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Recent experience with semiclassical approximations with wave packets make possible a new intui-

tive basis and new computational tools for incoherent neutron scattering. We review our approach in

the context of others which have been proposed for neutron scattering, and we find it advantageous

to launch semiclassical approximations from the Schrodinger picture rather than the Heisenberg pic-

ture of quantum mechanics. An application to a model for crystalline HCN is given.

I. INTRODUCTION

Since the 1954 Van Hove paper' on correlation and
response functions, the fundamental basis for the theoreti-
cal description of neutron scattering has been a dynamical
one. In condensed-matter physics, the starting place for
theories of many kinds of spectra has traditionally been in
terms of time-dependent correlation functions. In con-
trast, gas-phase spectroscopy has historically been given a
"static" perspective: spectra described in terms of eigen-
values and matrix elements involving eigenfunctions.
More recently, progress has been made in understanding
and computing gas-phase spectral features in terms of dy-
namics of the molecules. ' Of special concern here is the
context of semiclassical dynamics of wave packets
representing nuclear motion of the molecule, ' from
which electronic, resonance Raman, and inelastic time-
of-Aight molecular spectroscopies may be derived. In
molecular spectroscopy, the wave-packet techniques have
made possible calculation of molecular spectra
(specifically electronic and Raman spectra) of polyatomic
molecules, at low and high temperatures, without resort
to the usual harmonic approximations. Wave packets
have given accurate results for highly anharmonic mole-
cules, especially for spectra which are unresolvable due to
a very high (or infinite) density of states. Neutron inelas-
tic scattering spectra are of this type, and the success in
the molecular world of the new semiclassical wave-packet
methods suggests they be explored for possible application
to neutron scattering. The present paper does this and we
believe a computationally and intuitively useful alternative
to the usual formalism is the result. It is our belief that
the semiclassical wave packets are a worthwhile addition
to the intuitive and computational neutron scattering tool-
box.

The usual formulation of neutron scattering employs
the Heisenberg picture of quantum mechanics. The
Heisenberg picture is a natural starting point for semiclas-
sical approximations, providing the operators have a clas-

sical analog. Sometimes, as in the case of electronic and
resonance Raman spectroscopies, no classical analog (in
the Heisenberg picture) exists, at least not if the Born-
Oppenheimer separation of electronic and nuclear motion
is presumed. (The Appendix contains a discussion of this
issue and the relation of neutron scattering to electronic
spectroscopy. ) However, working from the Scrhodinger
picture, one can obtain a very useful semiclassical
method. The method involves propagating time-
dependent wave packets along classical trajectories, mak-
ing them "semiclassical wave packets. " This approach,
when applied to neutron scattering, is not equivalent to
any of the traditional classical or semiclassical methods
for simulating neutron scattering, except in the exactly
soluble cases (harmonic oscillators, etc.). Even in these
cases, the underlying intuition is quite distinct from the
usual one derived from the Heisenberg picture.

We pursue the implications of the semiclassical wave-
packet picture for neutron scattering, aided by the concise
books by Lovesey. The semiclassical wave-packet tech-
niques we use are a combination of the coherent-state for-
malism, which by itself is too restrictive for our purposes,
and semiclassical wave-packet propagation techniques.
Recently, Littlejohn has given a very complete and
rigorous discussion of semiclassical wave-packet-
propagation methods. Also, the present methods are
much simpler than a full semiclassical-limit implementa-
tion of coherent-state path integrals.

The organization of the paper is as follows. In Sec. II
we recall the basic equations for incoherent neutron
scattering, including the correlation-function expressions.
Merits of two different semiclassical implementations of
the correlation functions are discussed. The second of
these, namely, a wave-packet picture of semiclassical and
quantum dynamics, is augmented in Sec. III. Applica-
tions of both methods to the impulse approximation and
to scattering from a harmonic solid are developed and
contrasted in Sec. IV. A third approach, namely, the
Wigner representation with a semiclassical implementa-
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A. Correlation functions and neutron scattering:
the Heisenberg picture

Following the notation of Lovesey, the differential
cross section due to incoherent neutron scattering is!

do k'

dQdE k 4' (2.l)

where N is the number of scatterers, o.; is the total in-
coherent cross section, k and k' are the initial and final
wave-vector magnitudes of the neutron, k is the momen-
tum transfer, and S;(k,co) is the response function, or
"dynamic structure factor" for neutron scattering. The
response function is in turn given in terms of a Fourier
transform of a correlation function,

$(ken)= f" dte ' 'g YJJ(k t),1

2' oo
J

(2.2)

where the correlation function Y&~(k, t) is the Fourier
transform of the self-pair-correlation function

G, (q, t)= —g fdq'(5(q —q' —qj)5[q' —q~(t)]) . (2.3)
J

The function Y» (k, t) may be e.xpressed as

Y.. (k t) —(e ie'~'/"e ie '~'/~)
JJ

ik tt ik—.q. (t)
~=(e 'e (2.4)

where the brackets signify an ensemble average. Coherent
inelastic neutron scattering involves Y~(k, t), i+j The.
semiclassical wave-packet methods for incoherent scatter-
ing derived below apply to coherent scattering as well.

The Heisenberg operator q~(t) obeys

tion of the dynamics, is also discussed in the context of
harmonic-oscil]ator scattering. All three methods are, of
course, exact for the case of a harmonic oscillator, but all
three point the way to the inclusion of anharmonicities in
different ways. In Sec. V an application to the anharmon-
ic modes of an HCN molecule embedded in a (static) lat-
tice is given.

II. CORRELATION FUNCTIONS
AND THE HEISENBERG

VERSUS THE SCHRODINGER PICTURES

t

Y (k ) ( j —litt/fi )
—ik-q ~ ik-q.

J J (2.7)

B. The Schrodinger picture

There is a different route to a useful semiclassical pro-
cedure. We remain in the Schrodinger picture and make
a special choice of a quantum-mechanical basis (the
coherent states) in which to evaluate the trace involved in
computing the ensemble average. The coherent states are
then propagated semiclassically. See Ref. 6 for a discus-
sion giving the basic properties of the coherent states and
references to several excellent works on this subject. The
term "harmonic-oscillator coherent state" has a somewhat
more restricted meaning than "Gaussian wave packet"
but we shall use.them interchangeably. The basic idea of
their use in semiclassical contexts is that they can have
well-defined positions and momenta (within the limits of
the uncertainty principle), and that they follow classical-
like trajectories under propagation by smooth Hamiltoni-
ans. In fact, the dynamics of the Gaussians can accurately
be given by classical mechanics for short times. We label
the Gaussians by the ket

~

z ), where

=H(p+Rkt, q),
and AkJ is the momentum imparted by the neutron to the
jth nucleus. (The notation p+Rc& is understood to imply
the momentum A'k is imparted to the jth particle). We
call HJ' a momentum-shifted Hamiltonian. Apparently,
neutron scattering can be viewed as arising from a corre-
lation function involving two distinct Hamiltonians, relat-
ed by a momentum shift. Appendix A shows the close
connection between incoherent neutron scattering and
electronic spectroscopy involving position-shifted poten-
tials.

Equation (2.4) is expressed in the Heisenberg picture
and is very suggestive of semiclassical approximation. A
primitive classical approximation is obtained simply by
letting the operators become their classical analogs, and
taking the trace over a classical equilibrium ensemble.
Much is lost, however, in such a simple and direct ap-
proach. For example, the noncommutation of P and
8(p, q) is ignored. It is possible to include some of the
eff'ects of noncommutation of p and B(P,q) and obtain an
improved classical approximation. This is discussed by
Lovesey, and at the end of this section.

d q/(t)
dt

aa
BPJ

(2.5) or

(2fico) ' (coq+ip) ~z)=z ~z), (2.8a)

dpj(t)
dt

av
BqJ

where V is the interaction potential for the whole system
of particles. The solution of these equations is

~q (t) eiHt/l6q e
—iHt/A

(2.6)
(t) iHt/Ap (ttt/h—

J J

An interesting alternate form for Eq. (2.4) is

Z Z =Z Z (2.8b)

q =(A'/2')'/ (z t+z),
p =i (fico/2) '/ (z —z ),

(2.9a)

(2.9b)

The parameter co is a scale factor that determines the rela-
tive uncertainties in p and q; for co real we have
(bp) (b,q) =4 /4. The following relations are also use-
ful:
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(z
~ q ~z) =(iit/2co)'/ Re(z), (2.9c) Tr( 3 ) = f (d z /n. ) (z

~

2
~

z ), (2.9f)

and

(z
~ P ~

z ) = (fico/2) '/ Im(z),

1=J (d'z/~)
~

z) (z ~,

(2.9d)

(2.9e)
where d z =d ( Imz)d ( Rez) in one degree of freedom. In
the case of X degrees of freedom, we use nearly the same
notation whenever no confusion arises. The relations
above allow us to evaluate Yjj(k, t) as

(1 t ) (
t ~'qj i8t /rt ' 'qj i8t /r—)t

ptt —'" &»—"t, tilt/r '" qj —8t/r)=—Trje e 'e' e 'e

(2.10a)

(2.10b)

~I ~
2 e

~
e

~ I~k Iq ~

e
r

e
I~k I q ~

e ~ ~

Z
d2%

(
~

p8 t~ qj ijtt/'rt ' 'qj i8—t/rt
~

) (2.10c)

~I ~
Z e ~

e
~ I~k Iq ~

~
~

e
I~k I q ~

~
~ r

e
~

Z
d 2%

pB/2 —'" q At/rt t" qj iB't/rt ——p8/2
~

) (2.10d)

where the
~

z ) are the harmonic-oscillator coherent states
in N degrees of freedom and Q =Tr[e P ]. We focus our

—pA'

attention on the matrix element carrying all the essential
information for the correlation function and the spectrum,
VIZ. ,

(
~

pP/2 ' j i—A't/rte'
'
je ikt/fi —pA'/2

~

—
z )

( (p)
~

qj lut ttt' qj —jl rt
~

(p) )

(2.1 1)

The state
~
z(p) ) =—e p / z ) is a wave packet, which

has been propagated in pure imaginary time an amount
ifiP/2. We—can simplify the discussion by approximat-

ing the effect of the "temperature propagation. ". For a
given state

~

z), temperature propagation to lowest order
(in a cumulant expansion, for example) just weights the
state

~

z) by e P ",where H(z)= (Z
~

8 ~z). Except
for a small correction, which in the case of the coherent
state of the harmonic oscillator is just the zero-point ener-
gy, H(z) is the classical energy plus the zero-point energy
associated with the phase-space point (p, q). For the
present qualitative discussion, we take the term
(z(p)

~
~z(p)) to be equal to e "(z

~

. ~z),
—PH I

where H, i is the classical energy of the state ~z), i.e. ,
H(Jj, q). (This approximation is made here for purposes
of discussion only; in subsequent sections the temperature
propagation is analytically or numerically implemented. )

We have then
r

d 2&z
Yj (k, t)= —J C(z)

&&(z
~

e 'e' ' "e 'e ' ' "~z) (2.12)

—PH t(z)
where Ct(z)=e ' . It is possible to find a 4(z) to re-—PH )(z)
place e ' which makes Eq. (2.12) exact. (See Sec.
IVB.) In the high-temperature limit, Ct(z) indeed be-—PH )(z)comes e

The matrix element in Eq. (2.12) can be evaluated in
the Schrodinger picture by allowing the propagators to act

upon the states. The state
~

z ) is propagated under the
Hamiltonian H for a time t (propagation), and then the
jth particle is promoted to a higher momentum by multi-

ik qplication by e ' (boost) (the expectation value of the
momentum of the jth particle is easily shown to be raised
by k). The third step involves backward propagation for
a time t. Finally, the jth particle has its momentum de-

—ik.q.
creased by multiplication by e '. Figure 1(a) shows a
phase-space picture of these processes. The essence of this
picture is to associate a classical position and momentum
distribution (represented as the oval marked "~ z)") with
the phase-space localized Gaussian coherent state Lz),
and to represent the effect of propagation P =e

H fi ikq ~y —ikq.P~=e'H' ~, boosts, B=e ', 8 ~=e ', etc. by ap-

propriate displacements and shears in the distributions.
The final overlap taken between the two packets in the
shaded region. The shading means "take the overlap. "

lt is quite evident that this way of evaluating the matrix
element

(z~e 'e' ' "e 'e ' ' "~z)=(z~BtPtBP~z)
(2.13)

has a rather classical fiavor. The two key ideas are (1) to
launch the semiclassical approximation from the
Schrodinger rather than the Heisenberg picture, and (2) to
evaluate the trace in a Gaussian coherent-state basis, mak-
ing semiclassical evaluation of the matrix elements con-
venient and physically motivated.

There is another, slightly different phase-space interpre-
tation which serves to illustrate the noncommutativity of
e —' '/" and e '. In Fig. 1(b) we see the efFects of al-+i8f/r +ik.q

lowing the operators B and P to act to the left; P and B
act to the right, as before. The propagator P acts first,
and then the boost B on

~
z), but the order of the propa-

gation and the boost is reversed on the state (z
~

. The
matrix element is finally the overlap between kP

~

z ) and
PB

~

z ), the only difFerence being the order of propagation
and boost. Even classically, the changing the order of the
operations "propagate" and the "boost" leads to ine-
quivalent final states as seen in Fig. 1(b). The semiclassi-



2616 HELLER, REIMERS, AND DROLSHAGEN 36

contains all the commutation information. Then,

qj —qi(t) is replaced by its classical counterpart qj —qj(t),
and the commutators are replaced by their classical c-
number Poisson bracket analogs ([, ]~ifit, I ). In the
case of free motion, the first term in Eq. (2.15) is the only
nonvanishing one, and since qi(t)=qj+pit, the classical
and quantum brackets give the same result. The im-
proved classical approximation, with y~~(t) included, pro-
duces corrections which are simple to use and also give
the results exact for the case of a harmonic system. In
the case of a general potential, however, an infinite num-
ber of terms contribute, and they become increasingly
difficult to evaluate, both as the order is increased and as
time is increased. Moreover, the higher-order terms be-
come more important as time increases, making this
method impractical.

III. SEMICLASSICAL WAVE-PACKET DYNAMICS

cal propagation of Gaussian wave packets, outlined in Sec.
III, preserves this inequivalence.

The primitive classical approximation to Y~~(k, t), where
quantum Heisenberg operators are merely replaced by
their classical counterparts, reads

j—ik. [q.—q t ]

(2.148)

(2.14b)

where qj and qj. (t) are purely classical positions. The
commutation relations are dropped. Lovesey suggests
starting with the exact form

FIG. 1. Phase-space diagrams representing the noncommut-
ing operations governing inelastic neutron scattering. Momen-
tum is the vertical coordinate, position the horizontal ~ (a) Start-
ing with the state

~

z ), which is a localized wave packet, the ma-
trix element in Eq. (2.13) permits the interpretation shown here,
with all four operators acting to the right. The matrix element
involves the overlap between the right vector after the four
operations and the initial left vector (z ~, as indicated by the
shading. In (b) the operators P and B act to the right, and B and
P~ act to the left. The order of propagation and boost is
switched in the two cases, right and left, with the result that the
initial wave packet reaches two different locales in phase space.
The overlap shown in (a) is the same as in (b).

The intuitive picture of wave-packet dynamics in the
Schrodinger picture has to be augmented by a simple
method for the propagation of the packets. A commonly
used method is reviewed here. "

The basic idea is illustrated in Fig. 2. A Gaussian
packet is launched with specified position qo and momen-
tum po on an arbitrary potential. An initially Gaussian
packet remains forever Gaussian if the potential is at most
quadratic in q, even if the potential is time dependent.
The potential shown is anharmonic. Suppose that we re-
place the true potential by an effective time-dependent
quadratic potential which is optimized in some way for
the packet being propagated. We choose this optimization
by always taking the effective potential to be the locally
quadratic Taylor expansion of the true potential about the
instantaneous center of the moving Gaussian The idea i.n
this approximation is that the potential is best fit where
the wave packet is largest. This approach is simplistic but
very easy to implement. It leads to the result Eqs. (3.5c)
and (3.5d) that a single classical trajectory calculation,
along with its stability equations, suffices to propagate the
Gaussian. The price paid for the simplicity is that the
"wings" of the Gaussian may be poorly described, since
the propagation is optimized for the center. A better
semiclassical propagation would involve double-ended
boundary conditions and the associated "root searches. ""
Nonetheless, the simpler approach is a true semiclassical
method, since the results do become exact as A~O. In N
dimensions, the most general Gaussian takes the form

(2.14c)

where the term y»(t)

ifiy»(t) = —,'[k q, ,k qi(t)]

+ [[k q~, k qj(t)],k q~]

+ [[k.q~, k qi(t)], k qi(t)]+
12

(2.15) FIG. 2. A potential V(q) is approximated by a quadratic fit

in the vicinity of the current position of the wave packet.
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(q
~
z, }=exp{iliri[(q —q, ) A, (q —q, )

+p (q —q )+s ]I . (3.1)

The N XN matrix A„and the N-dimensional vectors q,
and p„and the phase-normalization factor s, are all
specified at t =0. Clearly, q, and p, are (z

~ q ~z} and
(z

~ p ~
z), respectively. The matrix A, describes the

"spread" of the wave packet, and its initial value is some-
what arbitrary. However, it should be chosen reasonably,
so as to balance the relative uncertainty in position and
momentum. A good choice often seems to be to choose
A, to be the same as the ground-state eigenfunction of
the harmonic approximation to the potential, expanded
about its minimum. Normalization of the Gaussian re-
quires that

Sometimes it is advantageous to "freeze" the A matrix to
its initial value, rather than let it change with time. This is
especially true for long-time propagation on significantly
anharmonic potentials, where the wave packets may
spread so much that the locally quadratic approximation
breaks down. The method for frozen A is called the
"frozen Gaussian approximation, " or FGA. By default,
the original method given above, where A, changes with
time, is called the "thawed Gaussian approximation, " or
TGA. In the applications to neutron
scattering, the Gaussian parameters q, 0, p, 0 are chosen
according to the phase-space integral

tv J d ztvz (z
~ ~

z } 77
tv fd x d xq

The reader is directed to Ref. 3 for more detailed discus-
sions of wave-packet dynamics.

Im(s, 0)= —,'ih'in{det[2Im( A, o)/M]I . (3.2) IV. FIRST APPLICATIONS

(Recall the matrix identity det(C)= exp{Tr[ln(C)]J. )
Subsequent integration of the equation of motion for s,
(see below) assures that the wave packet is normalized at
all times.

The Gaussian may be fed into the time-dependent
Schrodinger equation appropriate to the ansatz described
above. It helps to write A, as

A, = —,'P, Z (3.3)

we find

+ —,
' (q —q, ) V"(q, ).(q —q, ) (3.4)

dpi'

dt
= —V V(q, ), (3.5a)

where, at t =0, the N&(N matrix Z may be chosen to be
the unit matrix, so that P, t 0=2At 0. With the poten-
tial expanded as

V(q)= V(q, )+V.V(q, ) (q —q, )

We now have the machinery to apply the Schrodinger
picture semiclassical wave-packet methods to a wide
variety of problems in neutron scattering. Here, we exam-
ine two cases where recourse to numerical methods to
evaluate the classical trajectories is not necessary.

A. Impulse approximation

Let the operators act on
~

z (13)) in the order shown in
Eq. (2.13), namely, P first, etc. Suppose for the moment
that the time-dependent potential V is quadratic, linear, or
constant in q. Then, the A, matrix is dependent only
upon the initial A, 0 and time, and not the classical posi-
tion and momentum parameters. This is clear from Eqs.
(3.5c) and (3.5d), since V"(q, ) is independent of q, for
quadratic, linear, or constant potentials. Note too that
whatever changes that take place in A, under the action
of P are left unchanged by the boost provided by B. In
fact, after the boost we have

(q z(t) }= exp{i/iri[(q q, ) A, (q ——q, )

dqg

dt
=p, .M— (3.5b)

+ (p +erik) (q —q, )+A'k q +s ] I .
(4.1)

dp,
dt

= —V"(q, ) Z,

dZ P
dt

(3.5c)

(3.5d)

dt
=p, M '

p, E+ih'Tr( M' —A, ), (3.5e)

s, =s, 0+ 2 iR Tr[ ln(Z Z, o)]

+ J (p, M 'p, E)dt. —
0

(3.6)

where M is the mass matrix, which is normally chosen to
be a multiple of the unit matrix, and E is the classical en-
ergy of the trajectory H(q„p, ). Some noteworthy facts
about these equations are (1) q„p, follow Hamilton's
equations of motion, (2) P, and Z also follow Hamilton's
equations, but for a time-dependent, purely quadratic po-
tential given by —,'Z. V"(q, ) Z, and (3) s, accumulates the
classical action

Because of the boost, backwards time propagation by P
will take the wave packet along a different phase-space
path. However, the wave packet will regain its precise ini-
tial shape, since the time evolution of A, under the effect
of P ~ is just reversed from that of P, independent of the
momentum (and subsequent position) changes caused by
the intervening boost. Thus, the backward propagation
P undoes any evolution in the A matrix. It follows that
for these special potentials, we may simply ignore the
changes in A and use "frozen" wave packets, which keep
A fixed. In this case the FGA is exact for the amplitude
in Eq. (2.13).

The impulse approximation, as its name suggests, is in-
tended for situations where the momentum transfer k is
large. It will become evident that large k causes the
correlation function to decay rapidly. This allows us to
rationalize the use of the FGA for general smooth poten-
tials for large k, since whatever changes in A„ that take
place in a short time are approximately undone for any
locally quadratic potential.
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p, =p —VV(q )t,
so~

% =9'o+
m

(4.2a)

(4.2b)

The displacements that arise for longer times in all but
constant potentials can be seen qualitatively from Fig.
1(a).

The action of the four operators P, B, P, B on
~

z )
has a very simple interpretation. For the case of a free
particle we have Fig. 3(a). The abscissa is position and
the ordinate is momentum.

We start with a state of a given average position and

momentum. The effect of the propagator I' is to translate
the state in position by pt Im. The operator 8 boosts it in
momentum by haik. Backwards propagation (P )

translates it to the left by (p +A'k)t/m. Finally, S drops
it back down to its original momentum, where it finds it-
self displaced over by A'kt Im relative to the starting state

~

z ). One might imagine that the presence of a potential v
would change the relative location of the starting and final
states. However, as Fig. 3(b) shows, the distance and dis-
placement in phase space remains the same even with a
potential, at least for short times. During the short-time
decay of the overlap, the classical mechanics guiding the
Gaussians is approximated by

The distance between the starting and final wave pack-
ets is no longer simply Akt/m, and the displacement be-
tween them now contains a momentum component. The
information required to construct this diagram is still

purely classical, and it suggests that we may go far beyond
the impulse approximation and considerably beyond the
usual Heisenberg semiclassical approximations' if we are
willing to run trajectories and implement the information
in the Schrodinger sense. This is one of the main points
of this paper.

We are now in a position to calculate

z
Y,, (k, r) =—f e(z)

)& (
~

—~k.q ~@««k.q —~&~~~
~

) (4.3)

WpS/&~ ifik p/2mg8 /e (4.4)

(We are using the diagonal representation of the tempera-
ture propagator discussed in Sec. IVB.) As discussed
above, the efFect of the four operators is to displace

~

z)
by Ak/m position. The operator which translates the ar-

lqpp /fl
guments of functions by qo is e . Thus, except for
phase, which is easily shown to be ih'k t/2m, the operator

iq pP /fi
e &k-qe IHt Ae ik- e ~ ~ ?s replaced by e ' . We arrive at

lk

B&g %k

=Wkt/m = pt/m ~

V't

B flak

This agrees with Eq. (3.93) in Lovesey. Here, the for-
mula is derived under the assumption of frozen Gaussian
wave-packet dynamics for the evolution of B tP tBP

~

z )
with Gaussians guided by classical trajectories. The clas-
sical trajectories have been approximated by their short-
time expansions.

Lovesey shows that the Fourier transform of Y~~(k, t) is
directly related to the momentum distribution of the par-
ticles scattering neutron in the sample.

B. Harmonic crystal

Our strategy will be to implement Eq. (2.12) in a way
that suggests the pro'cedure for anharmonic cases. We do,
however, use the diagonal representation of the thermal-
density operator with the exact &b(z), which is known in

the case of a harmonic oscillator. For a one-dimensional
harmonic oscillator, 4(z) can be shown to be'

4(z)=2mkexp — (e~" —1)(p /m+mco q )
1

2%co
(4.5a)

=ekt/m-
@(z)=2m5exp — (e~ —1)Hd(p, q)

where

1
H,((p, q)= p + —,'mm q

(4.5b)

FIG. 3. (a) A wave packet ~z) is propagated, boosted, back
propagated, and unboosted in a constant potential. The result is
a displacement in position. (b) The net short-time eff'ect of the
operators P-B ~ is seen to be a translation by Akt/m, whether or
not a potential is present, within the approximation that spread-
ing of the wave packet is neglected (there is no net spreading if
the potential is locally quadratic), and with short-time approxi-
mations introduced for the classical mechanics.

Note that H„(p, q) is the classical Hamiltonian. In the
limit of large temperature, (1/2fico)(e ~" —1)~P/2,
thus 4(z)~e ~ " as expected, and, as T~O,
4&(z)~5(p)5(q), also as expected. In this case, Eq. (2.12)
reduces to the evaluation of a single state

~

z ), namely,
the ground harmonic-oscillator state.

The expression that we need to evaluate is then
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Y (k, t)= —J
1

/J ' g
Z @(z)(z

~

e
'k'qj iAt/A 'k'qj —iBt/A ~e e e ~z/ (4.6a)

d2
4(z)(z

~

e '~' "e 'e'~' "e ' ~z& (4.6b)

There are many elegant shortcuts to the essential harmon-
ic crystal results starting with Eq. (4.6) involving operator
algebra identities, etc. However, these shortcuts merely
lead back to the traditional derivation of neutron scatter-
ing for the harmonic oscillator and remove emphasis from
the way a calculation involving more complicated poten-
tials would proceed. Section V presents results for an
anharmonic, nonseparable potential model for HCN in a
crystal, and the present derivation of the harmonic oscilla-
tor serves as an introduction for the methods used there.

A word about the role of C&(z) is in order. First, Eqs.
(2.10), the governing equations, make no use of 4&(z) and
require imaginary time propagation. Such propagation is
not particularly dangerous or dificult, except at low tem-
peratures. At absolute zero, the situation is again simple,
since the system is at rest and describable by a single
(many-body) wave packet. In the case of harmonic sys-
tems, we have shown that a @(z) may be found which
gives exact results [Eq. (4.5)]. For anharmonic systems at

j

I

finite temperature, either we have to do an imaginary time
propagation or we need to find a modified 4&(z) which ac-
counts for the anharmonicity. There is as yet little experi-
ence with either of these alternatives.

The matrix element appearing in Eq. (4.6) can be
viewed as the overlap between e ' '~"

~

z & and
tk q —'gt/A ik.q.

e 'e ' ' "e '
~

z &. (We specialize to a one-
dimensional harmonic oscillator for notational simplici-
ty. ) In coordinate space,

~

z & reads

l lmCO
&q I zp & = exp — (q qp) +p—p(q qp)+—y p2

(4.7)

We have added a subscript 0 to
i
z & and its parameters to

indicate the initial, unpropagated, and unboosted ~z &.

After propagation, zp & becomes
~
z, &,

l
(q ~e

' '~ ~zp&=(q ~z&&= exp — ™~
(q —q~) +p|(q —q~)+y~

2
(4.g)

where

Po
q &

——qp cos(cot)+ sin(cot),

p &
——pp cos(cot) mcoq p sin(c—ot),

(4.9a)

(4.9b)

yz
——yp+ sin(2cot)[(pp+Ak) /m qpmco ]-

4co

+ ,'qp(pp+A'k)[ —cos(2cot)—1]—k (qz —qp) .

Now, the overlap between
~
z, & and

~
zz & is

(4.11c)

Po/I —qom~2 2 2
cos(2cot) —1

y, =yp+ sin(2cot) +qppp4' 2

mco
&zi Ized&= exp — «~ —q» — (p~ —p~)

4A 4m co%

(4.9c)

For the evaluation of
~

zz & =e '"' e ' ' "e'"'~
~

zp & first
note that the effect of the boost is just to raise po to
S o+&I

l

2&
(q~ —qi)(pal+pi)

+ —(yz —yi)
fi

(4.12)

e'"& ~zp&= exp —' '
(q —qp) +(pp+&k)(q —qp)

2

+&&9'o+ 'Yo (4.10)

We may again use Eqs. (4.9), with pp replaced by pp+Ak,
and 6nally reduce the momentum by —Ak, corresponding
to e —I k'q

In a calculation involving anharmonic potentials, the
p&, . . . , y&,p2, . . . , y2 are all determined numerically by
solving the classical equations of motion. For the case of
frozen Gaussian propagation, the overlap (4.12) still
holds, whereas if the Gaussian has been allowed to spread
(TGA), a slightly more complicated overlap formula
holds. ' For the ~z, & and

ized&

given above, Eq. (4.12)
yields

(z~
~
zz& =(zp

~

e'~'~+e '"' e ' ' +e'"'~
~zp&

(pp+Ak)
qz ——qp cos(cot)+ sin(cot),

pq
——(pp+ haik ) cos(cot) mcoq p sin(cot) —A'k—,

(4.118)

(4.11b)

= expI —[k fi /(2mcoh')+ikqp][1 —cos(cot)]

i k (m/)c(op pA+k2—/) sin(cot ) I

(4.13)
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Equation (4.6) becomes

Y(kt, ) =fdpodqo exp — (e~" —1)II,i(po, qo)

)& exp
k A ik

+ikqo [1—cos(cot)] — (po+fik/2) sin(cot)
2flz co@ Pl Cg

k fi= exp [1—cos(cot)] coth
2fpl co%

Ace
i s—in(cot)

2
(4.14)

The last line of Eq. (4.14) agrees with Lovesey, Eqs.
(3.143) and (3.144), as indeed it must. We have derived it
here with the aid of the exact dynamics of coherent-state
wave packets.

where ~z&) is the wave packet defined by qp and pp.
This is a rather peculiar result, which allows the infinite
sum over all initial states required in Eq. (4.6), to be re-
placed by a single state

~
z&). This result carries directly

over to any number of normal modes i, simply as

C. Replacement by a single wave packet

Note the similarity between the overlap (z,
~

zz), Eq.
(4.13), which represents the fate of a single wave packet,
and the finite temperature correlation function Y(k, t), Eq.
(4.14). In fact, if we take q&

——0, and

p p ——iiik /2[1/i(, —X],
where

Y.(k, t)=(zing
~

e 'e' ' "e 'e ' ' "~z&),JJ

where q;&
——0

p~p ——A'k; /2[1/1, ; —A,;],

i(, ; = [ coth(pirico; /2) ]'~

where g; is the ith normal mode coordinate and

(4.16)

i(,= [ coth(13irico/2) ] '~

then

Y(k, r) = (z
~

eiHtlRQ ik ~e —

iBt/sheik.

&—
~

z ) (4.15)

gk);g;k qj .

The harmonic multimode case splits up into a separable
product of single-mode correlation functions, i.e.,

/

(4.16b)

=g exp
kJ;A

[1—cos(co;t)] coth
2m Ac@

i sin(co; t )— (4.16c)

kJ, A= exp —g [1—cos(co;t)] coth(13irico;/2) —i sin(co;t)
(2mirico; )

(4.16d)

—= exp[ —2W'(k, t)] . (4.16e)

D. Separation of time scales and the Debye-%Railer
Factor

Recently, Griffin and Jobic' "have made an interest-
ing point regarding the appearance of one-, two-,
phonon structure in the inelastic incoherent neutron
scattering under conditions of large energy transfer and
very small Debye-Wailer factor. According to these au-
thors, it had been assumed that the small Debye-Wailer
factor would extinguish the possibility of vibrational
structure in the cross section. This is not the case under
certain circumstances, and the Griffin and Jobic paper ex-
plains why, in terms of the "time-dependent Debye-
Waller factor" and a separation of timescales between the

high- and low-frequency modes. The time-dependent
Debye-Wailer factor is just exp [—2 W( k, t ) ] of Eq.
(4.16e). The structure in the cross section, in spite of large
energy transfer, occurs if exp[ —2W'(k, t)] oscillates at a
vibrational frequency characteristic of a high-frequency
local mode, during its decay toward a nearly vanishing
asymptote at long times. The cross section has to reflect
these oscillations with corresponding frequency oscilla-
tions of its own, spaced by the frequency of the local mode
and broadened by the overall long-time decay.

The high-frequency modes are simply local lattice vi-
brations which are excited by the neutron scattering event,
and which also decay since they are not normal modes.
However, most of the long-time decay of the time-
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dependent Debye-Wailer factor is due to the effect of the
low-frequency modes, whose net momentum displacement
is large, but whose demy is slow simply because the
modes are of low frequency.

The persistence of vibrational structure in the presence
of large energy transfer is analogous to the
"pseudolomlized-phonon" structure in the phonon side-
bands of electronic transition in mixed molecular crys-
tals. "

In the case of a harmonic lattice, GrifFin and
Jobic' "' '"' [see also Ref. 14(c)] recommend the direct
evaluation of the time-dependent Debye-Wailer factor
exp[ —2W(k, t)], followed by Fourier transform into the
frequency domain to get the cross section. One advantage
of this approach is that the experimental cross-section
data is always obtained with some finite resolution wheth-
er because of the intrinsic continuum of modes (save for
the zero-phonon peak), or because of instrumental resolu-
tion. Given this situation, the time-dependent Debye-
Waller factor exp[ —2W(k, t)] only needs to be calculated
for a finite time corresponding to the experimental resolu-
tion.

We wish to emphasize that our wave packet approach
shares the same advantages, with the important addition
that our methods are directly applicable to the anharmon-
ic mse.

We have derived Eq. (4.16e) using wave packet tech-
niques which, it should be recalled, are exact for any har-
monic potential. Thus Eq. (4.16e) is the exact expression
for the harmonic case and it agrees with the Griffin and
Jobic analysis.

E. The Wigner representation

—ikqo k /2V ikq,Y« t)= J "po"qop (po qo)e (4.17)

where q, =qo cos(cot)+(po/mco) sin(ojt), Vz ——8/Bpo and

1
p (po, qo) = tanh(Phoo/2)

m.h

Some additional insight into the semiclassical nature of
neutron scattering may be had by study of the Wigner
phase-space formulation of quantum mechanics. The fol-
lowing discussion is not self-contained as it assumes some
knowledge of the Wigner formulation. Excellent refer-
ences on the Wigner phase-space method (a formulation
entirely equivalent to quantum mechanics) are readily
available, ' including the seemingly neglected Rosenbaum
and Zweifel paper. ' " We present only the "bottom line"
formula for Yjj(k, t).

One of us has previously discussed the potential and the
pitfalls of semiclassical approaches based on the Wigner
phase-space theory. ' We translate the Rosenbaum and
Zweifel results for the case of neutron scattering from a
harmonic system into the current notation, for the case of
one dimension,

e 'f (p) =f(p+ —,
' k),

Eq. (4.17) can be written

Y(k, t)= Jdpodqop (po, qo)
—ikqo ikq, (,qo pp+fik/2)Xe e (4.18)

where

q g (q o p o +

haik

/2 )

V. APPLICATION TO HCN

We do not attempt a complete treatment of incoherent
inelastic neutron scattering from crystalline HCN, but
rather consider only the an harmonic intramolecular
modes (two stretches, two bends). If one is willing to con-
siderably esmlate the effort of setting up the calculation
and the computation time, it is now technimlly possible to
examine a fully coupled lattice of HCN molecules at ihe
level of Gaussian wave-packet dynamics.

The incoherent cross section for hydrogen is much
larger than that of the C or N atoms, and we accordingly
assume in our calculations that all of the momentum
transferred is given to the hydrogen. This momentum
transfer has effects on the rotation and center-of-mass
translation of the molecule (which in the crystal are really
librational and center-of-mass vibrational motions), but
the contributions of these degrees of freedom are ignored.
The momentum transfer to the two stretches and two
bends are computed and the subsequent wave-packet dy-
namics is calculated in the potential energy surface de-
scribed below. This surface is fairly sophisticated by
present standards, including anharmonicities, coupling be-
tween modes, etc. Our calculations are for 0 K, and so
the integrals over initial wave-packet states in Eq. (2.10)
reduce to the ground state

~

0), i.e.,

Y (0
~

' "qj itltlh' ' 'qj —itlt/R () )

=qo cos(tot)+ (po+ haik/2)/(mto) sin(cot) . (4.19)

Carrying out the integrations gives exactly the same re-
sults as before for Y(k, t). Note that p (po, qo) and
4(z) =2~exp[ —(I/~)(e~ —1)H,i(p, q)] are somewhat—PH )(po, qo)different. Both become proportional to e " ' ' as
+~ OO ~

The time evolution of q, (qo,po+A'k/2) is entirely clas-
sical. It is intriguing that Eq. (4.18) implies that the exact
correlation function may be had by (1) using the Wigner
phase-space distribution appropriate to the undisturbed
equilibrium state of the oscillator as a sampling density,
and (2) computing the classical correlation function

ikqp I qt '[ qo p0 +Rk 72 )
e e ' ' ' over this density. Note that the
correlation function is for the oscillator boosted by half
the momentum transfer Ak.

2
X exp — tanh(Phoo/2)H, i(po, qo)

:—C(t) . (5.1)

is the Wigner phase-space density for an oscillator. It is
interesting to note that since

We have used the FGA throughout these calculations.
Some aspects of the results might be improved by using
the TGA. Best (indeed completely accurate for the poten-



2622 HELLER, REIMERS, AND DROLSHAGEN 36

tial surface assumed) results could be obtained for
significantly increased effort by using time-dependent
variational propagation of the wave packets, in which
several traveling together in bundles are considered to be a
basis set for the time-dependent Schrodinger
Equation. '"' "

A. Coordinates and potentials

S, = gL,"Q, +-,' gL,"'Q„Q, +-,' g L;""Q„Q,Q, ,
r, s, t

(5.2)

We use normal coordinates to describe the potential
surfaces and dynamics. These coordinates allow an ap-
proximate separation of vibrational, rotational (or libra-
tional in the crystal) and translational modes, permitting
the problem to be described by just four variables. The
major disadvantage to the use of normal coordinates is
that they usually provide a poor description of the molec-
ular surface, especially at large displacements from equi-
librium. Bond lengths and angles provide a much better
description of the potential energy surface; but the kinetic
energy is very complicated in these coordinates. Here a
set of variables is described that does provide a good
description of the potential surface while being simple
functions of the normal coordinates. A potential surface
for gas-phase HCN is constructed, and it is modified to ac-
commodate the effects of the presence of neighboring mol-
ecules in a crystal. Carter, Mills, and Murrell' "have
determined gas-phase potential surface for HCN, and ab
initio surfaces are also available. We choose not to use
these surfaces but to modify the older spectroscopic po-
tential of Strey and Mills. ' '"' This potential was obtained
by deducing the derivatives of the potential surface, evalu-
ated at the equilibrium geometry, from spectroscopic data.
Hoy, Mills, and Strey then performed a nonlinear
transformation' "of the normal coordinates into a set of
coordinates that closely resembles the bond lengths and
angles; the resulting potential surface has the same deriva-
tives up to fourth order as the corresponding potential
surface written in terms of the bond lengths and angles.
Following Hoy, Mills, and Strey, we define these variables
as

where Q; are the normal coordinates, determined from the
Strey and Mills potential, and the elements of the I. ten-
sors are known functions of the equilibrium geometry and
normal coordinates. ' Two of the S coordinates, SI, and
S„, represent the displacement of the CH and CN bond
lengths from equilibrium, respectively. Some choice is
possible, as to which two geometric variables the remain-
ing bending coordinates are to resemble. If the linear
molecule is taken to lie on the y axis, 50 is the displace-
ment of the HCN bond angle from linearity, and a is the
angle describing the rotation of the plane of the bent mol-
ecule from the x-y plane, then we choose

S, = sin(58) cosa (5.3a)

and

S, = sin(50) sina . (5.3b)

Xh =S~ ~(Sh+r~ »
X„=S„/(S„+r„),

(5.4a)

(5.4b)

where r~ and r„are equilibrium CH and CN bond
lengths, respectively. Use of these variables greatly im-
proves the boundary properties at large stretch displace-
ments, and results in a potential which is much more ac-
curate in these regions. The final potential for gas-phase
HCN is written as

These coordinates display the correct symmetry, i.e., that

Sg ——S +S
is independent of a. Strey and Mills' ' ' determined the
derivatives of the potential with respect to the S variables.
We do not introduce the approximation that the bond
lengths and angles may be substituted for these variables,
as do Strey and Mills, but proceed directly. The deriva-
tive information available here may be used to construct a
power-series expansion potential, but such a potential has
incorrect boundary conditions at large bond lengths.
Simons, Parr, and Finlan' have shown that it is prefer-
able to write the power-series expansion in the variables

= ~ (f&&X~ +fh„XhXn +f„„X„+fggSg )+ 6(fhhgXg +fhgnXpXn +fhnnXhXn +fnnnXn+fheg h e+fne

+ && (fhghhXh +fghhnXgXn +fhhnnXhXn +fhnnnXhXn +fnnnn n

+fggggXp Sg+ fhnggXqX„S g+f„„geX„Se+ feeeeS e) (5.5)

and is implicitly a function of the normal coordinates.
The force constants contained therein are selected so as to
give the same derivatives at the equilibrium geometry as
deduced by Strey and Mills from experiment. Their
values are given in Table I. This potential is expected to
be quite accurate as similar functions have been successful
at describing the potential surface of water. Note
that the harmonic vibration frequencies resulting from
this potential are identical to the harmonic frequencies of
the original Strey and Mills potential.

In the crystal this gas-phase intermolecular potential is
perturbed by the neighboring molecules. If we included
all of the degrees of freedom of this problem by modeling
the entire crystal lattice then this perturbation would be
automatically included. This approach is feasible as inter-
molecular potential surfaces for HCN are known, ' but is
not pursued here because of its complexity. An empirical
method for determining the effect of the presence of neigh-
boring molecules is to assume that only the harmonic-
force constants change and that the anharmonic ones
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TABLE I. Force constants mdyne A; (mdyne A = 10 "J);
the equilibrium bond lengths used are rh ——1.065 49 A,
r„=1.153 21 A. Mode Gas

Observed Harmonic
Crystal

Observed Harmonic

TABLE II. Harmonic and Observed Frequencies (cm ').

Constant

hn

hhh

hhn

hnn

hnn

n80

nn 08

feeee

7.0966
—0.4915
24.8730
0.2596
0.0000

—0.2048
0.1571
1.7429

—43.9248
—2.2488

—24. 1390
1.4494

12.6822
1.4494

12.6822
14.8563

—396.3783
0.7493
0.0OOO

2.2342
0.0316
0.0000

6.3448
—0.4915
25.0654
0.3553
0.0084

—0.2048
—1.3174

0.2684
—43.9248
—2.2488

—24. 1390
—4.6411
14.3843

—4.6411
14.3843
8.0452

—396.3783
—1.6800

0.0000
—6.7608

0.0316
0.0000

3312
2089
712
712

3442
2129

727
727

3132
2097

838
828

3268
2128

855
845

important quantity, and we restrict ourselves to calculat-
ing spectra of relative scattering intensities for given, fixed
values of k. In an actual experiment many different
momentum transfers k are involved simultaneously. But
for each fixed initial k;„and final k,„, the value of
k=k,„,—k;„ is uniquely defined. Thus, by varying, for ex-
arnple, the initial neutron beam energy and the orientation
of the crystal, and by scanning the final scattering angle,
the spectrum for one fixed k can be extracted from a series
of measurements. On the other hand, for direct compar-
ison with a given measurement, a series of calculations
could be carried out with scattering parameters k, k;„, and
k,„„chosen according to the kinematics of the experi-
ment.

In the present calculations the y axis is chosen along
the axis of the linear HCN molecules; x and z directions
are perpendicular to this axis.

B. Results

remain the same. This assumption is a key feature in the
Rice-Sceats model of water. (See also Ref. 23.) Adopt-
ing the spirit of this approach, we adjust only the second-
order constants in Vg; the anharmonicities are affected as
well because of our use of Simons-Parr-Finlan coordi-
nates. A further complication arises, however, in that the
high-temperature HCN crystal lattice is body-centered
tetragonal and thus the degeneracy of the bending vibra-
tions is lifted. In order to account for this effect, two new
terms are added to the gas-phase potential, and the com-
plete crystal potential is written as

Spectra of relative scattering intensities are plotted in
Fig. 4. The results are for incoherent inelastic neutron-
HCN scattering and for the modified crystal potential
with force constants, as given in Table I. The quartic
bend-bend coupling constant f „„[seeEq. (5.6)] is set to
zero.

For the results in the top panel of Fig. 4, the Fourier
time transformation in Eq. (2.2) is taken over 600 con-
stant time steps, with Gaussian time domain damping in-

V, =V, +f„,S„S,+f,„S„'S,'. (5.6)
I ' I ' I ' I ~ I ' I ' I

2000 c@
4800 cm

Initially we set f„„to zero and adjust fi,h, f„„,fee, and

f, to account for the change in the infrared vibration fre-
quencies upon crystal formation. Table I also includes
the values of the potential constants used in the crystal
potential. The harmonic vibration frequencies of both po-
tentials are given in Table II, along with the observed in-
frared frequencies. Insufhcient experimental inforrna-
tion is available to determine a value for f„„.This force
constant does not affect the separation of the bend funda-
mentals though it does split levels at higher energy. Its
value is used as an adjustable parameter in the following
calculations and the calculated inelastic neutron spectra
are quite sensitive to it.

The absolute value of the incoherent inelastic cross sec-
tion, as given by Eq. (2.1), is strongly inlluenced by the
prefactor k'/k and therefore by the experimental scatter-
ing conditions. But the momentum transfer k is the most
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FIG. 4. Neutron inelastic scattering from HCN, for a particu-
lar choice of momentum transfer. See text for details.
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FIG. 5. The absolute value of the autocorrelation function
used to generate Fig. 4.

FIG. 6. Two additional choices for momentum transfer, for
head-on collision (along the molecular axis for HCN), top, and
perpendicular to the axis, bottom.

eluded to given 2000- and 4800-em ' resolution. The
time unit of each step is I/(20m. ) of the period of the
fastest vibration, or 0. 15423 fs. Figure 4, lower panel, is
for 3000 time steps with a resolution of 72 cm

The momentum transfer in both parts of Fig. 4 is given
by AP„=0.0, hP~ =80. , b,P, =60. in units of amu A/ps.
In these units a momentum of

l

P
l

=98.65 corresponds
to a neutron energy of 0.5 eV or 4030 cm '. A momen-
tum transfer in this direction leads to a simultaneous exci-
tation of the HCN stretch and bend modes, as is revealed
in the rich spectral structure. In the low-resolution spec-
trum of Fig. 4 only the fast v&-stretch mode with an ener-

gy spacing of —3100 cm ' (see Table II) is clearly
resolved. The higher resolution spectrum of Fig. 4 is
dominated by a peak spacing of -830 cm ', associated
with the bending motion. The v& stretch now reveals it-
self as a superposed intensity modulation. In addition, at
least the first excited state of the v3 stretch is visible as a
peak around 2100 cm '

~ The small 10-cm ' energy
spacing of the two bending modes is not visible with the
given resolution.

In general, the initial momentum kick transfers vibra-
tional, translational, and rotational (really librational in a
crystal) energy to the molecule. Of the total transferred
energy of about 4030 cm ' only the vibrational part is
used in our present calculations. The maximum intensi-
ties in the generated spectra are then found around the
classical energy, contained in molecular vibrations. This
energy is 3643 cm ' for Fig. 4 and 3022 em ' for Figs. 6
and 7.

For the spectrum in Fig. 4, the absolute value of the au-
tocorrelation function

l
C(t)

l
[see Eq. (5.1)] is plotted in

Fig. 5. Almost 12 periods of the slower bending motion
and about 47 v&-stretch periods are mirrored in this auto-
correlation function. The arrows indicate the longest time
data used in constructing the 2000- and 4800-cm ' reso-
lution spectra shown in Fig. 5. The band contour, 4800-
cm ' resolution, is obtained from the initial decay of the
overlaps, while choosing the first recurrence in the overlap
gives the fine structure seen in the 2000-cm ' spectra.

Spectra with two other selective initial momentum

—i8iza
l
0)

—«0«&
l
() ) (5.7)

where Eo is the energy of the ground state of the system.

kicks are shown in Fig. 6. The top panel is for hP =0.0,
hP~ = 100, AP, =0.0, i.e., for a head-on collision with ini-

tial momentum transfer along the HCN axis only. The
direction of AP in the bottom panel is perpendicular to the
molecular axis: AP„=O.O, AP~ =0.0, AP, =100. The
units are again amuA/ps. All potential parameters are
the same as for the results in Fig. 4, and the resolution is
72 cm ', as in Fig. 4, bottom panel. As expected, the
head-on collision (Fig. 6„ top) leads to excitation of the
two stretch modes and their combinations only. An ini-

tial kick of the H atom in z direction (Fig. 6, bottom) re-

sults in a spectrum with a peak spacing corresponding to
the bending frequency. As the bending motion of the
molecule is coupled to the stretch, a spectrum with this
AP at even higher resolution should show the efFect of the
stretch motion as additional structure as well.

The results in Figs. 4—6 are for a potential that can be
expected to give a realistic description of the intramolecu-
lar HCN dynamics, at least at lower energies. The spectra
in Fig. 7 are obtained with a nonzero value for f, „in Eq.
(5.6). However, there are no experimental data to obtain a
value for f „.We choose for f, „a value of 0.04787
mdyne, corresponding to a coupling in reduced units of
0.175, and leave all of the other potential parameters un-

changed. The anharmonic coupling term between the two
bends has a qualitative efT'ect on the bending-mode spec-
tra, as shown in Fig. 7. The top panel in Fig. 7 is for a
simultaneous and equal momentum transfer in the x and z
direction: b,P„=b,P, =70 71, b,P~.=0.0 amu A/ps. In
this direction the term f„„„S„S,has its largest value. The
potential is steeper and the result is a higher frequency.
This is seen in the top panel where the peak spacing is
clearly large, when compared with the remaining panels.
These are for successively more momentum transfer into
the x mode at the expense of the z mode. (0' means
b,P„=100,b,P, =0. )

In the case of 0-K scattering we ean write
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Thus we can write

(5.8a)

(5.8b)

(5.8c)

where
~

P(t)) is the wave packet which evolves out of
P) under the action of the total Hamiltonian. The cross

section is given by the Fourier transform of the correla-
tion function (5.8c), which in turn is governed by the
overlap between the initially boosted packet and the time-
evolved version of that packet.

With this in mind, consider the qualitative changes seen
in the panels of Fig. 7 as we go from top to bottom. In the
45' case, we can think of a wave packet initially at the ori-
gin, launched or boosted at a 45 ang)e due to the impul-
sive momentum transfer from the neutron. By symmetry
of the potential, that direction is a periodic classical orbit.
After the initial decay of the overlap ( P(t)

~ P ), there will
be no significant overlap until the packet has returned to
the starting position heading in the initial direction, i.e., at
one period of the periodic motion. The recurrence at that
time will be followed by others at multiples of the period,
and the Fourier transform of this time dependence will be

-1 0 1 2 3 4 5 6 7 8 8 10
(1000 cm )

FICx. 7. With the term f„„„,which causes the two bending
modes to become nondegenerate, set to a value of 0.04787
mdyne, the e8'ect of "aiming" the hydrogen atom along several
directions in the bending mode subspace, by arranging for vari-
ous momentum transfers, is shown.

a series of peaks spaced at the frequency of the 45' period-
ic orbit. The envelope of the frequency domain peaks
reflects the initial decay of the overlap. The rule of thumb
is that the shorter-time features of the correlation function
are refiected as the broader frequency features of the cross
section. When the wave packet returns, it may have
spread along the direction of motion perpendicular to the
orbit, and this is rejected as continued reduction of the
magnitude of the overlap at successive periods of the 45
orbit. This spreading is governed by the classical stability
of nearby orbits, in accordance with the wave-packet dy-
namics described in Sec. III. This in turn is represented as
broadening of the peaks. Eventually, the probability will
return to the vicinity of the periodic orbit, which causes
long-time recurrences responsible for resolving the peaks
into finer structure. The fine-structure peaks must natu-
rally occur at energy eigenvalues of the potential. The fine
structure is not shown in Fig. 7, however, because of the
resolution used and more importantly because the FGA
was used, which prevented the Gaussian from spreading.
[A fuller discussion of the spectral effects of various types
of wave-packet dynamics can be found in Refs. 25 and
3(g) )

For scattering at 35', 25', etc. , the orbits created by the
momentum boost are now quasiperiodic instead of period-
ic, resulting in a slightly more complicated Lissajous pat-
tern for the wave packets and thus for the correlation
function. This pattern can be fully understood by run-
ning classical trajectories. They are shown in the insets in
Fig. 7. It causes a multiple progression to appear in the
Fourier space of the cross section. Finally at 0, a period-
ic orbit is again relevant, but now the orbit has a different
period; this is seen in Fig. 7 at the bottom panel as a
closer spacing between the lines. The 25 trajectory cov-
ers the largest amount of classical phase space and also
has the largest number of allowed energy band.

The possibility of exploring the potential energy surface
with various momentum transfers is clearly revealed in
the series of calculations shown in Figs. 4—7. In addition,
since the potential energy surface is nontrivial and quite
realistic, we have demonstrated the ability to handle situa-
tions beyond the usual impulse or harmonic regimes.

It is important to emphasize that by controlling the
orientation of a crystal, scatteririg angle, energy of the
beam, etc. , it is possible to select the magnitude and direc-
tion of momentum boosts just as we have done theoreti-
cally here. We hope that the intuitive handle provided by
the wave-packet picture will suggest new experiments
designed to probe the potential energy surfaces and dy-
namics of molecules in crystals.

When are the wave-packet techniques a significant com-
putational improvement over standard expressions? As
far as we are aware, the wave packets are unique in their
ability to handle anharmonic effects systematically. This
makes application to liquid systems a distinct
possibility. ' " On the other hand, it has long been es-
tablished in the chemical physics literature that semiclas-
sical wave packets are increasingly unreliable as propaga-
tion time increases on anharmonic potentials. ' This
translates into accurate low-resolution spectra and ques-
tionable high-resolution spectra, since 1ong-time dynamics
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are required for the latter.
Unlike many semiclassical techniques, wave packets

make possible the systematic improvement of results by
variational means. Methods for accomplishing the im-

provement of time-domain propagation have been
given ' ' and are still under development. This approach
holds the promise of essentially exact neutron scattering
spectra at the cost of increased computation effort.

The wave-packet picture of neutron scattering makes
the classical-like dynamics of localized wave packets
available as an intuitive and computational tool. On the
computational side, we have just used the wave packets in
a calculation that would have been inadequately described
in any harmonic oscillator or separable approximation.
The calculation would have been very diScult to perform
using a basis set large enough to find a11 the eigenstates of
the four-coupled-mode problem in the required energy re-
gime. The inclusion of anharmonic lattice effects by direct
use of a basis set would have been out of the question, but
it is possible using time-dependent wave packets.
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APPENDIX: ELECTRONIC SPECTROSCOPY
ANALOGS TO NEUTRON SCATTERING

=H(P, q+p) . (A 1)

In Fig. 8 we have shown a one-dimensional potential V
and also V', which differs from V by a translation p and
energy shift Eo. We have also shifted the energy of one of
the potentials by Eo. This is not essential, but makes the
situation more akin to electronic absorption between two

Recall that neutron scattering can be cast in a form in-
volving a momentum-shifted Hamiltonian [Eq. (2.7)j. We
can ease into the subject of electronic absorption spectra
by means of another shifted Hamiltonian, where the shift
is in position rather than momentum,

H' =e'PPHe
P

Born-Oppenheimer potential surfaces. This energy shift
merely displaces the energy spectrum of the transition by
Eo. In addition to the effects included in Fig. 8, the gen-
eral case of electronic absorption would involve a noncon-
stant transition-moment operator )(t connecting P' and t '

and a change in the shape of V relative to V'.
The absorption spectrum for the shift Hamiltonian,

which is the analog of the neutron scattering cross section,
is proportional to the Fourier transform of

I

(t) (e p e
—tent jA) (A2a)

( ipPe iHt /A ipP——i8t /ii ) (A2b)

( e ipPe pP( ) )— (A2c)

imcopq —imcopq(t) ) 4 (A2d)

The last version follows from the Heisenberg equations of
motion for p and q for a harmonic oscillator, which are
identical to the classical ones. Thus P =met)q(t =qr/2'),
where q(t =n./2') is the Heisenberg position at time
t = m./(2'). Then, since

Eq. (A2d) follows. The temperature dependence is
signified by a subscript T in Cz.(t). Equations
(A2a) —(A2c) show the position-displaced case to be
equivalent to an autocorrelation function involving the
momentum (A2c). But Eq. (A2d) shows that is also a
position autocorrelation function, directly equivalent to
neutron scattering. An important practical application
of this, within the harmonic approximation, is that the
intensities of the lines shown in Fig. 4 can be obtained
from tables of Franck-Condon factors, substituting
momentum displacements on the usual position displace-
ments.

It is intriguing that the position displacement, or more
generally a mode displacement in the polyatomic or
solid-state case, can be treated just as in neutron scatter-
ing. It suggests that the existing semiclassical techniques
for neutron scattering can be carried over to solid-state
and molecular spectroscopy, radiationless transitions, etc.
We do not necessarily recommend this and do not pursue
it, because A' and H' generally differ by more than a shift.
However, the strong similarities between the theories of
neutron inelastic scattering and solid-state spectroscopy, '

both in the harmonic approximation, have their origin in
the equivalence just presented.

We go one step further into molecular electronic spec-
troscopy and now assume that H and H' differ in form
because of a difference in the shape of the potentials f'
and V'. Then the electronic-absorption spectrum is pro-
portional to the Fourier transform of

(t) (~ iB'th~ ifttt'R)— (A3)

FIG. 8. Example of a shifted Harniltonian. This case is a po-
sition shift affecting the potential V. An energy shift Eo has been
added.

where we have included the possibility of a nonconstant
transition moment operator p. Now there is no way to
proceed further to a simple Heisenberg autocorrelation
function such as (A2c) and (A2d). Stranded without a
suggestive Heisenberg autocorrelation function expression,
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how are we to pass to a simple semiclassical approxima-
tion? A desperate attempt to write Eq. (A3) as

CT(t) = (PP(t) ) (A4)

with p(t) given the appropriate definition fails, because
p(t) has a very odd and nonclassical behavior, since p(t)
is created out of two propagators that differ in essential

ways and not just by a shift. The way out of this problem
is to remain in the Schrodinger representation and evalu-
ate the correlation function over the coherent-state Gauss-
ian wave packets. This works nicely in the case of elec-
tronic spectroscopy. Even for a spectroscopy which has
a classical Heisenberg analog the Schrodinger representa-
tion discussed in this paper has considerable intuitive and
computational advantage.
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