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The pattern of electron correlations is examined for odd-parity L =1 states of calcium over a

wide range of energies from far below the 4s threshold up to the 4p threshold of Ca+. By combin-

ing quantum-defect theory with a small-scale eigenchannel R-matrix calculation, good agreement

with the observed photoabsorption spectrum is obtained. The two-electron probability densities

and channel-interaction parameters are analyzed as functions of the total energy. A novel interfer-

ence between direct (4scp-3dcp) and indirect (4scp-4pcs-3dcp) channel-interaction amplitudes

greatly reduces the width of the 3d 6p autoionizing resonance compared to adjacent series
members.

I. INTRODUCTION

The calcium photoabsorption spectrum up to 10 eV
has proved unexpectedly difficult to describe theoretical-
ly. ' We show in this paper that a reformulated ver-
sion '" of the eigenchannel R-matrix method when com-
bined with multichannel quantum-defect theory (MQDT)
(Refs. 6 —8) successfully describes most features of the
observed spectrum. ' This calculation requires some-
what more sophistication than the corresponding treat-
ment of beryllium or magnesium' ' for two main
reasons. First, the effective l=2 independent-electron
potential is just slightly too shallow to support a short-
range 3d bound state. ' In contrast to Be and Mg, the
simplest independent-electron models such as the
Hartree-Slater model cannot provide a sufticiently accu-
rate description of the e-Ca + interaction. A second
complication posed by calcium and the heavier alkaline-
earth metals stems from the smaller binding energy of
the "one-electron" ion Ca+. Virtual excitations into
higher "strongly closed" channels such as 5snp and 4dnp
therefore play a much stronger role than in Be and Mg,
where they have usually been neglected entirely. Angu-
lar correlations between the two valence electrons are
also much stronger in Ca, since the Ca+(3d) level lies
only 0.06 a.u. above the Ca+(4s) ground state. Because
of these complications, we have attempted to be more
systematic than Ref. 15 in determining which
independent-electron trial functions are most important
for obtaining accurately converged wave functions and
photoionization cross sections.

We also examine the mechanisms underlying the
unusually strong channel interactions in all of the
alkaline-earth atoms. This is accomplished by plotting
the primitive mixing parameters of MQDT as functions
of energy, and by displaying the radial probability densi-
ties. These show how new channels "turn on" as the en-
ergy is increased. They also show how direct and in-
direct autoionization pathways interfere, causing the net
4sep-3dsp('P') interaction strength to vanish at an en-
ergy close to the 3d6p autoionizing level.

Our treatment shares many similarities with the recent

R-matrix study of doubly excited strontium by Aymar
et al. ,

' which also finds good agreement with observed
spectra. Reference 17 confirms for the strontium atom
most of our conclusions about the major theoretical ele-
ments required to describe calcium realistically.

In recent years the growth of multiphoton laser spec-
troscopy has sparked numerous experimental investiga-
tions of doubly excited alkaline-earth atoms. ' Most
of these have dealt with barium, whose spectrum is com-
plicated by a severe breakdown of I.S coupling resulting
from the strong spin-orbit interaction. For such experi-
ments the only available type of theoretical analysis uses
empirical MQDT mixing parameters which are adjusted
to agree with a particular set of measurements. The
number of parameters can be quite large; the J=1,
odd-parity states of barium for instance, have been
characterized by an eight-channel fit involving 21 empir-
ical parameters. "' Accurate channel-mixing parame-
ters are useful for describing Rydberg spectra of free
atoms as well as those distorted by the presence of an
external electric or magnetic field, or by rare-gas-
perturbing atoms. This makes it desirable to develop
improved techniques to predict these mixing parameters,
particularly when they depend strongly on the energy.

Two previous studies of calcium in the same energy
range considered in this paper should be mentioned.
The first was a many-body perturbation theory (MBPT)
calculation performed by Altun et aI. ' The MBPT re-
sults did a surprisingly good job of describing the global
oscillator-strength distribution, considering the fact that
channel interactions are so strong. Still, its agreement
with experiment deteriorates rapidly as the energy in-
creases toward the 3d threshold, and shows very little
resemblance to experiment above this threshold. The
larger-scale R-matrix calculation of Scott et al. should
have been capable of dealing with the strong electron
correlations and channel mixing, but below the 3d
threshold it shows larger departures from experiment
than the MBPT results. Between the 3d and 4p thresh-
olds their R-matrix treatment gives a distinct improve-
ment, although its self-consistency remains rather poor
(as manifested by length and velocity results for the
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cross section which often differ by a factor of 2). It is
worth pointing out that reasonably good results were ob-
tained instead for barium, ostensibly a much more com-
plicated atom than Ca, by an R-matrix calculation
which used a model potential and included relativistic
terms in the Hamiltonian.

We adopt in this study a reformulation ' of the R-
matrix method that has proved to be simple, reliable,
and rapidly convergent in calculations of 'P' and 'D'
states' ' of Be and Mg, and of D' states of Al. ' This
reformulation uses a variational expression for the eigen-
values of the R matrix, i.e., for the (negative of the) nor-
mal logarithmic derivative on the surface of the finite re-
action volume. When a linear combination of
nonorthogonal Slater-determinantal orbitals is used as a
trial function in the variational functional, good conver-
gence is achieved with modest-size basis sets. In con-
trast to Refs. 2, 29, and 32, no "Buttle correction" to the
resulting R matrix is needed to correct for nonuniform
convergence problems. Despite its being a close relative
of the Kohn variational principle it does not appear to
suffer from any problematic Kohn-type anomalies.
By matching to a channel expansion involving Coulomb
wave functions at the surface (r =ro) of the reaction
volume, the channel-mixing parameters of MQDT (ele-
ments of the short-range reaction matrix) are found
directly as explicit slowly varying functions of energy.
The calculation of any desired observables can then be
performed rapidly on a fine energy mesh, giving discrete
energy levels and oscillator strengths, total and partial
photoionization cross sections, and anisotropy parame-
ters such as the photoelectron angular distribution asym-
metry and spin polarization or the, alignment and orien-
tation of the ionic residue.

II. THEORETICAL DESCRIPTION
OF THE HEAVY ALKALINE-EARTH ATOMS

A. The one-electron Hamiltonian

vI(r) = vI (r) —
I I —exp[ —(r lr, i ) ] I2r4

The screening term vI (r) is obtained from a standard
Hartree-Slater program which is run separately for the
4s, 4p, and 3d orbitals of Ca+. The Kohn-Sham value
( —', ) is used for the coefficient of the exchange-energy
term. The self-energy of the valence electron is sub-
tracted from the Ca+ potential by using the Latter
correction during the iteration of the Hartree-Slater cal-
culation. The core polarization ucp and the l-dependent
"cutoff radius" r, I are then adjusted crudely to give op-
timum agreement with the known spectrum of Ca+.
The final values obtained are a,~ =8.0, r,o

——1.109,

(2)

TABLE I. Energy levels of Ca+.

States
E (observed)

(a.u. )

E (calculated)
(a.u. )

4s
5s
6s
7$
Ss
9s

10s

—0.436 26
—0.198 57
—0.11423
—0.074 26
—0.052 15

—0.436 27
—0.198 82
—0.11435
—0.074 34
—0.052 21
—0.038 68
—0.029 80

course, the first atom with a d electron in its ground-
state configuration. ) Since our present interests concern
the description of correlated two-electron motion, we
have not attempted to find a highly accurate ab initio
description of Ca+. Instead we make a small empirical
polarization correction to a set of Hartree-Slater poten-
tials vi(r) chosen such that the one-electron s, p, and d
levels of Ca+ are accurately reproduced.

The form of the e-Ca + potential used is similar to the
e-Ba + potential of Bartschat, Rudge, and Scott. It in-
cludes a screening term and an empirical core polariza-
tion term with a cutoff,

Alkaline-earth spectra can be adequately described up
to and somewhat beyond the two-electron ionization
threshold by a Hamiltonian having the basic structure
(in a.u. )

H =h (ri)+h (r2)+ I/riq .

The effective one-electron Hamiltonian h (r) includes the
electron kinetic energy ——,'V and a radial l-dependent
potential vl(r) which describes mainly the net screened
nuclear potential experienced by a valence electron. The
nonvalence core electrons can be assumed to be frozen in
their respective one-electron orbitals and will be ignored
except to the extent that they determine vl(r). In previ-
ous studies of Be and Mg, ' ' an l-independent
Hartree-Slater potential v (r) was used to describe the e-
Be + and e-Mg + interactions. For calcium and the
heavier alkaline-earth metals more sophistication is
needed, as is clear from the large ( —10%%uo) errors in
Hartree-Slater binding energies of the outermost electron
in Ca+. Calcium poses particular difficulties in this re-
gard, since its close proximity to scandium makes the d-
wave potential unusually sensitive. (Scandium is, of

4p
5p
6p
7p
Sp
9p

10p

3d
4d
5d
6d
7d
8d
9d

4f
Sf
6f
7f
8f
9f

10f

—0.320 80
—0.16020
—0.096 77

—0.373 90
—0.177 23
—0.104 89
—0.069 36
—0.049 26
—0.036 78

—0.126 19
—0.080 73
—0.056 01
—0.041 12
—0.031 29
—0.024 84
—0.020 11

—0.320 80
—0.160 19
—0.096 76
—0.064 87
—0.046 52
—0.035 01
—0.027 30

—0.373 89
—0.181 77
—0.107 11
—0.070 58
—0.050 01
—0.037 28
—0.028 86

—0.127 12
—0.081 21

. —0.05628
—0.041 13
—0.031 56
—0.024 89
—0.020 01
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r, I ——1.420, and for I )2, r, l
——1.089. Table I compares

the final calculated one-electron energy levels to the ob-
served levels. While the final e-Ca + potentials Vl(r)
are in a sense "empirical, " we emphasize that they have
been optimized to agree with known properties of Ca+
only, and not on the basis of our final calculations for
neutral calcium.

B. Variational calculation of R-matrix eigenstates

The noniterative reformulation of the eigenchannel
R-matrix method used in the present study has been dis-
cussed in detail elsewhere. ' ' Here we only summarize
its major elements. The most important conceptual ele-
ment, as in all R-matrix treatments, is the restriction of
the nontrivial part of the calculation to a finite (reaction)
volume V in configuration space. The "R-matrix
eigenenchannels" itlp are those eigenstates of the Hamil-
tonian at any desired energy E whose negative logarith-
mic derivatives bp are constant over the surface S en-
closing the reaction volume. When the variational trial
function is a linear combination of known (real) func-
tions yk, itl= gk ckyk, then the stationary value of b& is
an eigenvalue of a generalized linear eigensystem,

I C=bAC,

where

corresponding eigenenergy E„'l . This basis would be
complete if all such states were included, but in order to
represent a general continuum function pli which does
not generally vanish at ro, this basis is augmented by a
small number of functions u„'l(r) in each open or weakly
closed channel. In our experience good convergence is
usually achieved using about seven functions of the type
u„'l in each such channel, and two or three of the type
u„'l. The latter are obtained by solving Eq. (6) at ener-
gies E„l midway between successive eigenvalues E„'l and
E„'+1l. The radial functions u„'l(r) are thus orthonor-
mal over the range 0& r & ro, but the u„'l(r) are not. One
difference compared to previous calculations with this
method is that, for instance, Ref. 15 uses a different po-
tential to determine e-Be + bound functions than is used
to represent the e-Be+ continuum orbitals. This may
speed convergence of the R-matrix calculation slightly,
but for two-electron atoms, at least, the convergence is
so rapid that the extra bother is unnecessary.

The spatial part of each antisymmetric I.S-coupled
two-electron basis function yl, is expressed in terms of
one-electron orbitals by

~nIlln2l2

l. u ln(r 1 )u I (rz ) +1 I LM(f)'1 I~z)

lI+l2 —L+S-+( —1) u„, (r, )u„, (r, )

I Lk
—2 yl (E H)yk dU — —y„ds

V s Bn

and where

Agp' gkpk'dS
S

Solution of this eigensystem determines the phase and
amplitude information on the reaction surface that is
needed to obtain

peal outside the volume V using a mul-
tichannel quantum-defect expansion.

The selection of a sensible basis set is important here,
as in any variational treatment. We use the simplest
such basis consisting of antisymmetrized products of
one-electron orbitals u„l(r) I'1 (0), eigenfunctions of
h (r) in Eq. (1),

u„l(r)+ +Ul(r) E„l u„l(r) =0—. (6)
1 d l(l+1)

d 2r

[Note that we work with rescaled wave functions
p=rirzq' throughout this paper in order to eliminate
first-derivative terms in the Hamiltonian. Then
baal

—= B(lngli)IBr
~

—„„.] It will be convenient to dis-

tinguish two types of one-electron radial eigenfunctions
in Eq. (6), depending on their values at the reaction sur-
face r =ra. The "closed type, " denoted u„'l(r), vanishes
at r =ro, while the "open type, " denoted u„'l(r) does not
vanish at ro. When a particular channel is forced to be
strongly closed at the outset of the calculation, only the
closed type of radial functions are included for that
channel in the variational basis set. For an open or
weakly closed channel, orbitals of each type are includ-
ed. In practice the solutions u„'l(r) are calculated nu-
merically first, determining each eigenfunction and its

X +1 l LM(+1 +2)] (7)

An alternative form for Eq. (7) connects more naturally
to the quantum-defect description of the outer region

+( —1) p;(rz;02, 01)u„ 1 (r, )],
where i =

I n il ilz], and where

p;(r;&1,&2)=up l ( )r&~, l LM(f)1 ~I2) .

The superscript c in Eq. (9) indicates that the surface
harmonic P; vanishes at r, =ra. Because we assume
that both valence electrons cannot simultaneously escape
the reaction zone in the energy range studied here, at
least one of the two radial orbitals in Eq. (7) should be of
the closed type. On the other hand, the set u„ l (rz) in

Eqs. (8) and (9) generally includes both types of orbitals c
and 0 which, respectively, vanish and do not vanish at
ro.

Numerical calculation of the matrix elements of I and
A in Eqs. (4) and (5) is reasonably straightforward. Stan-
dard CI programs could be used, in principle, after
truncating all integrals to the finite range r & ro. For the
two-electron problem studied presently, these integrals
are easily obtained and no published computer codes
have been used. Matrix elements of the one-electron
Hamiltonian h become trivial since the basis functions
(7) are eigenfunctions of h (ri)+h (rz). Instead the eval-
uation of 1/r I2 matrix elements is more time consuming,
but it can be performed once and for all since our basis
set is energy independent. The surface integrals in Eqs.
(4) and (5) are somewhat less standard. Each element of
Eq. (5), for example, has the following form:
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(I1 ) (I2)
A ( (

I I(I(I —5( (t 5( (I [0 I up) ( u I(I +0 I ug ( u I(l ]11 22' 1 212 1 1 2 2 1 1 22 2 2 11
I1+I2—I +S (I2) (11)+( —1) 5 i5 I[0 iu~ ( u i i+0 iu~ ( u «]

1 2 2 1 n2n1 1 1 n2 2 n]n2 2 2 n1 1

(10)

where the one-electron radial overlap integral is given by
N

Pp 2——'" g [y, (r„n„n, )

ro
0(((, = f u„,(r)u„((r)dr . +( —1) P;(r2;02, A, )]Fp(ro), on S

(12)

In Eq. (10) u„( is an abbreviation for u„((ro). A second
surface term required in Eq. (4) can be obtained by re-
placing each "primed" u„( in Eq. (10) by its radial
derivative evaluated at r =ro.

In trial calculations performed to study convergence,
we included anywhere from 40 to 128 two-electron basis
functions. Table II shows the final basis sets used. The
number of channels retained in the R-matrix calculation
is dictated by the energy range to be treated and by the
size of the reaction volume. By this "number of chan-
nels" we mean specifically the number of open or weakly
closed channels in which the outermost electron can es-
cape beyond r =ro. All such channels require at least
one trial function of the type u„' ( (r) which is nonzeron22
at r =ro. Trial functions associated with strongly c1osed
chanriels, such as 5s5p, can make an important contribu-
tion to the variational calculation, especially in the
heavier alkaline-earth metals but also at high energies in
any atom. The physical importance of such functions
presumably stems mostly from their role in describing
the polarization distortion of one-electron ionic wave
functions induced by the presence of the second electron.
Alternatively, the use of polarized orbitals as in Ref. 17
might adequately account for this distortion in many
problems, and permit a somewhat smaller basis set.

Fp(r)=f;(r)I p g;(r)Jp, —r) ro . (13)

The Coulomb functions (having Wronskian 2/~ ) are
evaluated ' at the photoelectron energy c,; =E —E; and
for the photoelectron angular momentum appropriate in
channel i. The coefficients I;& and J;& are then just

Iip Fp(r—o)——[g'(ro)+bpg (ro)]

Jp —— F;p(ro)[f (ro)+—bpf ("o)] .
(14)

The X)&X reaction matrix is

E=JI
and it is readily diagonalized,

where N is the number of open or weakly closed chan-
nels as defined in Sec. II B. The elements of F;p(ro) are
easily evaluated in terms of the eigenvector ckp of Eq.
(3). The normal derivative of imp on the surface S is sim-
ply Eq. (12) multiplied by bp. B—ecause the e-Ca+ po-
tential is Coulombic at r )ro, the form (12) is retained
beyond the reaction volume as well, with F;p(ro) a linear
combination of energy-normalized regular and irregular
Coulomb functions (f;,g; ) in channel i,

K;&
——g U; tan[n.p ](U ) i (16)

C. Energy-dependent MQDT parameters

The variational wave function 1t(p associated with the
eigenvalue bp of Eq. (3) can be expanded in the following
form on the reaction surface:

The eigenvector elements U; and eigenquantum defects
p are generally smooth energy-dependent parameters.
They are utilized by MQDT to predict observables such
as the photoionization cross section and the discrete en-

TABLE II. Two-electron basis functions used in the calculations.

Common basis for
all calculations

closed-type functions

Additional basis
two-channel five-channel

open-type functions

4s(4p-9p), 5s(5p-9p), 6s(6p-9p), 7s(7p-9p)
8s8p, 8s9p,
3d{4p-9p), 4d(6p-8p), 5d(7p-8p), 6d8p
4p(5s-9s), 5p(6s-8s), 6p(7s-8s), 7p8s
4p(4d-8d), Sp(4d-8d), 6p{5d-8d), 7p(6d-8d)
8p7d, 8p8d
3d(4f 9f), 41(4f 8f'), 51(5J' 8f), 6d-(6f' 8f-)--
7d(7f 8f), -

4f(51 7d), 5f(6d 7d), 6f7d--

4s(4p-6p )

3d(4p-6p )

4s(4p-6p )

3d(4p-6p )

4p(4s-6s)
4p{4d-6d )

31(4f 6f)-
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r'W =W'W tan6, (18)

where primes are introduced to avoid confusion with Eq.
(3) and where

U; sin(7rv;+vrp ), iEg
I,'

U; sin(7rp ), isP
(19)

0, iEg
A,' ='

U; cos(re ), iEP .

The number of nontrivial eigenvalues 5& of this standard
NXN eigensystem coincides with the number No of
channels that are open at the given energy E. Here
v;=( —2c,;) 'r is the effective quantum number in the
ith closed channel. When all channels are closed, it is
useful to solve Eq. (18) with the lowest channel treated
as though it were open anyway. Then the single resulting
eigenphase shift 5(E)/rr is just the usual atomic quan-
tum defect, and the nth discrete bound level E'"' is given
by a Rydberg formula,

E'"'=2, ——,
' [n —5(E'"')/vr] (20)

Lastly, computation of the photoabsorption strength
involves also reduced electric dipole matrix elements
connecting g to the L=0 ground state,

D'."= & ~.llr ~" +"z"II+o& (21)

Equation (21) is the dipole-length result. Its deviation
from the dipole-velocity form gives a good measure of
the inaccuracies in our variational wave functions,

D'."= & e.llvI" + v', "llq, & /~ .

[Note that the derivatives used in this velocity form
must act on the true wave functions without the extra
factor r&r2 mentioned after Eq (6).] Fi.nally the total
photoionization cross section is given in a.u. by

4' M=
3(137) ~ '" '

P

where co is the photon energy in a.u. and

(24)

ergy spectrum. ' ' The energy-normalized K-matrix
eigenchannels P having the same phase shift harp„ in
each channel i are linear combinations of the unnormal-
ized R-matrix eigenchannels P&,

g = ggt3(I ')&;U; cos(~p ) .
p

At this point the standard techniques of multichannel
quantum-defect theory are easily implemented on an ar-
bitrarily fine energy mesh. It is only at this point that
we distinguish between the open and weakly closed
channels. To summarize, elimination of closed channels
selects linear combinations of the g, namely,

P A &, which decay exponentially at r ~ m in
each closed channel (i Eg) and which have the same
eigenphase shift 6 in each open ionization channel
(ieP). This elimination has the analytical structure

The ground-state energy and wave function are ob-
tained by diagonalizing the Hamiltonian using a basis set
of orbitals that vanish on the reaction surface. The ener-
gy level obtained is E4 2 ———0.6647 a.u. which is lower
than the experimental energy value by 0.004 a.u. Be-
cause the calculated energy is too low, we know that the
error is not caused by our truncation of the basis set nor
by our restriction of the calculation to a finite volume.
This discrepancy rejects an inadequacy of the model
Hamiltonian used [Eq. (1)]. The major omission is the
three-body dipole polarization term, which would be ex-
pected to have a positive expectation value in the calci-
um ground state of order

l
o,,~/r fr2 l

. Using r, -r2 —5
a.u. , this correction is of the same order of magnitude as
our ground-state error. It becomes rapidly less impor-
tant with increasing excitation, thus justifying its neglect
in this study. To achieve higher accuracy than we find
in this calculation, particularly for transition wave-
lengths, this is probably the element of our calculation
which will be the most important to improve.

III. RESULTS AND COMPARISONS
%'ITH EXPERIMENT

A. The discrete spectrum

Below Ca+(4s), all channels are closed and the energy
spectrum is purely discrete. For 'P' and P' symmetries
only two channels 4scp and 3dEp are weakly closed, but
basis functions in the strongly closed channels 4pns and
4pnd must be included to achieve reasonable agreement
with experiment. The quantum defect 5/n derived from
our two-channel calculation [as discussed above Eq. (20)]
is compared with experimental calcium quantum de-
fects in Fig. 1. The agreement is generally quite good.
The energy dependence of 5/~ in particular is faithfully
reproduced, with a small discrepancy visible at the 4s
threshold (v3q ——2.832). The rise of 5/~ by roughly one
unit is associated with the 3d4p perturbing configuration;
the much faster rise for P' than for 'P' rejects the
stronger 4s cp-3d cp channel interactions expected for
'P'. Figure 1 also shows as dashed lines the values of
5/vr predicted by a two-channel MQDT fit using
energy-independent short-range parameters. The
better agreement of our calculated 5/m with experiment
confirms that the energy dependence of U; and p is im-
portant and is correctly predicted by theory. Figure 2
shows our two-channel 'P' parameters p&, p2, and 0 as
functions of the energy. The assumption that these pa-
rameters are constant is seen to be quantitatively valid
over an energy range of at most 0.03 a.u. near the 4s
threshold. Figure 2 also confirms the trend toward zero
channel mixing at low energies that has been observed in
previous studies of this type. ' ' '

The characteristic energy dependence at low energies
is familiar, but Fig. 2 also shows a new eftect not seen in
the Be or Mg calculations. At higher energies, c4, 0.02
a.u. , the two-channel MQDT parameters acquire a
strong energy dependence yet again. This directly
rejects the inhuence of virtual excitations into the 4pns
channel, which are just beginning to become energetical-
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FI~.G. 3. Adiabatic potential curves for 'P' calcium are
~ ~

s own as a function of the hyperspherical radius. (From Ref.

0.6—
8

7T 0.4— 3pO
I

~ Observed

--——EmpiricpI fit

Calculated

0.2—

0 I

2 2.2
I

2.4
I

2.6
I

2.8

1 allowedy owed. Moores attempted years ago to predict the42

photoionization cross section by extrapolating two-
channel parameters obtained empirically at c4, &0. The
poor results obtained by Moores' analysis are easily un-
derstood in view of the strong energy dependence in Fig.
2 which he neglected. Figure 3 shows the relevant 'P'
h yperspherical potential curves for calcium which were

CO
CC
LLII-

0.5—LLl

CC

0
Cl

6
I

-0.12 -0.08 -0.04 0.00 0-04

PHOTOELECTRON ENERGY(a. u.)

FIG. 2. Two-ch annel P mixing parameters of quantum-
defect theory are shown for calcium as a function of the photo-
electron energy in the lowest channel Th, cq, . e p are related
to the eigenvalues of the reaction matrix, while 0 is the rota-
tion angle needed to diagonalize this matrix.

FIG. 1. Calculated and observed Lu-Fano plot for calcium
'P' (a) and 'P' (b) discrete levels below the Ca+(4s) threshold.
The solid circles are data obtained from Ref. 39, the dashed
curve is the empirical quantum defect results of Ref. 25, and
the solid curve is the present 8-matrix calculation. The ordi-
nate is the quantum defect in the 4s channel, while the abscissa
is the effective quantum number in the 3d channel.

obtained in Ref. 2. From these results, virtual excita-
tions into the 4pris channel were predicted' to become
important near the minimum of the 4 d' bpcs a ia atic po-
tential curve, which lies slightly below the 4s threshold.
This conclusion is verified qualitatively by the present
calculation, although the present energy dependence be-
gins at a somewhat higher energy than was expected on
the basis of Fig. 3.

Another coupled-channel calculation of the I = 1

M&DT channel-mixing parameters for calcium was pub-
ished by Pandey, Jha, and Armstrong. Their two-

channel results at the 4s threshold agree reasonably well
with experiment and with our calculation. In our study
the strongly closed channel functions 4pns and 4pnd are
very important, but they appear to have been neglected
by Ref. 43. Without them, in fact, we find the eigen-
quantum defects at the 4s threshold to be too low b
more than 0.1. R ~eference 43 also makes a severe local

o e oo ow by

approximation to the integral-exchange term in the
course of solving the close-coupled integro-differential
equations.

B. Resonances in the photoionization continuum

The energy region between the 4s and 3d thresholds
has been studied extensively, both experiment 11 dayan

eoretically. The best experimental results seem to be
t ose of Newsom, obtained with higher resolution than
the recent synchrotron measurement of Karamatskos
et a . ' The absolute normalization of Newsom's ob-
served photoionization cross section is appa tl t
ow y a actor of about 5, and has been renormalized to

achieve agreement with the absolute measurement at one
wavelength by McIlrath and Sandeman. ' Theman. e renor-
ma ize experimental results of Newsom are compared
with our R-matrix calculation in Fig. 4. The agreement
is generally quite good, with the calculated 3d5p reso-

3d6 r
nance (at e4, -0.018) slightly too lo d th

p resonance (at e4, -0.033) over a factor of 2 too low.
Note the exceptional agreement in Fig. 4 between length
and velocity results for the cross section. Again, the in-
c usion of several strongly closed orbitals such as 5s5p
proved to be quite important in reducing the difference
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FICx. 4. Length and velocity results for the total photoion-
ization cross section of calcium are compared with the experi-
rnental results of Newsom (Ref. 9), after rescaling by the
overall factor suggested by McIlrath and Sandeman (Ref. 10).
The energy range shown is between the Ca+(4s) and Ca+(3d)
thresholds.

between length and velocity to the level shown. These
results represent a substantial improvement over previ-
ous calculations, ' especially in the vicinity of the 4pSs
resonance (at eq, -0.04 a.u. ).

The theoretical calculation shown in Fig. 4 includes
two channels below c4, -0.014, a.u. , and five channels
(4sep, 3dEp, 3dcf, 4pEs, 4ped) at all higher energies. In
fact, the two-channel calculation gives results close to
the five-channel calculation over the entire energy range
of Fig. 4. Note that the two-channel calculation is only
accurate to the extent that strongly closed channel reso-
nances like 4p5s are confined entirely within the reaction
volume. For the two-channel calculation using an R-
matrix boundary at ro ——14 a.u. , discrepancies with the
five-channel treatment becomes significant above
E4, -0.03 a.u. The agreement is greatly improved by in-
creasing ro to 18 a.u. and slightly more by using ro ——22
a.u. in the two-channel treatment. The five-channel re-
sults are far less sensitive to the choice of ro, since 4pns,
4pnd, and 3dnf excitations are no longer assumed to be
confined within the reaction volume. All two-channel
and five-channel results shown here were obtained using
ro ——18. The agreement between these alternative ways
of performing the R-matrix calculation gives a powerful
check on its validity, and points to its extensive Aexibili-
ty.

The very difFerent observed and calculated peak
heights for the 3d6p resonance seem to signal a serious
problem with our treatment. In fact, an interesting can-
cellation efFect occurs at an energy very close to this au-
toionizing level that greatly magnifies any small errors in
the calculation. In a strictly two-channel system, of
course, the height of successive autoionizing levels is
nearly independent of n while their widths decrease
smoothly and rnonotonically as n . The nonrnonotonic
variation of widths from one level to the next in Fig. 4
thus rejects the inhuence of the closed 4pcs channel
which is just becoming energetically accessible. The
presence of this channel causes the energy dependence of
the two-channel (4sEp-3dep) MQDT parameters above
c4, ——0.02 a.u. In particular the mixing angle vanishes at
c4, ——0.032, implying that there is no mixing between

and

3dnp ~4pns ~4scp .
(25)

This interpretation was suggested by Altun et al. ' It
will be further documented in Sec. III D by studying the
probability densities directly.

Figure 5 compares experimental and theoretical pho-
toionization cross sections at higher energies still, be-
tween the 3d and 4p thresholds. The absolute normali-
zation of the experimental cross section was not ob-
tained by Connerade et al. ,

" so we have normalized the
experimental curve to give the best overall agreement
with our velocity calculation. Agreement between
theory and experiment is somewhat inferior to that
found at lower energies, but it is still superior to that ob-
tained by Scott et al. or by Altun et al. ' Dipole length
and velocity results are again very close in Fig. 5, but
their difFerence is somewhat larger than we found at
lower energies. The 4pns and 4pnd resonances responsi-
ble for the quasiperiodic autoionization structures in Fig.
5 are so broad and intermixed that we have not assigned
quantum numbers to specific features. One mild surprise
to us was the very great importance of the 3def channel
in this calculation. If it is omitted, the 4pnd resonances
become much narrower and the spectrum is severely dis-
torted. In retrospect this seems reasonable, however,
considering that the outermost nd electron tends to gain
both energy and angular momentum in the course of its

Ca(ld)
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FIG. 5. Total photoionization cross section for calcium is
shown as a function of c4, at higher energies, between the 3d
and 4p thresholds. The present calculation is compared with
the relative experimental cross section obtained by Connerade
et al. (Ref. 11).

4scp and 3dcp at this particular energy. If an autoioniz-
ing leve1 were present at exactly this energy, it would in
fact be a true bound state (i.e., its decay width would
vanish). Our difficulty in reproducing the exact experi-
mental height and width of 3d6p derives mostly from the
fact that it lies very close to the energy at which the
channel mixing disappears. The photoionization cross
section in the vicinity of this state is then unusually sen-
sitive to error in its height and width, although its in-
tegrated strength is probably described aeeurately. The
destructive interference occurring at c4, ——0.032 a.u. is a
simple example of cancellation between amplitudes for
two alternative and indistinguishable decay pathways,

3dnp ~4s cp
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autoionization. The dominance of the 4pnd~3dEf de-
cay channel over the 4pnd ~3dcp channel is confirmed
by examining the electron-ion scattering matrix in the
following section. (See also Fig. 8 of Ref. 2.)

C. Evolution of channel interactions with increasing energy

The agreement between calculated and experimental
results suggests that we have an excellent description of
calcium channel interactions. Accordingly we attempt
in the following to outline a more qualitative, global
view. To begin with, our primary aim is to understand
the smooth channel-mixing parameters such as the reac-
tion matrix E. These do not reQect any resonance effects
associated with closed channels, and therefore can be
given the simplest interpretation. The reaction matrix
often possesses poles, however, which makes it prefer-
able to work instead with the equivalent quantum-defect
matrix Lt=rr 'tan '(K ). Denoting the eigenvectors and
eigenvalues of L by U; and tan(harp ), the elements of
the matrix p;~ are given by

pj ——gU~ (U ) (26)

(The Att should not be confused with this real symmetric
matrix p,~, representing, in fact, its eigenvalues. ) This
matrix tends to be smoother than either E;~ or the
equivalent U; and p, and is better suited for interpola-
tion. Table III gives the calculated 'P' quantum-defect
matrix and the associated reduced dipole-matrix ele-
ments, related to these defined in Eqs. (21) and (22) by

d ' '= g U; D' ' '. This table should provide
sufficient information to reproduce most of our results in
Figs. 4 and 5.

In any case, the channel-interaction matrix having the
simplest ph'ysical interpretation is undoubtedly the short-
range scattering matrix,

S;~ = g U; exp(2irrp )(U (27)

This is just the quantum-mechanical amplitude that an
electron which collides with the target ion (Ca+ ) in
channel j will recoil from the ion in channel i. Because
S is constructed from K and does not incorporate any
boundary conditions at r ~ oo, it remains a smooth func-
tion of energy like p, devoid of all resonance effects. It
should be remembered, however, that this is not the
physical scattering matrix which can connect open chan-
nels only, and which displays resonance effects associat-
ed with closed channels.

Figure 6 shows the absolute squares of several ele-
ments of the five-channel short-range scattering matrix
as functions of energy. Note in particular the very
strong (-60%%uo) mixing between 4pEd and 3dEf It is f.ar
stronger than the 4pcd-3dcp mixing, as surmised in Sec.
II B above, and reAects the very large width of the 4pnd
autoionizing resonances. In fact, the mixing between
these channels is strong enough to be reminiscent of the
+ or —states in helium and beryllium. ' Two eigen-

channels of the calcium atom apparently have this same
basic structure, 4p sd +3d 8f

Also given in Fig. 6 is the squared 4scp-3dcp element

TABLE III. Quantum-defect matrices and reduced dipole matrix elements, as defined by Eq. (26)
and the ensuing discussion.

4s op

—0.0217
0.0546
0.0761

—0.1486
—0.1187

3d Fp

0.0546
—0.1205

0.0962
—0.2373
—0.0734

pit

3dsf

(a) At the Ca+(3d) threshold
0.0761
0.0962

—0.0639
—0.0627

0.1988

—0.1486
—0.2373
—0.0627
—0.0779

0.2399

4p cd

—0.1187
—0.0734

0.1988
0.2339

—0.0592

—0.1039

—0.0140

Dipole length matrix elements d
—0.3183 0.3519 —0.7986

Dipole velocity matrix elements d
—0.3413 0.3429 —0.7822

—0.2040

—0.1500

—0.0384
0.0639
0.0545

—0.1687
—0.0665

0.0639
—0.1487

0.0861
—0.2508
—0.0483

(b) At the Ca+(4p) threshold

0.0545
0.0861

—0.0681
—0.0524

0.1500

—0.1687
—0.2508
—0.0524
—0.0731

0.1688

—0.0655
—0.0483

0.1500
0.1688

—0.0509

0.1290
Dipole length matrix elements d

—0.1318 0.2086 —0.5440 —0.0424

0.1925
Dipole velocity matrix elements d

—0.1697 0.2023 —0.5145 —0.0025
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FIG. 6. Absolute squares of selected elements of the short-
range scattering matrix are shown as functions of the photo-
electron energy between the 4s and 4p thresholds.

of the short-range scattering matrix. This interaction
parameter is in the range -30% over most of the energy
range shown. It is quite different from zero everywhere,
in distinct contrast to the corresponding element of the
two-channel problem considered in Sec. III B above. [In
a two-channel system the off-diagonal squared element is

I
S iz I

=sin (20)sin [ir(pz —p i ) ].] Since 8 goes
through zero in Fig. 2 between the 4s and 3d thresholds,

I S,z I

vanishes at that point also. This may seem to
contradict the five-channel results in Fig. 6, but it does
not. In the two-channel calculation, higher channels
such as 4pcs are treated as strongly closed, meaning that
their low-lying resonances which are confined within the
reaction zone are incorporated. The five-channel study
instead treats 4pes as though it were open and so the
4p5s resonance in particular does not show up in S.
Thus when interpreting channel-interaction strengths it
is essential to keep in mind which channels are treated
as open, and also which strongly closed channels are in-
cluded. This confirms the interpretation given in Sec.
IIIB that the vanishing of the 3dcp-4scp interaction at
one energy derives from destructive interference between
the direct amplitude and the 3dcp-4pns-4scp amplitude.

D. Probability density plots

A great deal can be deduced from the wave functions
themselves, although they contain so much information
that it is nontrivial to extract the major features. We
focus here on components of the radial probability den-
sity because radial correlations are normally more im-
portant than angular correlations in determining
channel-interaction strengths. One way of displaying
this information is to plot &

I g I
& as a function of

(ri, rz) after integrating over the four angular degrees of
freedom. The o.th independent solution can be decom-
posed into its various partial-wave components accord-
ing to

0 = gg ' '(ri rz»i, i,L.M(IIi ~Iz) .
I (12

In this notation the total angle-averaged density takes
the form

&14 I'&= Ig"(ri rz) I'+ Ig'(ri r» I'
+ Ig". (ri rz)

I

'+ (29)

In the case of 'P' states of Be and Mg studied in Fig. 3
of Ref. 15, angular correlations play a negligible role and
the first term

I

g'~
I

dominates. In calcium, however,
the channel interaction of greatest interest at low ener-
gies is 4ssp-3dEp, and accordingly both g i

I
and

I
g~

I

must be shown for each independent solution P .
[Note that the Pauli principle ensures that

I

g'~(ri, rz)
I=

I

g~'(rz, ri) I, permitting us to focus on the terms
with l i ( lz without losing any information. ]

Figure 7 shows these components of the 'P' probabili-
ty density inside the reaction zone, obtained from the
two-channel variational calculation. The densities in-
volve two three-dimensional plots (sp and pd) for eachf, and there are two independent solutions P at each
energy. Rather than labeling the horizontal axes in Fig.
7 by (r„rz) we have simply indicated the channel in-
volved. It should be remembered, though, that the hor-
izontal axes in Fig. 7 are (r, , rz) and that each radial
coordinate ranges from 0 to 18 a.u. Remember as well
that the 4pns and 4pnd channels only include trial orbit-
als which vanish at r =r0, which do not permit the
outermost electron to escape the reaction zone. This
electron can escape the reaction zone only in the chan-
nels 4scp and 3dcp. Note also that the sp and pd densi-
ties have the same vertical scale, so that the relative
amount of density in the two plots for a given state o.'

provides an index of the strength of angular correlations.
At the lowest energy c4, ———0.114 a.u. , the two-

channel MQDT parameters of Fig. 2 show essentially no
mixing of 4scp and 3dcp. This negligible mixing is also
apparent in Fig. 7(a), with the a = I wave function main-
ly localized in the 4sEp potential valley of the (r„rz)
plane. A non-negligible contribution to the a=1 density
is contributed by the 3dcp channel, but it looks in fact
artificially large here because of the exponential growth
near rz-r0 (Physical . boundary conditions at r~oo,
such as the finiteness of g in that limit, have not been
imposed at this point. They are imposed later by super-
posing the g as is usual in quantum-defect theory. ) The
second independent solution a=2 in Fig. 7(a) shows
purely exponential growth (chopped oS' in the plot) in
the 3dcp channel, with negligible amplitude apparent in
the 4sop channel.

A higher energy is shown in Fig. 7(b), right at the 4s
threshold. Here the 4scp-3dcp mixing is much stronger
than that in Fig. 7(a). Over half of the a = I density is in
the 4scp potential valley, but not much more than half.
Similarly the +=2 eigenstate has somewhat more of its
density in the 3d op valley, but it shows a sizable contri-
bution from the 4scp channel. At this energy there is
still no visible amplitude in either of the strongly closed
channels 4pns and 4pnd, but excitations into 4pns begin
at just slightly higher energies. (See Fig. 3.)

The next highest energy c4, ——0.032, shown in Fig.
7(c), is the energy at which the 4sep-3dep channel-
mixing angle 0 vanishes in Fig. 2. Note how the o.'=1
density shows no 3dcp component at rz~r0, while the
+=2 density shows no 4sap component. On the other
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FICx. 7. Radial sp and pd components of the -'P' probability density are shown as functions of (r&, r2). The radial axes range be-

tween 0 and 18 a.u. , though these labels have been suppressed for clarity, with the relevant channel indicated instead. Two plots

are shown for each of the four energies, corresponding to the two eigenchannels f obtained in our two-channel calculation. Note
the general increase of channel-interaction strength with increasing energy.

hand, both += 1 and 2 now show a dominant contribu-
tion from the closed 4pns channel. The energy is
sufficiently high at this point to excite 4p5s, the lowest
quasi-bound-state in this channel. Note that this state
just barely fits within our reaction volume of radius
ro ——18 a.u. It is the presence of &his new excitation
mode which permits a destructive interference to devel-
op between the two decay pathways shown in Eq. (25), a '

phenomenon that requires at least three channels to be
involved, At this energy c4, ——0.032 a.u. , the closed 4pnd
channel still plays no significant role in the dynamics.

Finally, Fig. 7(d) shows the densities at an energy
s4, ——0.04 a.u. , still substantially below the 3d threshold.
At this energy there is no longer any destructive in-
terference between the two decay pathways of Eq. (25).
This shows up in Fig. 7(d) where the densities within the
4s cp and 3d cp valleys are comparably excited—
implying strong channel mixing —in both the +=1 and
2 independent solutions. The 4pns channel still plays a
major role in the dynamics. In Fig. 7(d) for the first
time the energy has increased enough to excite the
lowest mode in the 4pnd potential valley, which would
carry the independent-electron designation 4p4d. At
even higher energies than are shown in Fig. 7, the in-
teractions between all channels remain strong. Another

channel 3d Ef becomes important as well.
These plots thus help to document the general tenden-

cy for higher channels to become excited as the energy is
increased. This alone is a fairly obvious property of any
many-particle system. What is less obvious about these
results is that the energies at which successive channels
become important correlate nicely with the hyperspheri-
cal potential curves of Fig. 3.

IV. DISCUSSION

The present study of calcium and the parallel treat-
ment of strontium by Aymar et a/. ' have both demon-
strated that a good theoretical description can be ob-
tained for the heavier alkaline-earth metals, despite ex-
tremely strong correlations between the outer electrons
and despite very sensitive centrifugal barrier effects.
These calculations treat the atom in I.S coupling, which
breaks down near spin-orbit-split thresholds. In those
regions of the spectrum a geometrical frame transforma-
tion permits jj-coupled reaction matrices to be obtained
from the LS-coupled matrices. Spin-orbit effects at this
level will be considered in a separate article. For bari-
um and radium these spin-orbit effects are much more
important, and they must also be considered within the
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reaction zone as in Ref. 29.
All of the alkaline-earth metals share the unusually

strong channel coupling seen above for calcium. Au-
toionization rates of the lower-lying doubly excited
states are nearly 2 orders of magnitude faster than the
corresponding states of helium. In fact, an equally
strong channel coupling is present in helium, as in the
+ or —identified by Cooper et a/. But the degenera-

cy of He+(nl) thresholds prevents this strong channel
coupling from being manifested as a large autoionization
width as in Be, Mg, Ca, Sr, Ba, and Ra. ' Still, within
the reaction zone, the channel interactions overwhelm
the small intrashell energy splittings of each alkaline-
earth ion. At small distances, accordingly, the wave
functions and channel interaction strengths look remark-
ably similar for all of these atoms including helium.

The present calculations are far from saturating a
minicomputer having the capacity of a VAX or RIDGE

computer. In fact, all calculations shown in this paper
require about two hours on such a small machine, or
nearly twenty minutes on an IBM 3084. By including
many more channels and a substantially larger reaction
volume, it now seems plausible to try a similar calcula-
tion for the low-lying Wannier ridge states (e.g. , such as
8s8p in calcium). On the other hand, considering the
ine5ciency of coupled-channel expansions at high ener-
gies, the development of a new analytical framework to
deal with that portion of the spectrum is becoming in-
creasingly important.
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