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Autoionization in a strong laser field with variable laser band shape
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We present a theoretical study of strong-field autoionization electron spectra, including laser de-
phasing with variable band shape. We show that in the weak-field limit the usual peak reversal is
obtained when the spectrum changes from the Lorentzian limit to the Gaussian limit. When the
laser field strength is increased, different peak reversal behaviors are predicted in the Lorentzian
and Gaussian limits, which is quite different from that in the weak-field case. A comparison be-
tween the effect of Doppler and laser dephasing on the photoelectron spectrum of autoionization is
also made in the static limit.

I. INTRODUCTION

Since the discussion of autoionization by Fano, ' the
photoelectron and photon emission spectra of laser-
induced autoionization have been intensively studied,
especially for the strong-field effects of autoioniza-
tion. ' ' Several remarkable coherent effects, including
the Fano zero' and the conAuence, ' are now well under-
stood. In real experiments these coherent effects will be
affected by line-broadening processes, such as spontane-
ous emission, the Doppler effect, collisions, and laser de-
phasing. These incoherent effects help to determine the
autoionization photoelectron spectrum and have been
studied by severa1 authors. '

In some recent studies of laser-induced autoionization
with dephasing processes, the common constant dephas-
ing relaxation coefficients were introduced into the Bloch
equations, and this corresponds to the case when the
correlation time of the dephasing process is short. "' It
was shown that the Fano zero is still present, but the
confIuence is destroyed completely with the presence of
the dephasing process.

The effect of different band shapes on the autoioniza-
tion spectrum in the weak-field case was studied recent-
ly. ' It was shown that the usual peak reversal can be
found in the autoionization spectrum. That is, in the
Lorentzian band-shape limit the ine1astic peak is higher
than the elastic peak and in the Gaussian band-shape
limit the inelastic peak is lower than the elastic peak.
The question is, do we find the same kind of peak rever-
sal in the strong-field case?

We now consider a strong-field autoionization model
in which the laser dephasing is described by a Gaussian-
Markov process and its band width is finite. We show
that the long-time photoelectron spectrum can be ex-
pressed in terms of an infinite matrix continued fraction.
The spectra in various cases are studied, and we show
that the peak reversals and the photoelectron line shapes
in weak- and strong-field cases are quite different. We
show that the elastic peak decreases in the Lorentzian
limit but increases in the Gaussian limit as the laser field
increases. This is due to the total effects of the ac Stark
splitting, the laser dephasing, and the autoionization

mixing. We also show that the effect of the Doppler
broadening and the laser dephasing are different. For
example the Fano zero will be destroyed by the Doppler
broadening but not by the laser dephasing.

In Sec. II we describe the Hamiltonian of our model.
The phase of the laser obeys a Gaussian-Markovian pro-
cess, and its properties are determined by two parame-
ters. Adjustment of these parameters allows both the
bandwidth and the band shape of the laser to be
changed. In Sec. III we show that by using the assump-
tion of a fIat continuum, we can transform the original
stochastic integrodifferential equations into a set of sto-
chastic difFerential equations. This procedure enables us
to solve the model by using well-established techniques,
and the photoelectron spectrum is expressed in terms of
an infinite continued fraction.

In Sec. IV we study the simplest case. That is, the
model only contains one discrete state and a continuum.
The purpose of this section is to show explicitly that in
the static limit, we can simply treat the random variable
as a constant. After solving the entire problem, the
spectrum is averaged over the random variable with a
certain distribution function. We then compare this
with Doppler broadening. We show that even though
the method to solve these two processes, i.e., the dephas-
ing process iri the static limit and the Doppler broaden-
ing, are the same, in general different results will be ob-
tained since the physical origins of these two processes
are different.

In Sec. V we present some numerical analysis of the
result obtained in Sec. III. The spectrum is compared in
the Gaussian and Lorentzian limits. We show different
peak reversal behaviors in the weak- and strong-field
cases. Finally, some conclusions are made in Sec. VI.

II. DESCRIPTION OF MODEL

We consider the autoionization model shown in Fig. 1.
The figure shows a bound state in one electronic
configuration, labeled

~
1), which is mixed by a Coulom-

bic interaction with the continuum of another
configuration, labeled

~

co), leading to the creation of an
autoionizing resonance. An initially occupied ground
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0& is coupled to these states through an induced-

dipole transition by a laser with frequency cuL. The
model assumes that the laser phase is described by a sto-
chastic variable P(t). The total Hamiltonian for our sys-
tem, within the rotating-wave approximation (RWA) is
given by (with A'= 1)

H =Hp+ V)+ V2,

where

Ho=~
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I
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Here E~ =6=co&p —coL is the detuning, and u is the en-
ergy of the continuum measured from the energy where
the laser is tuned. V& specifies laser-induced dipole in-
teractions and V2 is for the Coulombic interaction.
Since we assume that the continuum is Aat, Dp„and D

&

are independent of co.
From the single-mode model of laser theory we know

that if a single-mode laser is far above threshold, its
phase P(t) is governed by the following stochastic equa-
tion + 7) 23

X+PX=F(i),
where

0&
FIG. 1. Simplified atomic level scheme and detuning for our

autoionization model.

The properties of the phase fluctuation are therefore
determined by two parameters P and b, and 1/P is the
correlation time of X(t).

In the limit P—+ go, X(t) becomes 5 correlated and P
can be described by the Wiener-Levy process. We
know that dynamic equations with such a random pro-
cess can be solved exactly. It is equivalent to introduce
a constant dephasing coefBcient into the dynamic equa-
tions. The detailed analysis of the electron and photon
spectra of the different autoionization models have been
studied in this limit. "' But for finite P this procedure
breaks down. We cannot, in genera1, solve the problem
exactly. As we shall show, the long-time photoelectron
spectrum can be expressed in terms of a matrix contin-
ued fraction.

With the total Hamiltonian given by Eq. (1), we can
get the dynamic equations of the system. Usually before
doing so, a diagonalization of the partial Hamiltonian
Hp+ V2 is accomplished to get the Pano states. The
problem is then solved in the diagonali. zed new space.
This procedure wi11 usually end up with some
integrodifferential equations. It is dificult to solve the
model involving a dephasing process with finite /3. We
will not follow this procedure in the present discussion.
In Sec. III we shall use the total Hamiltonian to get the
dynamic equations of motion directly. We show that by
the assumption of Hat continuum, the integrodifferential
equation can be transformed into a set of differential
equations, and the usual way to solve the stochastic
equations with finite P can be applied.

III. EQUATIONS OF MOTION AND I ONG-TIME
PHOTOEI. KCTRON SPECTRUM

In this section we use the total Hamiltonian given by
Eq. (1) to get the equations of motion. They are
integrodifferential equations with the random variable
X(t) subject to Eq. (5). We first show that these
integrodifferential equations can be transformed to
differential equations by using the assumption of a Oat
continuum. This procedure allows us to apply the stan-
dard method we have introduced to get a set of averaged
equations. Then the photoelectron spectrum is ex-
pressed by a matrix continued fraction.

In the Schrodinger picture the exact state function can
be written as

10(t) &=~o(t)
I
0&+~i(i)

I »+ f d~& (t)
I
~& .

By using the Schrodinger equation we can obtain the fol-
lowing Bloch-type equations of motion (in the rotating
frame)

Qp
Cpp = —l Cp& —l dt's Dp~Cp~+C. C. (10a)

and F(t) is a 5-correlated Gaussian force fulfilling

&F(t, )F(t, ) & =2bP'5(t, t, ) . —
This random process has such a property that

&X(t )X(t ) & =bP

Qp
Cii = l Cip —l f cdoD ~iC~i+.C.C

. &o
Co, —— i (b, — )XC —pi+i (Cii —'Cpp)

2

—i f dcoDo~Co~+i f dcoDo~C~i,

(10b)

(10c)
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Co = —((o —X)Co — oCoo — i Col B,j. ——0, (18)

QQ
Cl +i I d(o'D pC

2
QQ

C, = i—((o —b, )Cl +i Cp„—iD pC, p

—iD (Cii+i dcu'D iC

(10d)

(10e)

except

B33———B44 ——B55 ——1 .

P(t) represents the atomic variable given in the order of
Cpp Cll Cpl Clp Cp and C, . In Eqs. (16) y & is due
to the discrete-continuum coupling given by

C = —i ((o —(o)C +iDp Cp —iD (lC p y p ——aD D*p. (20)

+iD )„Cj
—iD„iC„i, (10f)

C~g =Ex] elk, t, k =0, 1,co co

except

Coi =C ip
——apace' ip(t)

Cp„——C 0
——apo. e'j(Itl( g)

(12a)

(12b)

where X is defined in Eq. (5), and we have introduced the
new variables

From Eq. (15) we notice that the total atomic space is
divided into three sub spaces. The first subspace
00, 11,01,10 is self-contained. The second subspace
Oco, co0, 1',cu1 only couples to the first subspace, and the
third subspace coco only couples to the second, but not
vice versa. Still we notice that Eq. (14) is a stochastic
differential equation.

What we are interested in is the averaged long-time
photoelectron spectrum. As we know, the long-time
photoelectron spectrum can be given by

These integrodifferential equations must be solved with
the initial condition W((o) = ( C„(z=0)), (21)

Cpp(0)=1 . (13) and more explicitly we have

d +3+iX(t)B g(t)=0.
dt

(14)

We cannot directly use the Laplace transformation to
solve this problem, because these equations are also sto-
chastic equations with the time-dependent random vari-
able X(t).

Since the continuum is assumed to be Oat, it has been
shown that the integrodifferential equations can be
transformed into differential equations: '

W( (o)=1m[ D„o(C „o(z = 0)) +D l (Cl (z =0))], (22)

where the average is with respect to the random variable
X(t) and C &(z) is the Laplace transformation of C i3(t).
So if we can find the averaged quantities ( Cp ) and
(Ci ) from Eq. (14), we can then substitute them into
Eq. (22) to get the photoelectron spectrum.

A type of the stochastic equation given by Eq. (14)
with the random variable X(t) obeying Eq. (5) is well
studied. ' Following the same procedure we have

Here A and B are all matrices given by

0
(15)

itt(z) = g(0),1

z+ A +If(z)
where IC(z) is the matrix continued fraction

(23)

and

2'Voo

K(z) =8
z+P+ A +8 82Pb

z+2 +A +
8, (24)

where

iD„o
iD

iD 0

D~o

l CO+ fpp pi
i ((o —b, )+yll

ll 1 00 +'111 ) + i ~

pi 0 ('Yoo+'V il ) —i ~

(16a)

(16b)

(16c)

Here P(z) is the Laplace transformation of P(t). The dy-
namics of the system can be obtained by inverting the
Laplace transformation of Eq. (23). Since now we only
want to know the spectrum in the long-time limit, we
simply let z =0 in Eq. (23) to get averaged (Cp ) and
(C p). The photoelectron spectrum is then given by
Eq. (22).

Equations (22) and (23) are our main result and shall
be studied in the following sections. By truncating the
matrix continued fraction at some finite level (including
enough levels till the result converged), we can study the
effect of the dephasing in the spectrum, especially with
finite correlation time.

lPi= &i+Tpi2

l
P2 +0+7012

The elements of the matrix B are given by

(17a)

(17b)

IV. STATIC LIMIT AND DOPPLER BROADENING

In Sec. III we have solved the stochatsic differential
equations, and the long-time photoelectron spectrum
was expressed in terms of a matrix continued fraction.
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This procedure is valid for any correlation of the laser
dephasing. This method is quite general, but somewhat
complicated. We then ask whether we can find some
simple way to solve it. For example, is it possible that
we simply solve the model by regarding the random vari-
able X(t) as a constant parameter, and then averaging
the result with respect to the distribution of X(t). As we
know, since the distribution function of the random vari-
able is time dependent, in general we cannot follow this
procedure. Only in the static limit given by

stant, and by solving Eq. (14) with A and B given by Eq.
(27) and Eq. (28) we simply get

—iQO
Oco (z +1'oo)(z +i(o+y pp+iX)

(31)

P (X) (2 F2) —1 —x /(2I ) (32)

In the static limit the time-independent distribution
function of 7 is a Gaussian function:

—+0,
/3b ~I

(25a)

(25b)

By averaging Eq. (31) with this distribution function we
have

(C,„)= I dXr(X)C,.

Qp ——D( ——0 (26)

in our autoionization model introduced in Sec. II. From
Eq. (16) we know that in this case A and B become 2 X 2
matrices given by

2Xpo
(27)

0 l CO+ Qpp

08= (28)

with g = ( Cpp Cp ). By substituting matrices A and B
into Eq. (23), it is easy to show that Co can be ex-
pressed in terms of a number continued fraction:

(c,.) =
(z +1'oo)(z +iP)+ Pop+ Go )

(29)

where I is a constant, does the distribution function of
the random variable become time independent. Then
the simple procedure can be applied.

In this section we first solve a simple model by using
the method we have used in Sec. III. Then we solve the
same model in a way that the random variable is treated
as a constant parameter, and after solving the problem
we perform the average. We show explicitly that in the
static limit, the two procedures give the same result. We
also show that even though the second method is similar
to the method used by Haus et a/. recently to study
Doppler broadening effects on the autoionizing spec-
trum, in general the two processes will give different
results. This is because the variables to be averaged are
different. Only in some special cases the same result can
be obtained.

To make things more transparent, we assume that the
model only contains a ground state

~

0) and a flat con-
tinuum

~

p) ). This is equivalent to say that

2 + l CO+ /Op+

—i Qp/(z + y()())

p2

2I
Z +lCO+ypp+

2 + l CO+ happ+

(33)

It is clear that if we take the static limit given by Eqs.
(25), Eq. (30) and Eq. (33) are identical.

Physically the static limit means that the coherence
time of the stochastic process r, =1/P is long compared
with the time interval which characterizes the dynamics
of the system, such as 1/Qp. Within this time regime,
we can simply treat the random variable as a constant.
After solving the problem we should take the ensemble
average. This procedure is no longer valid if the coher-
ence time w, is not longer than the time interval in
which the electron is ionized. In this case the random
variable can change its values during this period of time
and we have to solve the entire stochastic equations as
we have done in Sec. III.

As far as Doppler broadening is concerned, we should
average the spectrum with respect to co in Eq. (31) in-
stead of X. This is because in an atomic ensemble, atoms
move with different velocities. What are measured are
the outgoing electrons with the sum of the ionization en-
ergy and the kinetic energy of the moving atoms. We
have to average the energy of the outgoing electrons
with respect to the ensemble of the moving atoms. Since
the variables to be averaged are different, the two pro-
cesses, the Doppler broadening and the laser dephasing
in the static limit, will, in general, give different results.
This can be seen from Eqs. (10) where the positions of X
and p) are different [for example, in Eq. (10c) there is no
(o but X].

For the present simple case, let X=O in Eq. (31) and
take the average over ~ with the Doppler distribution
function given by

where P (~) (2~1-2)—)e —( —m)'/(2r') (34)

Go=
2Pb

z +p+i co+ 1'pp+
z +2@+i(p+ico+y pp+

To compare with this result, we solve the problem al-
ternatively. This time we regard X in Eq. (14) as a con-

where co is the value for the stationary atoms. Again we
get the same expression as Eq. (33) simply replacing co

by co. For this simple model the two processes give the
same result, because p) and X in Eq. (31) are exactly in
the same position. But in general they are different. For
example in the Fano model, as we shall discuss in Sec.
V, the Doppler broadening destroys the Fano zero com-
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pletely, but for the dephasing broadening we always
have the Fano zero in the electron spectrum.

V. NUMERICAL RESULTS AND DISCUSSION

Qo
q =

2(rry () ) Do
(36)

In Sec. III we have expressed the long-time photoelec-
tron spectrum in terms of the matrix continued fraction
which is valid for any p. As we know, the stochastic
properties of the laser field are determined by p and b.
More explicitly the spectrum of the laser described by
Eq. (5) is given by the Fourier transform of the correla-
tion function

(pip( +~)—ip(~) ) exp[ b [ ~

r
~
+(e —&(~l 1)/p] j

(35)
For b &p the spectrum of the laser is Lorentzian with
the efFective width b. We call this the Lorentzian limit.
In the static limit given by Eq. (25) the laser spectrum
becomes Gaussian with effective width I . For this
reason we refer it as the Gaussian limit. The line shape
of the photoelectron spectrum is therefore significantly
infiuenced by the values of P and b

In the static or Gaussian limit, since the distribution
function of X=/ is independent of time, one can solve
the problem of regarding 7 as a constant and take the
stochastic average after solving the problem as we did in
Sec. IV. If we substitute the static limit given by Eqs.
(25) into Eq. (24), we shall get the same type of equation
as Eq. (33) but in a matrix form. The advantage of Eq.
(24) is that it holds for any finite numbers b and P.

For further discussion, we introduce an asymmetry
parameter

an absolute effect on dipole coherence and, as a conse-
quence, Autler-Townes interference is weakened. This is
shown in Fig. 2 where the Fano zero is located at
co=y&&q =3 since y&& ——1 and q =3. In Fig. 2 the
dashed line is plotted for I =1 and the solid line is for
I =10.

If q is very large, the direct transition channel is negli-
gible. The problem is similar to studying the absorption
spectrum of the probe field in double optical resonance
discussed by Dixit et al. In this case they showed the
different aspects of the absorption line shape in the
Gaussian and Lorentzian limits and they found that in
the Lorentzian limit the inelastic peak is higher than the
elastic peak but in the Gaussian limit the elastic peak is
higher than the inelastic peak. This is called peak rever-
sal. In the following discussions we show that the same
peak reversal can be seen in the weak field case but not
in the strong field case since q is taken to be finite.

When q takes some finite value, the coherent interfer-
ence of two ionization channels will enter the picture.
In Fig. 3 we have chosen 6=30 and Qo ——1, so it is the
spectrum in the weak field case. In this figure the zero
appears at co=25 since we assume y» ——1, q =25 and
therefore co=y&& q =25. In Fig. 3 the peak heights are
quite different in the Lorentzian and Gaussian limits. In
the Lorentzian limit the inelastic peak is higher than the
elastic peak. On the other hand, in the Gaussian limit
the inelastic peak is lower than the elastic peak. This is
because the laser spectrum in the Lorentzian and Gauss-
ian limits are Lorentzian and Gaussian, respectively. As
we know, the Gaussian spectrum drops much faster than
that of the Lorentzian spectrum, especially in the far
wing region. Physically the peak reversal is caused by
the overlap of the wing of the dephasing broadening
with the atomic resonance. If the detuning is large, the
smaller overlap of the laser dephasing broadening with

which specifies the ratio of the direct and indirect ioniza-
tion channels. Here y» specifies the decay rate of the
level

~

1) due to the Coulombic interaction. To com-
pare the spectrum in the Gaussian and Lorentzian lim-
its, in the following calculations we choose p=125, b =5
for the Lorentzian limit, and p= 1, b =25 for the Gauss-
ian limit, so that the same effective width (=5) is ob-
tained for both cases.

The spectrum in the Lorentzian limit is simple. From
Eq. (23) we have

(37)

1.0
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The effect of the laser dephasing can be described by in-
troducing a constant dephasing coefficient b which is
clearly shown in Eq. (37). The detailed properties of the
spectrum have been studied by Rzyzewski and Eberly. "
They showed that the presence of incoherent dephasing
does not eliminate the Fano zero in the spectrum. This
is because the effect of dipole phase diffusion is exactly
the same on both of the two ionization channels and so
they do not accumulate any relative phase mismatch.
On the other hand, however, the conAuence will be des-
troyed completely by incoherent dephasing since there is

I

0 10

FIG. 2. Long-time photoelectron spectrum with parameters
Qo ——1, q =3, 6=4, and y~~

——1 (E& ——5). Solid line is drawn
with I = 10, and dashed line is for I = 1.
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FIG. 3. Long-time photoelectron spectrum with parameters
q =25, 5=30, y» ——1, and Qp ——1 (E& ——6). Solid line is drawn
for the Cxaussian limit with p= 1 and b =25, and dashed line is
for the Lorentzian limit with P= 125 and b =5.
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FIG. 4. The same as in Fig. 3 except Op=30.

the atomic resonance in the Gaussian limit leads to a de-
crease of the indirect transition channel which results a
decrease of the inelastic peak.

If the laser field is increased, as shown in Figs. 4 and 5
where Qo ——30 and 50, respectively, we observe a new
kind of peak reversal. Figure 4 is plotted for Ao ——30.
In this case the spectrum in the two limits are quite
similar. When the Rabi frequency increases to 50 as
shown in Fig. 5, the peak close to the Fano zero in the
Gaussian limit gets much higher than in the Lorentzian
limit. What we have observed from these is that one of
the ac Stark peaks in the Gaussian limit is getting higher
and higher, as it is moving close to the Fano zero. In

u —Ei
FIG. 5. The same as in Fig. 3 except Ap ——50.

the Lorentzian limit, however, the same peak gets lower
as we increase the laser power. This new kind of peak
reversal is laser-power dependent. This is the new
feature in our model. It indicates that the coherent in-
terference of the two ionization channels is important to
determine the difference of the spectrum in the two lim-
its.

If the field is weak and the detuning is large, the elas-
tic peak in the Gaussian limit is higher than in the
Lorentzian limit, and the inelastic peak in the Gaussian
limit is lower than in the Lorentzian limit. This kind of
peak reversal is caused by the different overlap of the
wing of the laser spectrum with the atomic resonance in
the Gaussian and Lorentzian limits. To understand the
physical origin of the new peak reversal phenomenon in
the strong field case, let us first consider the spectrum in
the Gaussian limit where the peak close to the Fano zero
becomes higher when the laser field increases. As we
mentioned before, we can solve the problem in the
Gaussian limit by referring the random variable 7 as a
constant parameter and then average the result with
respect to the distribution of X. By taking +=0 the be-
havior of the autoionization spectrum reduces to the
case without any random dephasing process. ' In this
case, one of the ac Stark peaks gets higher as it gets
closer to the Fano zero due to the conAuence effect. It
can be shown that when 7&0 we still can see that the
confluence effect plays a role. Therefore it is the
conAuence effect which makes the peaks close to the
Fano zero get higher in the Gaussian limit as we in-
crease the laser field. In the Lorentzian limit, however,
the conAuence will be destroyed by the dephasing pro-
cess." Also in the Lorentzian limit the peak close to the
Fano zero will be broadened by the dephasing process as
we increase the laser field due to the mixing of the levels

~

0) and
~

1) (in the weak-field case the inelastic peak is
only broadened by the decay rate y»). For these
reasons the peak close to the Fano zero gets lower when
the laser field is increased.
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If q is finite in our model we always have the Fano
zero in the photoelectron spectrum. This is true in any
limits, including the static limit we have discussed in
Sec. IV. This is quite different from Doppler type of
broadening. As discussed by Haus et al. , the Doppler
broadening destroys the Fano zero completely. The
appearance of the Fano zero in our model is due to the
two ionization channels not accumulating any relative
phase mismatch. But in the Doppler broadening the en-
semble average over the random motion of the atoms
washes out all the coherent effects. This case serves as
an example for the different results obtained from the
Doppler broadening and laser dephasing broadening in
the static limit.

Recently Rzyiewski and Cooper considered the
effect of a Auctuating electronic field due to the sur-
rounding plasma environment. The main effect caused
by this fluctuating electric field is dipole transitions from
the imbedded ionization state to a set of neighboring
states of the opposite parity. In the weak-field limit, the
ionization rate was derived in both the short correlation
time of the fluctuating electric field (dilute plasma) and
the finite bandwidth fluctuating electric field case (dense
plasma). The fluctuating electric field gives an additional
width and shift to the line shape of the ionization rate as
a function of the laser detuning. Our work differs from
theirs as follows. (I) In our case the phase of the laser
field is a random variable, while in their case it is the
electric field due to the surrounding plasma environment
that is fluctuating. (2) We have studied the photoelec-
tron spectrum in the weak- and strong-field cases, but
they limited themselves to the weak-field case and only
the ionization rate was studied. (3) We have specially
shown the different peak reversals and line shapes in the
weak- and strong-field cases. In addition, the difference
between the Doppler broadening and the laser dephasing
has been studied.

VI. CONCLUSION

We have studied an autoionization model including
laser dephasing with a variable band shape. The laser

dephasing is described by a Gaussian-Markov process
and its bandwidth is finite. By using the standard
method, the long-time photoelectron spectrum has been
expressed in terms of an infinite matrix continued frac-
tion and has been studied in various cases.

We have shown explicitly that in the static limit the
problem can be solved by a simple method in which the
random variable is treated as a constant parameter, and
after solving the problem we perform the stochastic
average. We have compared the spectrum in the static
limit with the autoionization spectrum including the
Doppler broadening recently studied by Haus et al. and
have shown that the effects of the Doppler broadening
and the laser dephasing are different. For example, in
our model we always have the Fano zero on the photo-
electron spectrum. But the Doppler broadening, as dis-
cussed by Haus et al. destroys the Fano zero completely.

The focusing point of the present discussion is to show
the different aspects of the photoelectron spectrum in
the strong field as the laser dephasing changing from the
Lorentzian limit to the Gaussian limit. In the weak-field
limit, the usual peak reversal can be seen, i.e., in the
Lorentzian limit the inelastic peak is higher than the
elastic peak, but in the Gaussian limit the elastic peak is
higher than the inelastic peak. But when the 1aser
power is increased, a different kind of peak reversal is
predicted. We have shown that as the laser power is in-
creased, the inelastic peak decreases in the Lorentzian
limit but increases in the Gaussian limit. Therefore, the
line shapes in the strong-field case are quite different
from that in the weak-field case. This is due to the fact
that in the Lorentzian limit the dephasing process des-
troys the conAuence effect completely but not in the
Gaussian limit.
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