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The multiphoton ionization of helium has been determined for a number of laser wavelengths
and intensities using the time-dependent Hartree-Fock model. Conclusions about the ionization
dynamics for very-short-pulse, high-intensity lasers are discussed. The limits and characteristics of
the time-dependent Hartree-Fock method for atomic physics processes are also evaluated.

1. INTRODUCTION

The study of multiphoton ionization of atoms has ex-
perienced intense interest over the past few years due to
exciting new experimental results obtained with short-
pulse, high-power lasers. Most interesting are the obser-
vations of a spectrum of photoelectron energies indicat-
ing the absorption of a large number of excess photons
during ionization!~* [above-threshold ionization (ATI)]
and the production of very high ionization stages.*~°
The probability of multiply ionizing atoms was found to
be surprisingly large relative to the single-ionization
yield leading to speculation that some sort of collective
modes of the atoms were being excited.

Traditional perturbation theory (PT) has been capable
of treating most of the observed data so far,”® but it is
clear that more intense shorter-pulsed lasers will push
the multiphoton ionization process into the regime
where PT breaks down. It is one intention of the
research reported here to explore the limits of PT and to
predict the behavior of atoms in fields with intensities
and pulse shapes beyond those for which PT is valid.

The response of a multielectron atom to a very strong
field (generally corresponding to intensities in excess in
10'* W/cm?) can be predicted reliably only using a
time-dependent approach. For short, intense pulses, the
ionization rate can be fast on the time scale of the oscil-
lations of the field. Under these circumstances the as-
sumption of a monochromatic field is incorrect. For
laser intensities above 10'® W/cm?, the electric field be-
comes stronger than the interelectronic interactions.
This also causes the breakdown of PT based on treating
the laser as a perturbation. By explicit integration of the
time-dependent Schrodinger equation, the effects of the
pulse shape (rise time) and high intensity can be treated

exact19y. Whereas this is feasible for a single-electron
atom,” the equations are intractable for multielectron
systems.

A method which has been used successfully for strong
collisions of multielectron atoms is the time-dependent
Hartree-Fock (TDHF) or time-dependent  self-
consistent-field method.!°~!? 1In this approach the time
evolution of the electronic orbitals is followed using the
mean field of the total electron density as part of a time-
dependent potential. In this way some of the instantane-
ous correlation of the electrons is smeared out or aver-
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aged over, while the rest of the interactions, the nuclear
attractions, etc., are handled accurately. This mean-field
approximation reduces the dimensionality of the prob-
lem significantly, from 3N particle coordinates to three
spatial dimensions for N orbitals, so that manageable
calculations can be performed.

Using this approach, we have performed a number of
calculations for the two-electron helium atom. The re-
sults can, with caution, be extrapolated to systems with
more electrons. These calculations explore the effects of
pulse shape, peak intensity, and wavelength on the
preionization dynamics (PD) of the electrons in the
atom. We also obtain ionization rates for constant-
intensity interactions when an exponential decay of the
initial state is observed. These calculations show that
ionization rates which are indeed fast compared to the
laser oscillation rate are predicted for intensities realiz-
able in the laboratory.

They also show that the PD can change dramatically
for different wavelengths. At very short wavelengths
there is evidence that a collective mode could be excited
and play an important role in the PD. If this is the case,
some prospect exists of producing very highly excited
states of the atom, well above the ionization potential,
for times comparable to autoionization lifetimes. It is
difficult to imagine constructing such ‘““collective” states
for multielectron systems in a basis-set-type calculation.
If these states are not included in the calculations, we
cannot find out whether they play a role in the PD.
Therefore, our approach is to use numerical orbitals,
which require no preconceived notions about their form,
and only limited assumptions about their extent. In this
way we attempt to allow the laser interaction and the
time-dependent mean field to drive the evolution of the
system without limits. This is achieved in part in these
calculations, but not entirely. As discussed below, we
place the restriction on the wave function that it can be
represented, for all time, by a single Slater determinant.
This constraint inhibits proper autoionization and treats
the state of the system in an averaged sense rather than
in terms of quantum states with specific amplitudes.
The physical meaning of this constraint and the interpre-
tation of the results are also the subjects of this investi-
gation. The tractability of the TDHF method to treat
complicated processes makes it attractive for develop-
ment. But, since it is a relatively new method in atomic
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physics, its applicability and limitations are yet to be
completely understood.

In Sec. II we will present in some detail the method of
calculation used in studying multiphoton ionization of
helium. In Sec. III we will present many results of both
the PD and the ionization rates for various intensities
and frequencies. Section IV contains our conclusions
about both the multiphoton ionization dynamics and the
method itself.

II. METHOD

Calculations of the multiphoton ionization of helium
have been carried out in two approximations which illus-
trate or emphasize different aspects of the possible ion-
ization dynamics. In the first calculation, the helium
system is treated as a one-electron atom by freezing one
of the electrons in its ground-state (static Hartree-Fock)
orbital. In this case, the active electron absorbs energy
from the laser field in the potential given by the nuclear
attraction and the mean Coulomb field of the frozen
second electron. Of course, there is no mechanism in
this calculation for the excited electron to share its ener-
gy with the other electron. The second calculation is
carried out using the method commonly described as the
time-dependent Hartree-Fock or the time-dependent
self-consistent-field technique. In this calculation the
electronic wave function is given by a single Slater deter-
minant, whose time evolution is given in terms of the
evolution of the individual orbitals. In the case of heli-
um, the wave function is given by a single, doubly occu-
pied atomic orbital which evolves in time in response to
the laser field, the nuclear attraction, and the time-
|

hei(r)=—(#/2m)V?+e2 S [ dr'|¢;(r') |2/ |r—1'
J

The TDHF method is an initial value problem, for
which the initial conditions are chosen to be the ground,
static Hartree-Fock wave function of the system. At
time ¢ =0, the interaction term, Eq. (2), is zero with our
choice of phase. The envelop function E (¢) is normally
chosen to rise linearly over five to ten oscillation periods,
then be constant thereafter. During the constant inter-
val, an ionization rate can be determined if the decay is
found to be exponential. For helium, the initial state is a
singlet so that there is a single spatial orbital and no ex-
change term in the Fock operator.

We solve this partial differential equation using a
finite-difference representation of the electronic wave
function. (See Ref. 11 and references therein for details.)
The Hamiltonian for an atom in a linearly polarized
laser field has cylindrical symmetry. For an s orbital, we
can write

#(r,t)=p~VX(p,z,1) (6)
and set up a two-dimensional grid in pz space defined by

pi=Ali—1/2), j=1,...,nr ' (7)

tween the electrons.

| —Ze?/r —e® 3
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dependent mean field due to the Coulomb interaction be-
The basic difference between the
two calculations is that the second case allows the elec-
trons to share the absorbed energy, albeit in a con-
strained way, so the possibility of collective effects can
be examined.

We explicitly solve the mean-field approximation to
the time-dependent Schrddinger equation:

iﬁ%zﬁ(r,t):H(r,t)tﬁ(r,t) , (1)

where the time dependence in the Hamiltonian comes
from the photon-electron interaction. The wavelengths
of interest are large compared to the size of the atom so
that the dipole approximation is valid. The matter-
radiation interaction term, assuming a classical field, is
given by

Vi=—eE (t)z sin(wt) (2)

where we assume a linearly polarized laser field.

The general form of the TDHF solution of Eq. (1) as-
sumes a completely antisymmetrized product wave func-
tion

1/’(1‘1"'1',,,[):}1 H¢>,-(r,-,l) . (3)
i=1

Putting Eq. (3) into Eq. (1) and taking moments with the
presumed orthonormal orbitals, we obtain the usual
TDHF equation,

.9, ‘
inbi=(h + V),

where the Fock operator, 4, is given by

i=1,...,n 4)

Jdr o, (egix)/ | x—1'| |p;(r) . (5)

Jj>i

f
and

zpy=Alk —(nz+1)/2], k=1,...,nz (8)
with equal grid spacing A in both dimensions. Putting
Eq. (6) into Eq. (4), we obtain a set of coupled finite-
difference equations for the values of the orbital at the
grid points. The prefactor in the definition in Eq. (6) re-
moves the first derivative term in the radial direction in
the cylindrical Laplacian. Then the kinetic energy is
calculated using a three-point difference formula. These
difference equations are derived variationally after the
discretization has been made."

The time propagation is accomplished using a
Peaceman-Rachford, alternating directions implicit
method which has been used and described previously
for TDHF calculations.!""!* The advantage of this par-
ticular propagator is that it is stable, unitary, and re-
quires only vector multiplication and tridiagonal matrix
inversion. Both of these manipulations are linear in the
number of grid points and are easily vectorized. In fact,
we find that on a vector machine, the computation time
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increases more slowly than the number of grid points.
In particular, doubling the number of points in each di-
mension resulted in the overall calculation time increas-
ing by a factor of 3.4. The integration parameters (grid
spacing, grid size, time step, etc.) have been varied to
determine the sensitivity of the results we report. The
calculated ionization rates changed by less than 20% for
reasonable variations of the parameters. The grid spac-
ing was typically chosen to be 0.2a, and the time step
such that it required 200-400 steps per oscillation
period of the field. The stability of the evolution is evi-
denced by constant ionization rates over thousands of in-
tegration steps during the constant intensity period of
the calculations.

The calculation proceeds as follows. The static
Hartree-Fock ground-state wave function is determined
by propagating an approximate ground state in imagi-
nary time. The wave function relaxes to the true ground
state for the finite grid in 20-50 integration steps. This
initial state is then propagated in real time according to
Eq. (4). The amplitude of the field, E (z), rises linearly
over an integral number of cycles, then is held constant.
The number of cycles chosen for the turn on interval
generally is large enough that the increase is approxi-
mately adiabatic. The wavelengths we have considered
are well off resonance so that we find no significant
effects due to the length of the turn-on period. During
the propagation, the time-dependent wave function is
projected onto the initial state, and excited states, in or-
der to identify the dynamics of the excitation process.
Also, since the grid has finite extent, we include an ab-
sorbing interaction on the boundary. The range and
strength of this imaginary potential is chosen so that
minimal reflection of the wave function occurs. The dis-
tance to the boundary is chosen large enough that the
predicted ionization rates are not affected. This is possi-
ble because once the electron is far from the nucleus, it
can no longer absorb or emit photons: it is very unlikely
that the electron will be turned around by the field once
it has reached the boundary. An exception to this
occurs for the long-wavelength, high-intensity cases for
which reflection from a ponderomotive barrier!*~!® may
occur. We generally perform the projections onto
bound-state wave functions only at times when wt =n.

As we found in our hydrogen calculations,’ for direct
ionization, the ionization rates determined either by the
disappearance of the ground-state probability or the de-
crease in the norm of the wave function due to the ab-
sorption at the boundary, are identical. If the ionization
is indirect, proceeding through bound or quasibound in-
termediates, we find Rabi oscillations in the ground-state
population and generally, nonexponential decay of the
norm. The consequences of this sort of PD, both in
terms of ionization rates and the TDHF model itself, are
discussed below.

III. RESULTS

Before discussing the ionization rates and results,
some discussion of TDHF is appropriate. In the short
time limit, TDHF is equivalent to the random-phase ap-
proximation (RPA) or random-phase-approximation
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with exchange (RPAE) which can give reasonable excita-
tion and ionization cross sections. For long-time propa-
gation which we employ here, we consider the evolution
of the wave function to represent an average-atom pic-
ture of the process. Helium is a good starting point for
understanding the characteristics of the time-evolving
wave function. The doubly occupied orbital can be ex-
pressed as a linear combination of atomic orbitals

¢(t):als(t)¢ls +a25(t)¢25 +a2p(t)¢2p+ o (9)

Initially, of course, a;; is one with the rest of the time-
dependent expansion coefficients being zero. Putting
two electrons in this time-dependent orbital with oppo-
site spins, we have the wave function expressed in terms
of zero-order singly and doubly excited (singlet) product
states of the system. Of course, the continuum states
must also be included in this expansion.

This expansion illustrates two defects of the TDHF
wave function. First, the single-configuration wave func-
tion forces, for example, the amplitude in the 1s2p state
to be related to that for the 2p? state. Second, these
product states are not accurate representations of the
true excited states. Since the TDHF equations are non-
linear in the orbitals, the principle of superposition,
which is valid for the Schrdodinger equation, does not
hold. For these reasons, the TDHF wave function is
best interpreted as an averaged representation of the ex-
act wave function. This means that it is averaged in the
sense of a multiconfiguration solution of a time-
dependent Schrodinger equation which evolves in an
average field. For systems with a very high density of
states, a mean-field theory generally gives a good ap-
proximation to the system’s dynamics. For multielect-
ron atoms, this should be the case. But for helium,
which has a very low density of states, with no bound
doubly excited states, this approximation is severe.

Finally, the single-configuration restriction inhibits the
autoionization of doubly excited states. It does not ex-
clude it entirely, but the autoionization rate will be
greatly underestimated. Making allowances for inaccu-
rate excitation energies and hindered autoionization,
much can be learned about the behavior of atoms in in-
tense fields using this approach.

We first discuss in detail the results for the long-
wavelength, multiphoton ionization of He for a particu-
lar wavelength, 1.064 um, and peak intensity, 110
W/cm?. We emphasize this case in order to illustrate
some of the information which can be obtained in a sin-
gle calculation.

As stated above, the initial state is chosen to be the
ground, static Hartree-Fock wave function of the finite-
difference Hamiltonian. This is determined by propaga-
tion of an approximate ground state in imaginary time
until the expectation value of the total energy converges.
We have used a grid with 259 points in the z direction
and 100 points in the p direction with a grid spacing of
0.2a,. We obtain an initial state energy of —75.95 eV,
which compares well with the Hartree-Fock limit of
—77.87 eV. The respective orbital energies are —24.28
and —24.98 eV. The true ionization potential is 24.58
eV and the total energy is —78.98 eV. The main error
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FIG. 1. Density plot of the initial helium orbital. Contours
differ by a factor of 10.

in these numbers comes from the sparse representation
of the wave function near the nucleus. The evaluation of
the nuclear attraction on this grid, therefore, is the least
accurate term in the total energy. We assume this is not
serious with respect to calculations of multiphoton ion-
ization. Because of the error in the ionization potential,
the number of photons required to ionize the atom
differs by one (22 versus 21) for the 1.064-um case with
respect to the Hartree-Fock (Koopmans’s) or the true
ionization potentials. This is not terribly important be-
cause the ionization process, in these long-wavelength
cases with the intensities considered in this work, is in
the Keldysh or tunneling regime and does not depend
very strongly on the wavelength.!”'® This will be dis-
cussed further below.

First we show in Fig. 1 the initial-state wave function.
The density contours differ by an order of magnitude so
that the outer contour represents a density 107> of the
peak density. The figure also shows the approximate
size of the grid used in the calculations. The true boun-
daries are at z =+25.8a, and p=20.1a,. We consider a

calculation for the field defined in Eq. (2) where
E(t)=E,.f () and
0.2 T
01— —
R -
-0.1—
025 5l|)0 1o|oo

Time (a.u.)

FIG. 2. Time evolution of the classical field strength for a
photon wavelength of 1.064 um and a rise time of five periods.
Time is in atomic units (2.4189 10717 s).
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FIG. 3. Time-dependent expectation value of z (in atomic
units).

t/tmaxs t <Tmax

f)= L, >t - (10
Here E,,=0.169 a.u. corresponding to the maximum
laser intensity of 1X10'> W/cm? and t,,, is chosen to
be five oscillation periods of the field (@?y,, =107). For
photons with a 1.064-um wavelength, the period is
3.55x 1071 s (147 a.u.). The calculations we discuss
follow the evolution of the wave function for ten periods.
Figure 2 shows the time dependence of the classical field
for this calculation. During the first five periods the
field increases linearly then is constant. In Figs. 3-5 we
plot the time-dependent expectation values of z, z2, p,
and p2. These all follow closely the time evolution of the
field. As expected, the extent of the oscillations in the
direction of polarization of the field are much smaller
than for a free electron.!® We note that the expectation
values were determined every eighth of a period so that
the curves are less smooth than they should be. It is im-
portant to note that the wave function does experience a
periodic distortion, due to the oscillating field. This type
of driven motion has been proposed as a mechanism for
exciting the inner shell of a many-electron atom by the
oscillations of the outer shell.'® For larger systems,
these calculations can show the extent of the motion of
the least strongly bound shell and can be used to assess
the extent to which laser energy can be coupled into the
inner electrons through this mechanism. Note that this
distortion corresponds to the simultaneous excitation of
all the electrons in a given shell which may be difficult to
represent accurately in a basis-set calculation. A Flo-
quet calculation of the dressed state of a multielectron
atom using a basis containing only single and double ex-
citations from the initial configuration would be inade-
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FIG. 4. Time-dependent expectation value of z2.

quate to describe this motion. With numerical orbitals,
these multiply excited configurations are included au-
tomatically.

We also have determined the time evolution of the
various contributions to the total energy. These are
shown in Figs. 6 and 7. We define an expectation value
of an operator A by

T
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FIG. 5. Time-dependent expectation values of p and p?
(solid line). :
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FIG. 6. Time-dependent expectation values of the single-
particle kinetic energy (upper dashed line), the Coulomb repul-
sion (lower dashed line), and the negative of the orbital energy
(solid line). Energies are in electron volts.

(A)=(¢| 4|0)/(s|0) (11)

to allow for the time-decreasing norm of the wave func-
tion due to the absorbing boundaries. This decay means
the Coulomb integral, the second term on the right-hand

Energy (eV)
8
T

Time (a.u.)

FIG. 7. Time-dependent expectation value of the nuclear at-

traction (dashed line) and the total electronic energy (solid
line).
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side of Eq. (5), gets weaker as the atom ionizes, as can be
seen in Fig. 6. As the interelectronic repulsion becomes
weaker, the orbital energy and the total energy both in-
crease in magnitude, making it more difficult for the
atom to ionize. This is a true many-electron effect in
that we know the ionization potential for each stage of
ionization of an atom is higher than the previous one. It
is a characteristic of the TDHF method that this change
is made in a continuous manner rather than in steps as
would occur in a real atom. Note that from Figs. 6 and
7 we find that the nuclear attraction and kinetic energy
change much more slowly than the Coulomb repulsion.
This is due to the latter depending on the total electronic
density, while the others do not. The oscillatory struc-
ture in all these expectation values follow the oscillations
in the laser field. Also, the peak amplitudes of the ex-
pectation values of the size of the orbital shown in Figs.
3-35 decrease with time because of the orbital becoming
more strongly bound.

We determine the extent to which the atom is excited
by projecting the time-dependent wave function onto the
initial state. In Fig. 8 we show both the time-dependent
norm of the wave function and the probability remaining
in the ground state. This projection onto the initial
wave function may make physical sense only when the
phase of the field is such that sin(w¢) vanishes. In gen-
eral, the projection should be onto dressed atomic states.
However, to illustrate the variation of the wave function
with time, we have projected onto the field-free ground
state several times during each period to obtain the
dashed line shown in Fig. 8. It is clear that only a small
fraction of the wave function is excited from the ground
state directly to the continuum during each period. This
excited flux then propagates to the boundary of the grid
and is absorbed. The flat segments in the time-
dependent norm are due to the finite travel time for the
electron to reach the boundary. The corresponding time
interval indicates the electron energy is on the order of
several electron volts, indicating a high probability of
the electron having absorbed more than the minimum
number of photons for ionization (ATI). A more quanti-
tative analysis of the outgoing electron flux would be re-
quired to establish that this is indeed the fact, but exper-
imentally this certainly has been found to be the case.

The decay of the initial state shown in Fig. 8 is found
to be nonexponential during the last half of the integra-
tion time when the intensity is constant. This is due to
the gradual increase in the binding energy, making ion-
ization more difficult. Therefore, we find the ionization
rate decreases as the ionization proceeds.

Such calculations give a reasonable understanding of
the multiphoton ionization of helium in this long-
wavelength limit. The ionization is predicted to be
direct; no structure due to the excited states of the sys-
tem is in evidence. By direct we mean the lack of appre-
ciable excitation of any intermediate state as indirect
photodissociation. We are not addressing the direct
versus sequential emission of many electrons. We obtain
further insight into the ionization dynamics from the
time-dependent wave function itself. In Fig. 9, eight
density plots of the time-dependent wave function during
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FIG. 8. Time evolution of the norm of the wave function
(solid line) and the projection of the time-dependent wave func-
tion onto the ground (initial) state.

10 :
wt=(n-7/4)7

0 | |
10 T T
wt=(n-3/2)7

10 T
wt=(n-5/4)1

wt=(n-3/4)7

0 1 |
10 T T
wt=(n-1/2)7

0 | 1
10 T T T | T
wt=(n-14)r

10 T T T T \
wt=nmw
0 | ! 177N ! |
-30 20 10 0 10 20 30
z

FIG. 9. Snapshots of the 21 4+ photon ionization of He at
I=10" W/cm? :
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one cycle are displayed. These show that the electrons
emitted are strongly focussed along the direction of po-
larization. One might be concerned that the finite size
of the grid could inhibit the excitation to a highly excit-
ed Rydberg state. We believe this does not prevent us
from determining accurate ionization rates because this
field is expected to ionize any Rydberg state very rapidly
on the time scale of the excitation of the ground state.
At the highest intensities and longest wavelength con-
sidered, we observe the ionization flux emitted toward ei-
ther the positive or negative z axis depending on the
phase of the field as shown in Fig. 9. In these cases a
free electron in the laser field would exhibit oscillations
which are large compared to the size of the atom.!*~16
The maximum excursion of a free electron is given by

eE
Zmax = 2 (12)
maw

which for the worst case considered in Table I is approx-
imately 130ay. This is much larger than our grid so that
our absorbing boundary is inside the ponderomotive bar-
rier whose height is given by
e’E?
dmw®
For the 1.064-um laser at an intensity of 2 10'> W/cm?
this barrier is greater than 200 eV. This means the elec-
tron must absorb an additional 200 eV above the field-
free ionization potential in order to escape from the vi-
cinity of the ion. It seems likely that once the electron
has absorbed enough energy to be above the ionization
potential, it will rapidly absorb more energy to climb out
of the ponderomotive well. Having too small a grid to
test this hypothesis means that our ionization rates for
the highest intensity, longest-wavelength cases may be
too high. Unfortunately, it requires an intractably large
grid to test this hypothesis for the case described above.
We did examine the 532-nm, 1X 10!>-W/cm? case more
closely. In this case the z_,, is 23a, so that our stan-
dard choice of boundary at +26a, might be inadequate
to allow for reflections off of the ponderomotive barrier.

g (13)
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Therefore, we performed a second calculation with the z
boundaries at *52a, and found that the final ionization
rate did in fact decrease by 15%. In this case the pon-
deromotive barrier is 26.4 eV. On the expanded grid,
there appears to be some reflection of electron density
from the ponderomotive barrier which, when it res-
catters off the atom, may be deexcited back to the
ground state. Also there is a much larger time delay be-
tween the disappearance of the ground-state probability
and its absorption at the boundary. Because it only
makes physical sense to project onto the initial, un-
dressed state when the oscillating field vanishes, it is not
possible to determine directly whether some probability
is excited then deexcited during part of a period. We
postulate this as an explanation for the lower rate of de-
pletion of the ground state in the larger grid calculation.
These conclusions are preliminary but indicate the first
evidence of the role of the ponderomotive effect in a cal-
culation of multiphoton ionization. A systematic study
of this in a full three-dimensional system is computation-
ally intractable. It should be possible to do so in a one-
dimensional model, however.

For comparison with this high-order ionization pro-
cess we show the excited wave function for the one- and
two-photon ionization of helium in Fig. 10. These densi-
ty plots obviously show the p and d character of the final
continuum orbitals. Also, these cases differ significantly
from the long-wavelength case in which ionization flux is
first emitted to the right then to the left along the z axis
during the period of the laser oscillation. In the low-
order process the p- and d-wave character is the same
throughout the whole period. We believe the long-
wavelength behavior is consistent with the Keldysh-type
tunneling model.!"” Our calculated one- and two-photon
cross sections agree very well with perturbation results,
illustrating the accuracy of this approach (see Table I).

As indicated above, we have also performed calcula-
tions using a single-electron model in which one of the
Is electrons is frozen in its initial orbital. The second
electron interacts with the laser and moves in the

TABLE 1. (a) Helium ionization rates (s~!) and (b) (generalized) cross sections as functions of pho-

ton energy and laser intensity.

wavelength 1.064 0.532
I (W/cm?) (um)
152 1sls’ 15?2 1sls’
5% 10" 4.7x 10" 7.1 10! 9.0 10" 1.4 10"
1x 109 1.5x 10" 2.1x 10" 1.9 10" 2.8x 10"
2x 1013 1.2x 10" 2.6 10" 1.4x 10" 2.7 10
9.0 eV
1x 10" 2.6x 10" 5.8x 10"
‘ TDHF PT fiw (eV)
o (cm*/W2s) 3x 10716 2.5x 10716 (Refs. 25-27) 13.6
o (cm*/W2s) 1x10-16 1.1x 1071 (Refs. 25-27) 17.7
o (cm?) 41018 5% 1018 (Refs. 28) 30.0
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FIG. 10. Ionizing wave function for 30- and 15-eV photons.

Coulomb mean field of the frozen electron. In this way,
we investigate several aspects of the ionization process.
These calculations show that for the long-wavelength
case considered here, the initial ionization rates for the
frozen and two-electron models are essentially the same.
The potential that the active electron sees in the frozen
calculations does not change during ionization so that
we find an exponential decay of the probability as ex-
pected. The only way the orbital energy in this case can
change significantly is if the wave function becomes ex-
cited without being ionized. Then the magnitude of or-
bital energy decreases instead of increasing as in the
two-electron case. We find it changes by less than 0.1
eV during this calculation. We show the time-dependent
norm of the wave function and projection onto the ini-
tial orbital in Fig. 11 for the peak intensity 2x 10"

Probability

01—

| |
o 500 1000

Time (a.u.)

FIG. 11. Time-dependent norm of the one-electron calcula-
tion (solid line) along with the ground-state probability corre-
sponding to the case of Fig. 8 but with a peak intensity of
2% 10" W/cm?. ’
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W/cm?. Here again, the projections were taken eight
times during each laser oscillation period. In this figure
we have plotted the probabilities on a semilog scale to
show the exponential decay of the initial state during the
constant-intensity period, the last half of the calculation.
From the slope of this line, the decay rate can be deter-
mined.

In the TDHF calculation, the ionization rate decreases
as a function of time due to the weakening of the
Coulomb repulsion as the wave-function norm decreases.
Therefore, it is difficult to obtain an ionization rate from
the decay of the time-dependent norm. However, by
plotting the decay rate as a function of the orbital ener-
gy at times when sin(wt) vanishes, we find that the ion-
ization rate decreases exponentially with orbital energy,
as shown in Fig. 12. Figure 6 shows that the orbital en-
ergy has begun to decrease before the intensity has
reached its maximum and is approximately —26 eV at
the beginning of the constant-intensity interval. From
that point on, the log of the rate decreases linearly with
increasing orbital energy. The ionization rate for the
static Hartree-Fock ground state is obtained by extrapo-
lating the linear falloff back to the correct orbital energy.
This rate is compared to the frozen, one-electron results
in Table I for several wavelengths and peak intensities.
In the long-wavelength regime, we find excellent agree-
ment between the frozen and TDHF results. This
presumably implies that ionization requiring many pho-
tons which are far from resonant depends weakly on the
potential which the electron sees. This also means that
theories of multiphoton, multiple ionization which are
based on independent electron models should be reason-
ably successful in the long-wavelength limit. The statist-
ical model of Crance?®?! and Geltman,?? for example,

102 T
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lonization rate (a.u.
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1078,

FIG. 12. Helium ionization rate vs orbital energy for 1.064-
um photons and a maximum intensity of 1 10"* W/cm?
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FIG. 13. One-electron calculation of helium ionization by
9-eV photons at I =1x10"® W/cm? Solid line is the time-
dependent norm and the dashed line is the projection onto the
initial state.

seem to work well for Xe with 1.064- and 0.532-um pho-
tons for a large range of intensities.

The photoionization of helium with 9-eV photons has
been studied also. This wavelength is also far enough
from resonance that direct ionization dominates. Fig-
ures 13 and 14 compare the single-electron and TDHF

20

Norm
~N
I

14 | | | |
0 200 400 600 800

Time(a.u.)
FIG. 14. Same as Fig. 13 but for TDHF calculation. Fifty
periods of the field oscillation are shown. Full intensity is
reached after five periods.
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ionization probabilities for laser intensities of 13X 10!
W/cm?. In these figures and those that follow, we per-
form projections and evaluate expectation values only at
times when the electric field vanishes [sin(w?)=0]. The
smooth curves in the figures result from straight-line seg-
ments joining the calculated values. The frozen calcula-
tion looks similar to the longer wavelength results in
that the excitation seems to go directly from the ground
state to the continuum. The delay time between the
disappearance from the initial state and absorption at
the boundary is consistent with the transit time of a
few-eV electron. This indicates that the three-photon
process is large with probably little contribution from
ATI. The TDHF result at early times agrees reasonably
well with the single-electron calculations except for a
slightly slower decay rate. At long times, it differs
significantly. As above, the ionization causes an increase
in the magnitude of the orbital energy so that finally the
laser wavelength comes into resonance with some transi-
tion, presumably three-photon excitation of a Rydberg
state, causing, at the latest times shown, Rabi oscilla-
tions in the initial-state probability. Figure 15 shows the
time dependence of the orbital energy and Fig. 16 the
ionization rate versus the orbital energy. The complicat-
ed behavior of the latter curve is due to the changing po-
sitions of the excited-state energies with the weakening
of the Coulomb repulsion. Thus, this single calculation
really illustrates the transition from the long-wavelength
to the short-wavelength photoionization character. As
we discuss below, at shorter wavelengths the resonant
transitions in the atom play a strong pole in the excita-
tion dynamics, generally resulting in nonexponential de-
cay of the atom.

Orbital energy (eV)

1 1 | |
[} 200 400 600 800

Time (a.u.)

FIG. 15. Orbital energy as a function of time for 9-eV pho-
tons at an intensity of 1 10'> W/cm?.
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FIG. 16. Ionization rate as a “function” of orbital energy
for 9-eV photons at an intensity of 110" W/cm?.

The behavior shown in Fig. 14 can be characteristic of
the TDHF method as we have described it. We attempt-
ed to clarify our understanding of this result by perform-
ing a renormalized (RTHDF) calculation. In this case,
after each integration step, we normalize the wave func-
tion so that the nonlinearity in the formulation, coupled
with the absorbing boundaries, does not produce unreal-
istic dynamics. Thus we simply multiply our time evolv-

103 . —

..
1

T
i

lonization rate (a.u.")

WS- -

1 | |
w ey 200 300 600

Time (a.u.}
FIG. 17. Ionization rate as a function of time for 9-eV pho-
tons at an intensity of 13X 10'> W/cm? from the RTDHF calcu-
lation.
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ing orbital after each step by a constant, then determine
the ionization rate from the magnitude of the renormal-
ization factor averaged over a laser period. In this way
we find that the RTDHF 9-eV photoionization rate,
shown in Fig. 17, agrees well with the single-electron re-
sult and no significant PD occurs. The ionization
remains direct and the orbital energy changes by less
than 0.2 eV during this calculation. RTDHF calcula-
tions of ionization rates for the longer wavelength cases
discussed above agree exactly with the extrapolated rates
shown in Table I.

The final case we discuss in detail is a short-
wavelength case in which the chosen photon energy, 28
eV, exceeds the single-ionization threshold. It is also off
resonance for the two-photon excitation of the 2p? dou-
bly excited states which lie near 60 eV in the absence of
the field. Again for this case we performed the frozen
and TDHF calculations. We note that we performed
similar calculations at 30 eV with qualitatively the same
results as discussed here.

Figure 18 shows the time dependence of the wave-
function norm and its overlaps on the initial 1s orbital
(short-dashed line) and a 2p orbital (long-dashed line).
The 2p orbital is a single Slater function with an ex-
ponential parameter chosen to approximate a 2p? excited
state. The intensity reaches its peak after approximately
30 time units then is constant over 35 laser oscillation
periods. This calculation was actually done using the
RTDHF which arguably gives a more accurate picture
of the PD for this two-electron system. A calculation
without renormalization for this wavelength is very simi-

20—
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FIG. 18. Wave function norm (solid line) and orbital projec-
tions on the 1s (short-dashed line) and 2p (long-dashed line) as
functions of time for the 28-eV photon at a peak intensity of
1x 10" W/cm?,
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lar, mainly because the ionization potential does not in-
crease due to the excitation dynamics. This is shown in
Fig. 19 where the time dependence of the Coulomb
repulsion and kinetic energies are also displayed. Figure
20 shows the time dependence of the nuclear attraction
and total energy. These results are to be contrasted to
those for the long-wavelength case shown in Figs. 6 and
7. The short-wavelength PD shows a strong excitation
of Rabi oscillations between the initial state and some
excited state which seems to be 1snp and np? in charac-
ter. The fact that we did not optimize the exponential
parameters in the p orbital onto which we performed the
projection means the precise characterization of the ex-
cited state is not possible. However, it is not obvious
that a single additional configuration is adequate because
of the nonlinear equation which the TDHF wave func-
tion obeys. The frozen, single-electron result for this
case shows no oscillatory structure. The decay of the in-
itial state falls on top of the dashed curve in Fig. 18 up
to about 50 a.u. then continues to decay with a constant
rate. Therefore, we conclude that a multielectron pro-
cess leads to a significant reduction in the ionization
rate. Although the laser is well off resonance for any
single excitation, the self-consistent potential of the mul-
tielectron state is distorted enough by the laser field that
a bound (or quasibound) state exists to which reversible
excitation from the ground state can occur. The pres-
ence of several Rabi oscillations, which eventually ap-
pear to be damped, implies the ionization is delayed due
to the collective excitation of the electrons. From Fig.
20 we see that up to 40 eV of excitation, well above the
ionization threshold, occurs without appreciable loss to
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FIG. 19. Time-dependent ionization potential (solid line),
Coulomb repulsion (short-dashed line) and single-particle ki-
netic energy (long-dashed line) for 28-eV photons at an intensi-
ty of 1 10" W/cm?.
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FIG. 20. Time dependence of the total energy (solid line)
and nuclear attraction (dashed line) for 28-eV photons at an in-
tensity of 110> W/cm?.

the continuum. If the behavior occurs in atoms with
many more electrons in the outer shell, a significant
amount of energy could be trapped in the atom before
ionization. This kind of PD has been postulated by
Rhodes and co-workers® in discussing their multiple ion-
ization results using high-power uv lasers.

The predicted delay in ionization is on the order of
many oscillations of the field (a few fs), so that it would
be observable only in very-short-pulse-length laser exper-
iments unless some other mode of decay is accessible.
Having trapped a large amount of energy in a collective
excitation, the atom can relax in several ways: photon
emission with a wavelength much shorter than the excit-
ing laser, single or multiple autoionization and core exci-
tation. These modes of decay may not be independent.
The possibility of the collective PD, which is indicated
by this model, is therefore of great interest as an effect of
very intense, short-pulse lasers on multielectron atoms.

Finally, we performed calculations with both long and
short wavelengths for a peak intensity of 10'7 W/cm?
We find that before the intensity maximum is reached,
less than a tenth of a percent of the initial wave function
remains on the grid. At this intensity, the numerical
TDHF method becomes intractable for the longer wave-
lengths because of the extended jitter motion of the free
electron. For shorter wavelengths the ionization dynam-
ics should be very well represented by the TDHF model
as the dominant interaction is with the field. In this
case, the ionization rate is so rapid that multiple excita-
tions are not significant. We conclude, therefore, that
there could be a window in intensity for which collective
modes might be expected.
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For lower intensities than those considered in this
work, perturbation theory is valid and this type of multi-
ple excitation would be unlikely to play a significant role
in affecting the ionization rate. However, a recent paper
by Tang and Lambropoulos?’ does show that double ex-
citations can play an important role in ionization dy-
namics at intensities beyond the range of perturbation
theory. In the high intensity, nonperturbative regime,
collective excitations may be possible as long as the field
is not so high that appreciable ionization occurs within a
single oscillation. If excitation-ionization is that rapid,
the PD cannot be particularly sensitive to wavelength
and it seems unlikely that a collective mode could be es-
tablished.

IV. CONCLUSIONS

We have presented results of calculations of intense
field ionization of helium for a number of laser wave-
lengths and field strengths. The time-dependent
Hartree-Fock method was used to obtain these results.
We find limits to the validity or feasibility of this
method. For low intensities, such that the rate of excita-
tion is very small compared to our integration times, the
method is impractical. Therefore we need to consider
intensities which result in ionization rates of at least
10''/s. For 0.532 um and 1Xx10 W/cm? we found
that no excitation occurred within the numerical accura-
cy of this calculation for any integration time. This
should be compared with the observed saturation inten-
sity of 2 10> W/cm? for a 50 ps pulse?* corresponding
to an ionization rate on the order of 10!%/s. For high in-
tensities and long wavelengths, we found the required
grid sizes were unmanageably. large due presumably to
ponderomotive effects. However, for a significant range
of photon energies and intensities, the calculations pro-
vide informative and reliable results.

The ionization dynamics were found to be qualitative-
ly different for the short-wavelength versus the long-
wavelength regimes. In the former case, the structure of
the atomic energy levels was probed and an excitation of
a highly energetic doubly excited state was found. Rabi
oscillation between this quasibound state and the ground
state inhibited the direct ionization process. It may be
that this is an artifact of the TDHF model, but if not, it
is very encouraging with respect to the possibility ob-
serving collective excitations of atoms by strong, short-
pulse, short-wavelength lasers. At lower intensities, the
doubly excited state is not expected to play a role.
Direct ionization should dominate as predicted by per-
turbation theory. As the intensity increased, a point was
reached where appreciable ionization was found to occur
during each oscillation of the field. This was found as
the peak intensities approached 10'7 W/cm?. It is one of
the advantages of this method that the strongly nonper-
turbative regime can be studied for an arbitrary pulse
shape. Our calculations predict, then, that there may be
a window of intensities for short wavelengths within
which collective excitations could be possible.

The long-wavelength regime was investigated both us-
ing the TDHF method and a frozen, one-electron model.
We found the ionization rate was the same in both cases
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for the intensity regime studied. In this range of intensi-
ties, the ionization rates were found to be nonperturba-
tive in that the order of the process was much less than
that given by the minimum number of photons required
by the ionization energy. Also the rates were found to
become less dependent on wavelength at the highest in-
tensity. We found some evidence of reflections due to
the ponderomotive barrier and a consequent slight
reduction in the ionization rate. A future communica-
tion will deal more thoroughly with this phenomenon.
We also concluded that there is likely ATI in the longest
wavelength results because of the short delay time be-
tween the electron probability leaving the ground state
of the atom and being absorbed at the boundary.

The TDHF model produced a changing ionization po-
tential due to the nonlinearity in the Coulomb term. Be-
cause of this we discovered an exponential dependence
of the ionization rate on the orbital energy. The Kel-
dysh'® model also predicts an exponential relationship
between the ionization potential I, and the ionization
rate. However, this tunneling model contains an extra
factor of I,”? in the exponent. The PD for the long-
wavelength case are uninteresting up until the pondero-
motive barrier becomes significant. Up to this point the
ionization is direct. At the longest wavelength and
highest intensities we considered, the effects of the pon-
deromotive barrier were not treated correctly because of
the limited size of our grid. The rates reported in these
cases are expected to be upper bounds on the true rate
because the excited flux was absorbed at our boundary
before it could be reflected by the barrier. We deter-
mined the effect was on the order of 15% for the 532-nm
photons at 1x 10> W/cm?, but may be higher in other
cases. This effect places an upper bound on the
wavelenghs we can consider for a.given intensity. The
trapping of excited electrons by this barrier is a second
mechanism for collective excitation in the atom. Time-
dependent calculations can provide new insight into the
length of the trapping time and therefore the importance
of this effect.

The angular distribution of emitted electrons was
found to differ strongly with wavelength. The longest
wavelength results were most strongly collimated along
the direction of polarization as has been found in experi-
ments on xenon.’

Finally, our calculations allowed the variation of the
intensity of the laser field with time. For these initial
calculations, we considered only cases with wavelengths
far from resonance. Therefore little effect due to the
duration of the turn-on period was found. Only in the
case for which no turn-on period was used [#,,,=0 in
Eq. (10)] was there evidence of some ringing in the exci-
tation dynamics. For wavelengths closer to resonance,
the ionization results will be much more sensitive to the
pulse shape.

The pulse lengths over which interesting dynamics
and possible collective effects are expected to be impor-
tant are short compared to those used in most experi-
ments to date. Long-pulse experiments suffer from rapid
ionization during the rise time of the pulse, so that the
neutral atom may never experience the peak intensity.®
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If the pulse time can be reduced to tens of oscillation
periods (< 50 fs), then it should be possible to study the
PD in detail.

The TDHF model of multiphoton ionization has pro-
duced may interesting results regarding PD. One might
ask about the effects of relaxing the single configuration
constraint to consider, for example, an unrestricted
Hartree-Fock —type initial state,

W(12)=¢ (1) 1s(2)+ P (1) (2) . (14)

In this case each electron will move independently in the
average field of the other. Our calculations show that
for the long-wavelength case, this change will not
significantly affect the ionization dynamics which were
found to be direct and insensitive to the excited states of
the atom. For shorter wavelengths, and intensities not
so high that the interelectronic interactions are relatively
weak compared to the field, this relaxation of the orbital
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constraint should be very important. It will allow much
more accurate representation of the excited states, allow
autoionization, and include the relaxation of one of the
orbitals to the more compact He™(1s) state. Such a gen-
eralization of the procedure used here is presently under
way and will produce more definitive information about
the role of collective excitations in multiphoton ioniza-
tion.
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