, t) — p A(t)+ A (t)2'

The spontaneous decay of these levels is included phe-
nomenologically by adding a Weisskopf-Wigner type de-
cay operator I (Ref. 14) to the Hamiltonian in Eq. (3.1).
The eigenvalues of I are given by the natural decay con-
stants y, and yb..

—,'I b, (t)———pb, A(t) e ' 'a .
A I

These are the required equations which include the p A
interaction and are equivalent to the Bethe-Lamb equa-
tions (2.3). Obviously, it is not correct simply to replace
the E r interaction by the p. A form. Simultaneously,
also the damping matrix has to be changed. In particu-
lar, the off-diagonal elements of I ' contribute to the cou-
pling between p, and fb. Provided that the two levels

~

a ) and
~

b ) are degenerate so that co =0 and
p, b ——pb, ——0, then only the off-diagonal damping matrix
elements I,b and I b, cause a coupling between a and p.
Off-diagonal decay terms were first used by Breit in
1933' in connection with the scattering of radiation by
an atom with degenerate lower and upper levels. How-
ever, his off-diagonal I 's were due to matrix elements
between different degenerate magnetic sublevels, whereas
our I ' comes from the transformation (3.7) and is time
dependent.

It should be noted that Eqs. (3.10) hold only for a
two-level atom. In the case of an n-level atom they
would have to be replaced by a set of n coupled equa-
tions since the wave function 4' has to be expanded in
terms of a complete set of eigenfunctions g„ofHo.

(3.6)

The important new feature is that the damping operators
in Eqs. (3.1) and (3.6) are diFerent:

(3.7)

I ' depends on r and t and is not diagonal with respect to
the eigenstates g, and gb of Ho, in contrast to I (3.3).
For the two-level atom which we exclusively consider,
the damping matrices have the form

IV. PRGBABILITY AMPLITUDES

P„(t)=
) (g„~ qI) (, n =a, b . (4.1)

The quantities of physical interest are the probabilities
I', and Pb of finding the atom in the energy eigenstates

~

a ) or
~

b ), respectively. In the E r formalism we fol-
low Bethe's approach for a static uniform electric field
and take the projection of the wave function 4 onto the
eigenstates p, or pb (3.2) of the unperturbed Hamiltoni-
an Ho in order to calculate I', or I'b ..
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f„'=Tf„, n =a, b (4.2)

It is shown in Appendix A that this is the correct form
of the transition probability at arbitrary time t.

In the p A formalism we cannot apply the "textbook
wave functions" g, and gb anymore. After all, the
transformation (3.5) describes a gauge transformation
from the Hamiltonian in the electric field gauge (3.1) to
the Hamiltonian in the radiation gauge (3.6). Corre-
spondingly, all the wave functions are subject to the
transformation operator T. We therefore should project
the wave function '0' onto the transformed wave func-
tions

Since p, (t) and pb(t) are the physical quantities, they
determine the initial condition of the system. Therefore,
the initial conditions for the p. A equations of motion
(3.10) have to be derived from Eq. (4.10) and are in gen-
eral different from the initial conditions of the Bethe-
Lamb equations.

V. EXAMPLES

In this section we demonstrate the points made in the
previous sections with two simple examples: In order to
make contact with Bethe's calculation we first consider a
two-level atom j ~

a ),
~

b ) J in a uniform and static elec-
tric field

in order to obtain the transition probability E(r, t)=Eo . (5.1)

(4.3)

(4.5)

Using for 4 and (P' the expansions (3.4) and (3.9), we ob-
tain a relation between the probability amplitudes p, and
pb (p,

' and pb) and the expansion amplitudes a and b (a
and P). In the electric field gauge the probability ampli-
tudes coincide with the expansion amplitudes

p, (t) =a (t)e ', pb(t) =b (t)e (4.6)

In the radiation gauge the probability amplitudes p,
' and

pb and the expansion amplitudes a and p are different

p, (t)=T„ae ' +Tgbpe

pb ( t ) = Tbg ae + Tbb pe
(4.7)

Finally it should be mentioned that also the radiation
gauge wave function 4' can be expanded in such a way
that the expansion amplitudes coincide with the proba-
bility amplitudes. Instead of choosing the basis g, and

one also can write %" in terms of the transformed
wave functions g,' and g'b (4.2):

4'(r, t)=a'(t)e ' g,'(r, t) +P'(t)e ' Pb(r, t) . (4.8)

Obviously a' and P' satisfy the Bethe-Lamb equations
(2.3) and are identical with the probability amplitudes

In Appendix A we summarize from another point of
view why the textbook wave functions can, in general,
only be applied in the E r formalism and why the wave
functions representing the states

~

a ) and
~

b ) have to
be transformed when going from one gauge of the elec-
tromagnetic field to another.

Let us now define the physical probability amplitudes

p„(t)= ((((„
~

'P ), p„'(t) = ( i('j„
~

T
~

q(' ) (4.4)

so that

We are interested in the field-induced transitions
~

a ) —+
~

b ) and we assume that the field is weak so that
the transition can be calculated in first-order perturba-
tion theory. In this limit the Bethe-Lamb equations
yield for an atom which is initially in state

~

a ), the fol-
lowing probability amplitude for state

~

b ):

pb(t) =b (t)e

(5.2)

The vector potential for the static electric field (5.1) has
the form

A(t) = —tEO . (5.3)

(5.4)

This differs from Eq. (5.2) not only by a prefactor
col(co i5) but —also by a term which linearly increases
with time.

In deriving the probability amplitude from the equa-
tions (3.10) we can use the transformation operator T in
the form

T(r, t) =1+—e A(t) r .l
(5.5)

Since in our special example T(r, t =0)=1 the initial
conditions for Eqs. (3.10) are the same as for the Bethe-
Lamb equations:

a(0) =p,'(0) = 1, P(0)=pb(0) =0 . (5.6)

The use of the p. A interaction with this vector potential
in the Bethe-Lamb equations would lead in first order to

e co—&Eo r
—( Y /2+(~ )t —(Yb /2+(cob )t1+ ice+5 tje ' ' —e

X

p,'(t) =a'(t)e ', pb(t) =P'(t)e

This allows inversion of the relation (4.7):

(4.9)
The matrix elements of the damping operator I ' have
the form

a(t) = T p e + T~bpbe

P(t) Tb~p~e + Tbbpbe
(4.10)

~aa 3 a~ ~bb Yb

I,'& ——2—e6tEo'r s I &, ———2—e6tEo r
(5.7)
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The quantity 5 denotes again the difference of the decay
constants (2.8). With the help of Eq. (2.13) the first-
order solution of Eqs. (3.10) reads

—(y, /2)ta(t) =e

a(0) =1, P(0) =—e A(0).rb
l

ba (5.16)

The first-order solution of Eqs. (3.10) with the rotating-
wave approximation then reads

ep(t)= ——Ep rb,

[ I+(ipi+5)t jeX ~

Q

—(yb /2)—e

(5.8)
a(t) =e —(y, /2)t

ie
p(t) = Ep rb, .

2A

co —i6 e ' +' "—1 1 —(y /2)tb

v 6—i5 v

pb(t) =p(t)e + eE—p rb, ta(t)e (5.9)

A comparison with expression (5.4) shows that the pre-
factor co/(co —i 5) in (5.4) disappears when the off-
diagonal elements of the damping operator (5.7) are tak-
en into account.

In order to obtain the probability amplitude pb (4.15)
the two solutions a and P have to be combined accord-
ing to

(5.17)

In the expression for P the second term proportional to
1/v in the bracket is due to the modified initial condi-
tion (5.16) and the portion proportional to i5/—v of the
first term originates from the off-diagonal matrix element
I b, (5.15). Without these two contributions p would
just equal b (t) (5.12) multiplied by the factor cp/v.
Combining the two solutions a and P to the probability
amplitude

The second term in pb just cancels the term proportional
to (ice+5)t in p(t) (5.8) and we obtain for pb

pb(t) = Ep'rb

—(y /2+ice )t —(yb /2+snob )t
e —e

(5.10)

in agreement with the E r result (5.2).
We now proceed to a two-level atom [ ~

a ),
~

b ) ] in a
rf field

E(t)=Epsin(vt) . (5.11)

ie
2A

Eo rba

—[ya /2+i (~a —v)]t —(yb /2+i cob )t
e —e

6—i5
(5.12)

Using the Bethe-Lamb equations with the p. A interac-
tion and the corresponding vector potential

1A(t) = Apcos(vt ) Ap= Ep (5.13)

would result in first-order perturbation theory in

[ya /2+i(~a +)tt (yb /2+ &~b )ie m e —e
2~Ep rba 6—i6

(5.14)

This difFers from Eq. (5.12) just by the factor (to/v)
which was discussed in Sec. II.

In deriving the result (5.12) from p. A we can again
use the transformation operator T in the form (5.5) and
the damping matrix elements in the form

I aa 7a~ ~bb Vb
(5.15)

I,'b ———2 e5 A(t) —rb, , I b, ——2—e5 A(t). rb,

The initial conditions for Eqs. (3.10) are now given by

The Bethe-Lamb equations with the rotating-wave ap-
proximation (2.4) then give in first-order perturbation
theory

pb(t) =& (t)e

pb(t) =pe ——e A(t). rb, ae (5.18)

gives

ie
pb(t) = Ep'rb~

2A

—[y /2+i (co —v) tt —(yb /2+icub )t
e —e

6—i6

(5.19)

The a admixture to pb in effect cancels all the crucial
terms in /3 (5.17) and the result (5.19) agrees with Eq.
(5.12).

For higher-order processes in a two-level atom our
formalism can be applied in a similar fashion. However,
to solve the p A equations (3.10) in higher orders be-
comes more and more cumbersome due to the
transformed damping matrix elements so that for practi-
cal calculations the use of the Bethe-Lamb equations is
much more convenient.

VI. CONCLUSIONS

In this paper we reviewed the original problem which
led to the Bethe-Lamb equations, we demonstrated why
these equations (which use the E r interaction) yield the
correct answer and why they fail if one simply replaces
E.r by p. A, and we showed for the simple two-level
model how to derive some equations which are the p- A
equivalent of the Bethe-Lamb equations.

It has long been known that the two interactions E r
and p. A correspond to two different gauges of the Ham-
iltonian. It is, however, sometimes overlooked that the
transformation from one form of the interaction to the
other has two consequences which are crucial for the
kind of calculations considered in this paper.

(1) First, the wave functions have to be transformed
when going from E-r to p A. For the p A interaction
the initial and final state wave functions are not given by
the textbook wavefunctions, i.e., by the eigenstates of
Hp, but by the transformed wave functions (4.2). The
transformation of the wave functions leads to modified
initial conditions for the expansion amplitudes a and /3

in Eq. (3.10) and to the relation (4.7) between the experi-
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mentally accessible transition amplitudes p,
' and pb and

the amplitudes a and P.
(2) Second, the damping operator has to be trans-

formed, too. The damping matrix has off-diagonal ele-
ments for the p A interaction and the correct p A
equations of motion are given by Eqs. (3.10). This is a
key point in the present analysis and has not been prop-
erly appreciated heretofore.

The calculations in Sec. V show how one obtains iden-
tical results with the two different interactions. The ad-
vantage of the E r interaction derives from the fact that
the energy operator equals Ho since it corresponds to a
gauge with vanishing vector potential. In this case the
expansion amplitudes a and b in Eq. (3.4) coincide with
the probability amplitudes.

APPENDIX A

In the example of the Lamb shift experiment the ini-
tial and final states are energy eigenstates. An atom in
an external field represents a nonconservative system so
that we have to distinguish between the energy and the
Hamiltonian of the system. In the absence of any field-
atom interaction the energy is the sum of the kinetic and
potential energy of the electron as it moves in the atomic
orbit

+ U(r),
2m

(Al)

where ir=mv denotes the kinetic momentum (v is the
electron velocity). In the presence of a field the kinetic
momentum m can be expressed in terms of the canonical
momentum p and the vector potential A as m =p —e A.

The atomic states
~

a ) and
~

b ) are characterized by
the energy operator (Al) and are in general not eigen-
states of Ho. ' ' This can be illustrated by gauge argu-
ments based on the concept of gauge-invariant quantities
as introduced in Ref. 9. Gauge-invariant quantities are
represented by operators whose eigenvalues are invariant
under gauge transformations. Examples are the position
operator r and the kinetic momentum m =p —e A as well
as any combination of these two quantities. On the oth-
er hand, the canonical momentum p or the vector poten-
tial A have gauge-dependent eigenvalues and are there-
fore nonphysical quantities. The same statement holds
for the unperturbed Hamiltonian Ho (2.14). A physical
system can only be prepared in an eigenstate of a gauge-
invariant (physical) quantity, not in an eigenstate of a
nonphysical quantity. In the case of a hydrogen atom
the states

~

a) and
~

b) are therefore in general not
eigenstates of Ho whose eigenvalues are gauge depen-
dent. Instead they are eigenstates of the energy operator
8 which is given by Eq. (Al).

The E-r interaction corresponds to a gauge in which
the vector potential vanishes A=o. Therefore, the ki-
netic momentum m and the canonical momentum p are
the same:

m =p= —V'
l

(A2)

and the energy operator equals the unperturbed Hamil-
tonian Ho

+U(r)=HO .2' (A3)

Hence, the wave functions representing the states
~

a )
and

~

b ) in the electric field gauge follow directly from
Eq. (3.2):

6P, =fico, P„6'gb ficob——Pb . (A4)

In the p- A formulation, on the other hand, kinetic and
canonical momentum are different:

m=p —e A (A5)

and therefore also energy operator and unperturbed
Hamiltonian,

(p —e A) + U(r)&HO .
2m

(A6)

The energy eigenstates in the radiation gauge

(p —e A) + U(r) 1'„' =A'co„p'„, n =a, b (A7)
2m

are then also difFerent from the eigenstates P„ in Eq.
(A4). The relation between g„' and P„ is the same as the
relation between the wave functions 4' and + in Eq.
(3.5)

g'„=TP„, n =a, b

eie A(t). rjfi (A8)

Since in the experiment the probability of finding the
atom in a particular energy eigenstate is measured the
wave function 4' in the p. A formalism has to be pro-
jected onto the transformed wave functions f,' or P'b

(A8) in order to obtain the probability (4.3).

APPENDIX B

In this Appendix we will distinguish between different
classes of calculations in which the E r versus p. A ques-
tion arises and we will list some of the arguments com-
rnonly put forward for the resolution of this question. It
will be shown that there are classes of calculations where
one can obtain the same result with both forms of the in-
teraction without using the whose machinery developed
in this paper, in particular without transforming the
eigenstates when going from one gauge to the other. On
the other hand, there are classes of calculations where
commonly used arguments (such as the completeness of
the intermediate states) are not sufhcient to resolve the
problem and where the transformation of the damping
operator and the distinction between expansion ampli-
tudes and probability amplitudes is essential.

We restrict the calculations to simple examples and
refer the reader to the original literature for more de-
tailed calculations. For our purpose it is convenient to
distinguish between five different classes of calculations.

(i) Plane wave geld, solu-tion at t~ao, no radiation
damping. For this class of calculations both forms of
the interaction give the same result even if the textbook
wave functions are used for the p. A approach. The
proof of this statement relies on (1) energy conservation
and (2) the completeness of the intermediate states. In
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im
b(t)

I
e

t 2A I
Eo'rba

I

'~(co —v)

This is Fermi's golden rule for the transition rate. If the
E r interaction in Eqs. (2.4} is replaced by the p A form
and if Eq. (2.15) is employed, one obtains

order to demonstrate this we first consider the simplest
example of a first-order transition from a state

I
a ) to a

state
I

b ) with spacing E, Eb—fico——, induced by a plane
wave of frequency v. The calculation can start from
Eqs. (2.4) which is already written for a plane-wave field.
After dropping the decay terms the first-order solution
of Eqs. (2.4) yields in the limit t ~ oo

e

2A

2 2

I
Eo rb'I '~(oi —» . (82)

The expressions (Bl) and (82) dift'er by the usual factor
(co/v), but the 6 function takes care that this factor
equals unity so that both expressions are actually identi-
cal.

For a second-order process the equivalence of the two
approaches is not so obvious. Let us go for the moment
beyond the two-level model which we exclusively con-
sidered in this paper so that the second-order transition
rate involves a sum over many intermediate states. For
the emission of two photons with frequencies v& and v2
the E.r calculation gives

lim
Ib(t)

I
e

=2m
t 2A

4
(E2 rb„)(Ei r„, ) (Ei rb„)(E2 r„.)

+ 5(co —v, —v2),
COa —COn CO —CO„—V2

(83)

whereas simply replacing the E r matrix elements by the p. A matrix elements according to Eq. (2.15) results in

2m
e

2A

4

n

(E, —E„)(E,—Eb ) (E2.rb, )(Ei.r, ) (Ei rb„)(Ep.r„, )

A viv2 CO, —CO„—Vi CO —CO„—V2
(84)

In order to show that the expressions (83) and (84) are
the same, one has to exploit not only the energy conser-
vation as expressed by the 5 function but also the com-
pleteness of the intermediate states

I
n ).' ' In a simi-

lar fashion the equivalence of both approaches can also
be sho+n for a three-photon interaction ' as well as for
multiphoton processes of arbitrary order.

The importance of the closure relation has also been
numerically demonstrated by an exactly solvable exam-
ple, the 1S~2S transition in hydrogen via two-photon
absorption. In the case that all the intermediate states
including the continuum are taken into account both ex-
pressions (83) and (84) give exactly the same numerical
result for the two-photon transition rate, but the respec-
tive contributions of the individual intermediate states
are very diff'erent. The intermediate wave function Pip
(3.2), for example, gives the dominant contribution to
the sum (83) in the E r formalism, whereas it does not
contribute at all to the sum (84) in the p A formalism,
since (2Si&2 I p I 2P, &2 ) =0 for degenerated states 2Si f2
and 2P&&2. The contribution of the continuum, on the
other hand, is negligible in the E.r formalism, but it
plays a very important role in the p A approach. In the
examples given in Ref. 23 the continuum contributes by
more than 50% to the sum (84).

This situation is unsatisfactory from a physics point of
view. The two forms of the interaction lead to the same
result due only to the reason that one works with a com-
plete set of eigenstates, but in the p- A formalism these
textbook eigenstates (3.2) do not describe the physical
(energy) eigenstates of the system anymore. When going
from the electric field gauge to the radiation gauge, the
physical eigenstates become a superposition of the eigen-
states f„(3.2) of the unperturbed Hamiltonian Ho with
a major admixture of continuum states of Ho. The

In this case energy conservation arguments cannot be
applied as in (i). Nevertheless, in the limit of long in-
teraction times both forms of the interaction lead again
to the same transition rates, even if the transformation
of the eigenstates for p. A is not taken into account.
This can be proven by showing' ' that for a field (85)
which is adiabatically turned on and off the transforma-
tion operator T (3.5) approaches unity in the limit
t —++ oo'.

lim T(r, t) = lim e" (86)

According to Eq. (4.7) the expansion amplitudes a and P
in the p. A formalism then coincide in the limit t —+ oo

with the probability amplitudes p, and pb so that the
p. A approach with the textbook wave functions in Eq.
(4.3) gives the correct result for this class of calculations.

(iii) Suddenly turned o+Peld, no radiation -damping

reason why one has to sum over so many states in the
p A formalism in order to obtain an accurate result is
therefore due to the fact that one "forgot" to use the
transformed eigenstates for p. A.

(ii) Adiabatically turned o+Peld, n-o radiation damp
ing. In an experiment the system is usually prepared be-
fore the field is turned on and the measurement takes
place after the field is turned oK The strictly mono-
chromatic field in (i) should therefore be replaced by a
wave packet with finite frequency bandwidth. The elec-
tric field E(t) and the vector potential A(t) in the radia-
tion gauge then have the form

E(t)=f de E(co)cos(cot),
(85)

A(t)= —f de E(co)
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f dt A(t) pt„e ' '= —f dt E(t) r&, e
Pl 70 70

+—[A(t, ) rb~e

—l 6070—A(tp) r&, e ] .

(B8)

The two expressions (B7) and (B8) obviously only coin-
cide if the vector potential vanishes simultaneously with
the electric field

A(tp)= A(t, )=0 . (B9)

Since this is in general not the case the transformation
(4.2) of the eigenstates has to be taken into account in
order to obtain the correct result with the p A approach
for this class of calculations.

(iu) Plane wave field, soluti-on at finite time, no radia
tion damping. Even for experiments which measure
transition probabilities as a function of the interaction
time, the calculations are usually done with plane-wave
fields. This requires the knowledge of the probability
amplitudes in the presence of the field.

In contrast to (i) energy conservation arguments can
no longer be applied in this case. The conclusion for
this class of calculations is therefore the same as in (iii):
if the textbook wave functions would be used for both
forms of the interaction, one would obtain different re-

We now come to transient effects which depend on the
duration of the interaction. In an experiment typical for
this class of calculations the electromagnetic field is sud-
denly turned on for a finite time or the atom passes
through a locally well-restricted field with a finite veloci-
ty, and one looks for the transition probability as a func-
tion of the interaction time. This is now a situation
where the p. A approach with the textbook wave func-
tions does not give the correct answer. The reason for
this is that even if the electric field is (suddenly) switched
off there may very well be a (time-independent) vector
potential remaining. In contrast to Eq. (B6) the trans-
formation operator T then still has nonvanishing off-
diagonal matrix elements even when the field is switched
off. According to Eq. (4.7) probability amplitudes and
p. A expansion amplitudes are then different.

We can illustrate this point by the simple example of a
first-order transition in an arbitrary field E(t). The
equations of motion for this example look similar to the
Bethe-Lamb equations (2.3), but without the decay terms
and with an arbitrary E(t). If the initial state is
prepared at some time to before the field is switched on
and if the measurement is taken at some time t ~ when
the field is switched off again, the first-order solution in
the E r approach reads

~ 7

b(t, )=—f dt E(t) r,.e
0

Simply replacing the E.r interaction by the p. A form
and integrating by parts gives

suits for finite interaction times and only the E.r result
is the correct one. For probability amplitudes in the
presence of the field it is essential to use the transformed
eigenstates in the p A calculation. Examples of current
interest for this class of calculations are the temporal
evolution of multiphonon ionization rates' ' and the
detection of Rabi-type oscillations of the atomic popula-
tion, ' as well as all kinds of coherent transient effects.

(U) Radiation damping. So far in this Appendix we
have only discussed calculations without radiation
damping. Calculations with radiation damping are the
subject of the main body of this paper. It is shown there
that it is crucial for this class of calculations to use the
transformed decay matrix for the Schrodinger equation
(3.6) in the radiation gauge and to employ the
transformed eigenstates (4.2) for the transition probabili-
ties (4.3) in the p A approach. If these transformations
are not taken into account the p. A formalism gives an
incorrect result for finite interaction times' as well as in
the limit t~m.

A typical example for this class of calculations are the
Bethe-Lamb equations (2.3). For the Lamb shift experi-
ment these equations yield the evolution of the 2S»z
population as a function of the interaction time. For a
given interaction time they give the 2S»z population as
a function of the rf frequency or the level spacing, i.e.,
the line shape. There have been alternative approaches
for calculating the line shape. ' ' ' For instance, if
one assumes a linear (and subsequently exponential) de-
cay of the 2S»z population inside the rf field, the rate of
this field-induced decay can be calculated in lowest-order
perturbation theory in the limit t —+op. Compared to
this approach the Bethe-Lamb equations are more
powerful in the sense that they give a nonperturbative
solution (2.7) for the 2Sizz population for arbitrary in-
teraction time, for arbitrary strength of the rf field, and
for arbitrary decay constants of the two levels

~

a ) and
b).
The calculation of the linewidth in Ref. 20 follows the

procedure described in (i). For the p A approach it
uses the textbook wave functions as well as the same de-
cay constants as in the E.r approach, and the transition
rate for the two-step process 2SI&z ~2P&&z ~1S»z is
derived in the limit taboo. Just as in Eqs. (2.10) and
(2.16) both forms of the interaction then lead to transi-
tion rates which difFer by the ratio (co/v) . If in analogy
to the discussion in (i) all the other intermediate states
besides 2Pi&z are taken into account in the p A calcula-
tion and if energy conservation is exploited, part of the
discrepancy is removed.

Similar conclusions were reached in Ref. 28 where the
line-shape problem was treated from a fully quantum-
electrodynamical point of view rather than by a semi-
classical theory with phenomenological decay terms. By
generalizing the Weisskopf-Wigner theory to a multilevel
system it was found that in the p. A approach the back-
ground contribution due to virtual transitions to all non-
resonant levels has to be taken into account in order to
resolve the discrepancy with the experimental results.
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